
Computer Modeling in Engineering & Sciences CMES, vol.121, no.3, pp.909-928, 2019

METARO3: Metamorphic Relation Group for Automatic Program
Repair

Tingting Wu1 and Yunwei Dong1,∗

Abstract: The application of metamorphic testing (MT) on automatic program repair
(APR-MT) is used to generate a patch without test oracles by examining whether the input
metamorphic relation (MR) is satisfied or not. However, the delivered patch is plausible
since it may satisfy the input MR but violate other MRs. This inspires us to propose an
improved approach to enhance the effectiveness of APR-MT with metamorphic relation
group. Our approach involves three major steps. First, we formally define the repair process
of APR-MT by building the model of automatic program repair and metamorphic testing
separately. Then, we propose the advanced model of automatic program repair based on
metamorphic relation group, named METARO3, which takes several MRs as input while
only one MR is used in APR-MT. We additionally present two kinds of selection strategies
to rank MRs in descending order of the fault detection capability, which helps shorten the
repair time of finding a patch. To demonstrate the feasibility and procedure of our approach,
an illustration example was conducted. The results show that METARO3 can improve the
effectiveness of APR-MT significantly.

Keywords: Automatic program repair, metamorphic testing, metamorphic relation, formal
modeling.

1 Introduction
Program repair aims at fixing the errors in program revealed during the debugging
procedure so that the revised version can pass the entire input test cases and no new
mistakes are introduced to the revised version during the repair procedure. Since the
manual debugging and repair processes are extremely time-consuming and labor-intensive
activities in software development, automatic program repair (APR) [Kong, Zhang, Wong
et al. (2018); Liu, Zhang and Zhang (2018); Gazzola, Micucci and Mariani (2017)] is
proposed to automate both processes.
Many different test suite based APR techniques have been proposed. They fall roughly into
two main categories, namely the Generate-and-Validate (GaV) techniques and Correct-

1School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an,
710072, China.

∗Corresponding Author: Yunwei Dong. Email: yunweidong@nwpu.edu.cn.

CMES. doi:10.32604/cmes.2019.07809 www.techscience.com/cmes

910 CMES, vol.121, no.3, pp.909-928, 2019

by-Construction (CbC) techniques [Le Goues, Holtschulte, Smith et al. (2015)]. The
GaV techniques, search based techniques, generate multiple revised versions, referred
to as candidate repairs, and then validate them with selected test cases (e.g., GenProg
[Le Goues, Dewey Vogt, Forrest et al. (2012); Le Goues, Nguyen, Forrest et al. (2012)], AE
[Weimer, Fry and Forrest (2013)], TrpAutoRepair [Qi, Mao and Lei (2013)], SPR [Long
and Rinard (2015)] and Astor [Martinez and Monperrus (2016, 2019)]). On the other hand,
the CbC techniques, semantics based techniques, fix programs by program synthesis or
constraint solving to generate patches (e.g., CETI [Nguyen (2014)], SemFix [Nguyen, Qi,
Roychoudhury et al. (2013)], Angelix [Mechtaev, Yi and Roychoudhury (2016)], Tortoise
[Weiss, Guha and Brun (2017)]).
The generic repair procedure takes as input one buggy program and a test suite including
at least one failed test case. It applies the technique of fault localization [Tu, Xie, Chen
et al. (2019)] to locate the suspicious program entities. And then it ranks these entities
in descending order of their risk values calculated with the risk evaluation formulas. The
larger risk value is, the more likely faulty the entity is. Debuggers then inspect the program
entities from top to bottom and repair these faults with some program repair techniques. If
any candidate repair passes the input test suite, it will be returned as the program repair;
otherwise, no repair is found. However, the generated repair is plausible, namely possibly
not “correct”, since the input test suite is only a partial subset of the entire input domain.
Hence, an independent test suite, denoted as evaluation test suite [Wu, Dong, Chen et al.
(2017)], is used to assess the repair quality of the generated patch. The more evaluation
test cases the patch passes, the better the quality is.
The traditional test suite based APR delivers a program repair with the assumption of the
existence of test oracles [Jiang, Chen, Kuo et al. (2017b)] to determine whether a candidate
repair can pass the input and evaluation test suite. It is inevitable to have the oracle problem
[Barr, Harman, McMinn et al. (2015)] since there are some programs that do not have test
oracles or are too expensive to compute oracles. Metamorphic testing (MT) [Chen, Cheung
and Yiu (1998); Chen, Kuo, Liu et al. (2018)] is an approach proposed to alleviate the test
oracle problem by checking whether the metamorphic relation (MR), the relation between
multiple input test cases and outputs, is satisfied. To solve the oracle problem in program
repair, Jiang et al. [Jiang, Chen, Kuo et al. (2017b)] propose an integration approach of
metamorphic testing and automatic program repair (APR-MT). This framework takes as
input a set of metamorphic testing groups (MTG) formed by one MR, source test cases and
follow-up test cases instead the test suite in APR. APR-MT determines the correctness of
candidate patch by checking whether the input MTG is satisfied or not. If the entire MTG
is satisfied, that is the related MR is satisfied, then this candidate patch is the program
repair debuggers desired. Once any metamorphic testing group (mtg) is violated, no repair
is found.
However, the patch generated from APR-MT is probably plausible, because it may satisfy
the input MR but violate other MRs. In other words, the generated patch is not correct and
the APR-MT is of low repair quality which affects the repair effectiveness fundamentally.
This leads us to propose an advanced repair approach based on metamorphic relation group,
aiming to answer the following research question:

METARO3: Metamorphic Relation Group for Automatic Program Repair 911

Will multiple input MRs improve the effectiveness of APR-MT significantly?

We first define the model of APR-MT to precisely describe the repair procedure that how
to generate a patch without oracles. Based on which, we apply multiple MRs as input
to present a model of automatic program repair based on metamorphic relation group,
METARO3. If a patch is found to satisfy all of the input MRs, it will be returned as the
program repair; otherwise, no repair is generated. Additionally, since the fault detection
capability varies with different MRs, we also study the selection strategy to rank the input
MRs with the order of their detection capability which can help debuggers to examine the
most powerful MR first and find and fix errors faster.
The reminder of this paper is organized as follows. Section 2 presents the preliminaries of
automatic program repair, including test suite based APR and metamorphic testing based
APR. In Section 3, we define the model of test suite based APR, MT and APR-MT, based on
which we define the model and algorithm of METARO3. Section 4 introduces two selection
strategies for metamorphic relations according to their fault detection capability. Section 5
discusses our illustration example with the “mid” program. Section 6 discusses the threats
to validity of our approach. Section 7 briefly reviews the most recent work in program
repair. Section 8 concludes the paper and discusses future work.

2 Preliminaries
2.1 Test suite based automatic program repair

There are mainly two categories of test suite based APR: Generate-and-Validate
and Correct-by-Construction techniques [Jiang, Chen, Kuo et al. (2017b); Le Goues,
Holtschulte, Smith et al. (2015)]. The GaV techniques [Long and Rinard (2016a)] generate
multiple candidate patches and validate them with the input test suite to deliver one patch
passing the entire input test suite. GenProg [Le Goues, Nguyen, Forrest et al. (2012)] is
a typical GaV technique based on genetic algorithm. It first initializes a set of candidate
patches, and then selects a candidate patch with higher fitness through the fitness function.
GenProg stops if a candidate patch is found to satisfy the entire input test suite; otherwise
no repair is found within the maximum number of generations. Prophet [Long and Rinard
(2016b)] is a repair technique based on the probabilistic model of correct code which ranks
the candidate patches with their correctness. Opad [Yang, Zhikhartsev, Liu et al. (2017)] is
a framework to detect overfitted patch by generating better test cases using fuzz testing.
Elixir [Saha, Lyu, Yoshida et al. (2017)] is designed for repairing the object-oriented
programs by constructing expressive expressions using method invocations and ranked with
machine-learnt model. SOFix [Liu and Zhong (2018)] fixes bugs with 13 patch patterns by
applying code fragments extracted from stack overflow. LSRepair [Liu, Koyuncu, Kim
et al. (2018)] aims at finding fixed ingredients with three search strategies of similar code
at the method level.
The CbC techniques generate program repair based on semantics which replaces faulty
expressions with constraint conditions encoding the characterized information of test suite.
SemFix [Nguyen, Qi, Roychoudhury et al. (2013); Roychoudhury (2016)] is the first

912 CMES, vol.121, no.3, pp.909-928, 2019

program repair technique applied semantics. MintHint [Kaleeswaran, Tulsian, Kanade
et al. (2014)] utilizes the symbol execution to replace and instantiate faulty expression
and executes patch successfully. Nopol [Xuan, Martinez, Demarco et al. (2017)] delivers
a repair by fixing buggy conditional statements which are executed by failed test cases.
DeepFix [Gupta, Pal, Kanade et al. (2017)] is an approach based on deep learning which
targets at compilation errors in C programs. SemGraft [Mechtaev, Nguyen, Noller et al.
(2018)] solves the test overfitting problem with symbolic analysis of behavior specification
for buggy program from a correct reference implementation. ACS [Xiong, Wang, Yan et al.
(2017)] synthesizes precise condition by both variable ranking and predicate ranking.

2.2 Metamorphic testing based automatic program repair

The APR-MT [Jiang, Chen, Kuo et al. (2017b)] technique integrates metamorphic testing
with program repair, aiming at solving the oracle problem in program repair and generating
a repair by inspecting the input MR. APR-MT has been currently applied on three APR
techniques which demonstrates the feasibility of the integrated technique. GenProg-
MT [Jiang, Chen, Kuo et al. (2017b)] utilizes the principle of GenProg to generate
the set of candidate patches with mutate operators, and then investigates the candidate
patch according to the fitness calculated from the input MTG and fitness function. The
experimental results show that the effectiveness of GenProg-MT is comparable to GenProg.
AE-MT [Wu, Dong, Chen et al. (2017)] prioritizes the candidate patches to choose one that
is most likely to satisfy the entire MTG according to the adaptive repair strategy. AE-MT
then evaluates the chosen patch with the input MTG, and it favors the mtg that is most
likely to be violated as early as possible according to the adaptive test strategy. AE-MT
shows a great advantage of repair time compared with GenProg-MT. Both GenProg-MT
and AE-MT are the applications of APR-MT on GaV techniques. CETI-MT [Jiang, Chen,
Kuo et al. (2017a)] applies the APR-MT on a CbC technique. CETI-MT constructs a
reachability instance program from a faulty program by replacing a suspicious statement
with a parameterized statement encoding all the requirements of MTG set. CETI-MT then
checks the reachability by an independent MR checking function. Once the relevant MR on
the input MTG set is satisfied, this instance program is considered reachable and a repair
for the given faulty program is found as well.

3 Application of metamorphic relation group on automatic program repair
3.1 Model of test suite based automatic program repair

Test suite based APR takes as input faulty program and test suite with at least one failed test
case and evaluates the correctness of patch by comparing the actual outputs and expected
outputs. If the candidate patch passes the entire test suite, it will be regarded as the program
repair to generate. According to the repair procedure, we define the repair and evalution
processes by a six tuple as follows. This model formally depicts the inputs of APR, the
buggy program p0 and test suite T . The repair and evalution processes are defined by
function f and g as well, which represent the semantic of program repair precisely.
Definition 3.1. The model of test suite based APR is defined as a tuple, APR =

METARO3: Metamorphic Relation Group for Automatic Program Repair 913

(P, T,Σ, f, g, p0), in which

(1) P is a set of programs including the faulty program and repaired versions, P =
{p0, p1patch, p2patch, · · · , p

j
patch, · · · , p

k
patch}. Among which, p0 is the faulty program

to be fixed and pjpatch is the repaired version, candidate patch, generated from the jth

repair operation;

(2) T is a set of test cases, T = {t1, t2, · · · , ti, · · · , tn};

(3) Σ is a set of repair operations on p0, Σ = {r1repair, r2repair, · · · , r
j
repair, · · · , rkrepair}.

rjrepair indicates the jth repair activity on buggy program with the corresponding
candidate patch pjpatch generated;

(4) f : {p0} × Σ → {p1patch, p2patch, · · · , p
j
patch, · · · , p

k
patch} is a function from buggy

program and repair operations to candidate patches. f(p0, r
j
repair) = pjrepair implies

that candidate patch pjrepair is generated from the jth repair activity rjrepair on buggy
program;

(5) g : (P − {p0}) × T → {0, 1} is a decision function of execution result for test suite
T examined on candidate patch pjpatch, in which 1 indicates test case pjpatch passes ti
and 0 indicates pjpatch fails ti. If pjpatch passes the entire suite T , pjpatch is regarded as
the final patch to output; otherwise, investigate the next candidate patch or no repair
generated. That is, ∀ti ∈ T, pjpatch ∈ P − {p0}, ∃pjpatch to let g(pjpatch, ti) = 1, then

pjpatch will be the final generated patch for buggy program; ∀ti ∈ T, pjpatch ∈ P−{p0},
∃ti to let g(pjpatch, ti) = 0, then terminate inspecting pjpatch and turn to pj+1

patch; If j = k

and ∃ti to let g(pkpatch, ti) = 0, then no repair is generated by program repair technique.

3.2 Model of metamorphic testing

The model of metamorphic testing is defined by describing the program under testing p,
source test suite Ts, follow-up test suite Tf and the source and follow-up output sets Os
and Of , which aim at defining the relation r and rf . The formal description of MR is then
defined according to r and r f s ubsequently. T herefore, metamorphic t esting i s formally
defined by the above elements.
Definition 3.2. Metamorphic testing is defined as a set, MT = {p, Ts, Os, Tf , Of , r, rf ,
MR}, in which

(1) p ∈ P is a program version from program set P executed currently;

(2) Ts ⊆ T is a set of source test cases, Ts = {t1s, t2s, · · · , tms } and m 6 n;

(3) Os is the set of source outputs of program p executed on Ts, Os = {o1s, o2s, · · · , oms }.
Namely, ∀tis ∈ Ts, ∃ois to have ois = p(tis);

914 CMES, vol.121, no.3, pp.909-928, 2019

(4) Tf is the set of follow-up test cases, Tf = {t1f , t2f , · · · , tmf };

(5) Of is the set of follow-up outputs of program p executed on Tf , Of =
{o1f , o2f , · · · , omf }. Namely, ∀tif ∈ Tf ,∃oif to have oif = p(tif);

(6) r is the relation between Ts and Tf , r = {
〈
t1s, t

1
f

〉
,
〈
t2s, t

2
f

〉
, · · · ,

〈
tms , tmf

〉
}. That is,

∀tis ∈ Ts, ∃tif ∈ Tf , t
i
f = r(tis);

(7) rf is the relation between Os and Of , rf = {
〈
o1s, o

1
f

〉
,
〈
o2s, o

2
f

〉
, · · · ,

〈
oms , omf

〉
}.

That is, ∀ois ∈ Os, ∃oif ∈ Of , o
i
f = rf (ois);

(8) MR is the property that program p should satisfy. If Ts and Tf satisfy relation r , Os

and Of will satisfy relation rf . That is, r(Ts, Tf)⇒ rf (Os, Of), then (r, rf) is one of
the MRs of program p.

3.3 Model of APR-MT

Since the integration of MT and APR alleviates the oracle problem in program repair, we
define the APR-MT by redefining the input test suite and evaluation process. APR-MT
replaces the input test suite T with the set of metamorphic testing groups MTGs . If the
candidate patch satisfies all of the metamorphic testing groups, that is the input MR is
satisfied, then this patch will be output as the program repair; otherwise, no repair is found.
The model of APR-MT is defined as follows.
Definition 3.3. The model of program repair based on metamorphic testing is defined as a
tuple as well, APR−MT = {P,MTGs,Σ, f, g, p0}, in which

(1) P is a set of programs including the faulty program and repaired versions, P =
{p0, p1patch, p2patch, · · · , p

j
patch, · · · , p

k
patch}. Among which, p0 is the faulty program

to be fixed and pjpatch is the repaired version, candidate patch, generated from the jth

repair operation;

(2) MTGs is the set of metamorphic testing groups formed by source test suite Ts,
follow-up test suite Tf and corresponding metamorphic relation MR, MTGs =
{mtg1,mtg2, · · · ,mtgm} in which mtgi = (tis, t

i
f);

(3) Σ is a set of repair operations on p0, Σ = {r1repair, r2repair, · · · , r
j
repair, · · · , rkrepair}.

rjrepair indicates the jth repair activity on buggy program with the corresponding
candidate patch pjpatch generated;

(4) f : {p0} × Σ → {p1patch, p2patch, · · · , p
j
patch, · · · , p

k
patch} is a function from buggy

program and repair operations to candidate patches. f(p0, r
j
repair) = pjrepair implies

that candidate patch pjrepair is generated from the jth repair activity rjrepair on buggy
program;

METARO3: Metamorphic Relation Group for Automatic Program Repair 915

(5) g : (P −{p0})×MTGs → {0, 1} is a decision function of execution result of MTGs

examined on candidate patch pjpatch, in which 1 indicates metamorphic testing group

mtgi is satisfied by pjpatch and 0 indicates mtgi is violated by pjpatch. If pjpatch satisfies

all of the mtgs in set MTGs , that is, pjpatch satisfies the input MR, then pjpatch is
regarded as the final patch to output; otherwise, investigate the next candidate patch
or no repair is delivered. That is, ∀mtgi ∈ MTGs, pjpatch ∈ P − {p0}, ∃pjpatch to

let g(pjpatch,mtgi) = 1, then pjpatch will be the generated patch for buggy program; or

∀mtgi ∈MTGs, pjpatch ∈ P −{p0}, ∃mtgi to let g(pjpatch,mtgi) = 0, then terminate

inspecting pjpatch and turn to pj+1
patch; If j = k and ∃mtgi to let g(pkpatch,mtgi) = 0,

then no repair is generated by program repair technique.

3.4 Automatic program repair based on metamorphic relation group

3.4.1 Model of METARO3

The patch generated from APR-MT is possibly plausible. That is, this patch may
satisfy the input metamorphic relation but violate other metamorphic relations which will
weaken the effectiveness of APR-MT, especially the repair quality. To improve the repair
effectiveness of APR-MT, we propose to use the metamorphic relation group including
several metamorphic relations, at least two MRs. Thus, applying MRG on APR involves
three key steps: (1) taking several MRs and corresponding sets of metamorphic testing
groups as input instead of one MR in APR-MT; (2) the generation of candidate patch
depends on several MRs instead of one MR during repair process; and (3) only if all of
input MRs are satisfied, the buggy program is then said to be repaired and output this
candidate patch; otherwise, there is no patch generated. The model of METARO3 is defined
as follows.
Definition 3.4. The model of program repair based on metamorphic relation group is
defined as a tuple similarly, METARO3= {P,MRG,Σ, f, h, p0}, in which

(1) P is a set of programs including the faulty program and repaired versions, P =
{p0, p1patch, p2patch, · · · , p

j
patch, · · · , p

k
patch}. Among which, p0 is the faulty program

to be fixed and pjpatch is the repaired version, candidate patch, generated from the jth

repair activity;

(2) MRG is grouped of n metamorphic relations and n related sets of metamorphic testing
groups, MRG = {MTG1,MTG2, · · · ,MTGi, · · · ,MTGn}. In which, MTGi is
the set of metamorphic testing groups formed by MRi and related source and follow-
up test cases sized m , and MTGi = {mtg1i ,mtg2i , · · · ,mtgji , · · · ,mtgmi }. MTGi

is regarded as a positive test case if it is satisfied by program; otherwise MTGi is a
negative test case if violated;

(3) Σ is a set of repair operations on p0, Σ = {r1repair, r2repair, · · · , r
j
repair, · · · , rkrepair}.

rjrepair indicates the jth repair activity on buggy program with the corresponding

916 CMES, vol.121, no.3, pp.909-928, 2019

candidate patch pjpatch generated;

(4) f : {p0} ×Σ→ {p1patch, p2patch, · · · , p
j
patch, · · · , p

k
patch} is a repair function for buggy

program. f(p0, r
j
repair) = pjrepair implies that p0 is fixed to generate candidate patch

pjrepair from the jth repair activity rjrepair;

(5) h : (P − {p0}) ×MRG → {0, 1} is a decision function of execution result of MRG

examined on candidate patch pjpatch, in which 1 indicates the set MTGi is satisfied by

pjpatch and 0 indicates MTGi is violated by pjpatch. In other words, MRi is satisfied or

violated by pjpatch. If pjpatch satisfies all of the MTGi in MRG , that is, pjpatch satisfies

all of the input MRs , then pjpatch is regarded as the final patch to output; otherwise,

investigate next candidate patch or no repair is generated. That is, h(pjpatch,MTGi) =

∧ml=1g(pjpatch,mtgli). Only if all of mtgli are satisfied, then all of MRi and MTGi

are satisfied and h(pjpatch,MTGi) = 1; or h(pjpatch,MTGi) = 0. Hence, ∀MTGi ∈
MRG, pjpatch ∈ P − {p0}, ∃pjpatch to have h(pjpatch,MTGi) = 1, then pjpatch will be

the output patch; otherwise, ∀MTGi ∈ MRG, pjpatch ∈ P − {p0}, ∃MTGi to have

h(pjpatch,MTGi) = 0, then terminate inspecting pjpatch and turn to pj+1
patch; If j = k

and ∃MTGi to have h(pkpatch,MTGi) = 0, then no repair is generated by program
repair technique.

Note that, the input and decision function of METARO3 differ from that of APR-MT.
METARO3 takes as input MRG, a group of metamorphic relations, while APR-MT takes
only one MR as input. Furthermore, the output of function h relies on the output of function
g . Only when all of outputs of g are 1, the output of h will be 1 and the buggy program is
repaired with the patch generated. Once g outputs one 0, namely one metamorphic testing
group is violated, the output of h will be 0 which denotes that inspect next candidate patch
or repair terminates.

3.4.2 Algorithm

As defined above, only if all of the metamorphic testing groups for each MR are satisfied,
the candidate patch will be regarded as the output patch for the buggy program. Once
any metamorphic testing group is violated by the candidate patch, the inspected candidate
patch will be discarded and turn to inspect the next candidate patch. When all of the
candidate patches are inspected to find that no candidate patch satisfies all of the input
MRs, this indicates that no patch is generated by METARO3. Algorithm (3.1) presents
the implementation process of METARO3 when given a buggy program and a group of
metamorphic relations with at least one voilated, and outputs the generated patch or
indicates that no patch is generated.
METARO3 first generates a set of candidate patches CR with the repair operator, some spe-
cific repair technique. As defined in Definition 3.4, CR = {p1patch, p2patch, · · · , p

j
patch, · · · ,

METARO3: Metamorphic Relation Group for Automatic Program Repair 917

Algorithm 3.1 Automatic Program Repair Based on Metamorphic Relation Group

Input: faulty program p0
Input: metamorphic relation group MRG including at least one violated MR
Output: program patch p

′
satisfying all of the input MRs or “no repair”

1: CR ← ∅ // CR is a set of candidate repairs
2: Σ = {r1repair, r2repair, · · · , r

j
repair, · · · , rkrepair} // Σ is the set of mutation operators

3: CR ← f(p0,Σ) // Initialize CR by applying mutation operators on faulty program p0
4: while CR 6= ∅ do
5: p

′ ← getFrom(CR) // Get one candidate repair in CR from top to bottom
6: CR ← CR \ {p′}
7: MRG

′ ← selectStrategy(p
′
,MRG) // Get the ordered metamorphic relation

group MRG
′

following the selection strategy
8: re ← 1 // Initialize the execution result
9: while MRG

′ 6= ∅ and re = 1 do
10: MTG ← getFrom(MRG

′
) // Get a set of metamorphic testing groups involving

one MR in MRG
′

from top to bottom
11: MRG

′ ←MRG
′ \ {MTG}

12: while MTG 6= ∅ and re = 1 do
13: mtg ← getFrom(MTG) // Get one metamorphic testing group mtg from

MTG
14: MTG ← MTG \ {mtg}
15: re ← g(p

′
,mtg) // Execute mtg on candidate patch p

′
. If re is 0, then terminate

inspecting candidate patch p
′

16: end while
17: end while
18: if MRG

′
= ∅ and re = 1 then

19: return p
′

20: end if
21: end while
22: if CR 6= ∅ and re = 0 then
23: return “no repair”
24: end if

918 CMES, vol.121, no.3, pp.909-928, 2019

pkpatch}. METARO3 repeatedly inspects candidate patch p
′

and ranks the input group of
MRs until CR is empty (line 4-line 21), which implements the decision function h in
model of METARO3. Then METARO3 selects one MR and its relevant metamorphic testing
group MTG from the ordered MRG

′
and executes each mtg on p

′
(line 9-line 17). If p

′

satisfies all of the input MRs, p
′

is regarded as a repair of the buggy program p0. If each
candidate patch p

′
violates any mtg in the relevant MTG , no repair is generated for the

buggy program.

4 Selection strategy of metamorphic relations
The input group of metamorphic relations should be ordered since the detection capability
varies with metamorphic relations. Therefore, we present two selection strategies to help
debuggers select the most effective metamorphic relations preferentially according to their
fault detection capability.

4.1 Negative test case driven

Intuitively, when a large amount of metamorphic testing groups are violated, we deem the
relevant MR to be powerful in fault detection and worthwhile to be examined first. For
example, given two MRs, MR1 and MR2, and two sets of metamorphic testing groups
MTG1 = {mtg11,mtg21, · · · ,mtgm1 } and MTG2 = {mtg12,mtg22, · · · ,mtgn2 }. Assume
that there exist t1 metamorphic testing groups violated in MTG1 and t2 metamorphic
testing groups violated in MTG2, if t1

m > t2
n , we consider MR1 is more capable than

MR2 in fault detection and MR1 will be used earlier than MR2.
As shown in Eq. (1), we then present a score to evaluate the detection capability of MR
accordingly. In which, (1) v is the number of violated metamorphic testing groups, that is
the number of g(pjpatch,mtgli) = 0 in h(pjpatch,MTGi) = ∧ml=1g(pjpatch,mtgli); (2) t is the
total number of metamorphic testing groups of MTGi; (3) s is the evaluation score of each
MR in fault detection capability. The larger the score is, the less the number of violated
metamorphic testing groups is and the weaker the fault detection capability is. Contrarily,
the smaller the score is, the more the number of violated metamorphic testing groups is and
the stronger the fault detection capability is. If more than one MRs have identical scores,
a tie-breaking strategy [Tu, Xie, Chen et al. (2019)] is used likewise to rank these MRs in
their id order. The more sets of MTGs the evaluated patch satisfies, the better the repair
quality is.

s = 1− v

t
= 1−

|MTGi| −
∑m

l=1 g(pjpatch,mtgli)

|MTGi|
(1)

4.2 Execution path coverage driven

Test coverage is a quantitative measurement of the effectiveness of test case in software
testing [Rojas, Campos, Vivanti et al. (2015)]. Inspired by this, we present a selection
strategy based on path coverage to evaluate the fault detection capability of MR. Because

METARO3: Metamorphic Relation Group for Automatic Program Repair 919

metamorphic relation involves source test cases and follow-up test cases, the coverage of
source and follow test cases reflect the capability of MR directly.
As shown in Fig. 1, the set of execution paths of source test suite Ts on patch pjpatch is

the source path, denoted as s − path, namely s − path = Pcov(pjpatch, Ts). The set of

execution paths of follow-up test suite Tf on patch pjpatch is the follow-up path, referred to

as f − path, namely f − path = Pcov(pjpatch, Tf). Intuitively speaking, the repetition of
s−path and f−path should be as low as possible. That is, the detection capability of MR
is strong if source and follow-up test cases cover different execution paths. Fig. 1 presents
three scenarios for the measurement of MR detection capability. Fig. 1(a) indicates the
most powerful MR that even though the coverages of s − path and f − path are not high
respectively, the union of both paths covers all of the execution paths. Fig. 1(b) is a weaker
scenario because there exist some intersections between s− path and f − path. Fig. 1(c)
shows an extremely special scenario. From the perspective of metamorphic relation, Fig.
1(c) and Fig. 1(b) show the identical capability. However, from the perspective of test
case, Fig. 1(b) is stronger than Fig. 1(c) since the s − path and f − path in Fig. 1(c) are
completely repeated, which seems that the follow-up test cases are redundant and make no
contribution to MR detection capability. Therefore, we should take into consideration both
intersection and union of s − path and f − path to measure the detection capability of
MRs.

a b c

s-path f-path

Figure 1: The fault detection capability of metamorphic relation based on execution path
coverage

920 CMES, vol.121, no.3, pp.909-928, 2019

5 Illustration example
5.1 Setup

To evaluate our approach, we use the “mid” program [Wong, Gao, Li et al. (2016)] as the
example faulty program which outputs the median among three integers. For example,
take 2, 4, 8 as inputs, the output of “mid” program is 4. Take Ts = {t1s, t2s, t3s} and Tf =
{t1f , t2f , t3f} as the source and follow-up test case, os and of as the source and follow-up
outputs. The following three MRs [Jiang, Chen, Kuo et al. (2017b); Wu, Dong, Chen et al.
(2017)] are used for “mid” program.

• MR1: Construct Tf from Ts. If tif = tis + |tis|, then of = os + |os|.

• MR2: Construct Tf by taking the negative of Ts, that is, if tif = −tis, then of = −os.

• MR3: Construct Tf by changing the order of any two integers in Ts, then of = os.

As shown in Tab. 1, the faulty statement in program “mid” is s7 which should be “m = x;”.
MTGi(1 6 i 6 3) represents the set of metamorphic testing groups for MRi respectively.
mtgji (1 6 j 6 6) is the individual metamorphic testing group in MTGi which includes
source test cases and follow-up test cases generated from the relevant metamorphic relation
MRi. Since we need to compare the repair effectiveness of APR-MT and METARO3,
MTGi is also used as evaluation test suite to evaluate the repair quality of APR-MT.
Note that, the input MRs for both approaches should contain at least one violated mtg . To
construct our comparison, for the approach of APR-MT, we take MR2 as input to repair
“mid” program and produce a program patch, Patch1, when MR2 is satisfied. For the
approach of METARO3, we take the above three MRs as inputs to generate a program patch,
Patch2, when MR1, MR2 and MR3 are satisfied. According to individual evaluation
result, satisfy or violate each mtgji , we can evaluate the repair quality of generated patches
from two approaches. The more satisfied MRs are, the better the repair quality is.

5.2 Results and analysis

5.2.1 Results

Tab. 1 summarizes the execution information, including coverage of each test case on faulty
program and execution results of individual metamorphic testing group on the generated
patch. The last two rows of Tab. 1 shows the evaluation results of two patches generated
with APR-MT technique and METARO3 respectively. To evaluate the quality of two
patches, we utilize the source test suite and three follow-up test suites as evaluation test
suite. “X” implies that the metamorphic testing group is satisfied by the patch, and “×”
implies that the metamorphic testing group is violated by the patch. Take the Patch1 row
and the 2nd column as example, “X” indicates that Patch1 satisfies mtg11 . “×” in cell of
the Patch1 row and the 14th column indicates that Patch1 violates mtg13 . According to Tab.
1, we have the following observations.

METARO3: Metamorphic Relation Group for Automatic Program Repair 921

Table 1: Summary of faulty program, input metamorphic relation group and evaluation
Faulty program MTG1 MTG2 MTG3

#include 〈stdio.h〉 mtg11 mtg21 mtg31 mtg41 mtg51 mtg61 mtg12 mtg22 mtg32 mtg42 mtg52 mtg62 mtg13 mtg23 mtg33 mtg43 mtg53 mtg63

void main (int argc, char *argv []) { 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3

int x, y, z, m; 6,6,10 2,4,6 6,4,2 10,10,10 10,6,8 4,2,6 -3,-3,-5 -1,-2,-3 -3,-2,-1 -5,-5,-5 -5,-3,-4 -2,-1,-3 3,5,3 1,3,2 2,3,1 5,5,5 4,3,5 3,1,2

s1: scanf(“%d%d%d”,&x,&y,&z); •

s2: m = z; •

s3: if (y < z) { •

s4: if (x < y) • • • • • • • • • • • • • • • • • • •

s5: m = y; • • • • •

s6: else if (x < z) • • • • • • • • • • • • • •

s7: m = y;} • • • • • • • • •

s8: else { • • • • • • • • • • • • • • • • •

s9: if (x > y) • • • • • • • • • • • • • • • • •

s10: m = y; • • • • • •

s11: else if (x > z) • • • • • • • • • • •

s12: m = x;} • • •

s13: printf(“%d”,m);} •

Positive/Negative P P P P P P P P P P P N P P P P P N

Generated patches Satisfaction or violation of three MRs for two generated patches

Patch 1 X X X X X X X X X X X X × × X X × ×

Patch 2 X X X X X X X X X X X X X X X X X X

(1) Patch1 satisfies MR1 and MR2 with the MR3 is violated, because mtg13 , mtg23 , mtg53
and mtg63 are violated.

(2) Patch2 satisfies all of the input MRs.

As a result, METARO3 is more effective than APR-MT because the patch generated from
METARO3 sastifies more metamorphic relations than APR-MT, and it is feasible to improve
the repair effectiveness of APR-MT by using several MRs.

5.2.2 Selection strategy

Since METARO3 takes three MRs as inputs, we should rank them first in descending order
according to their fault detection capability. And then examine each MR from top to bottom
to find a patch that can satisfy all input MRs.
1) Negative test case driven. Tab. 1 lists the types of metamorphic testing group
individually in the 18th row. “P” indicates the positive test case, that is, the mtgji is satisfied
by the faulty program. “N” indicates the negative test case, that is, the mtgji is violated by
the faulty program. For example, mtg62 is one of the metamorphic testing groups for MR2

and mtg62 = (t6s2 , t
6
f2

), where t6s2 = (2, 1, 3) and t6f2 = (−2,−1,−3). By investigating
mtg62 on faulty program, the source output o6s2 = 1 and o6f2 = −2. MR2 is violated by
faulty program, because o6f2 should be equivalent to −o6s2 when t6f2 = −t6s2 . Therefore,
mtg62 is a negative test case and represented as “N” in Tab. 1.
According to Eq. (3.1) and test case types in Tab. 1, the scores of fault detection capability
for three MRs are Score1 = 1, Score2 = 5

6 and Score3 = 5
6 respectively. MR1 performs

922 CMES, vol.121, no.3, pp.909-928, 2019

worst among the three MRs, because there is no negative test case in MTG1. In other
words, MR1 reveals no mistakes in the faulty program and makes no contribution to the
faulty detection capability.
The capability of MR2 and MR3 is incomparable with their evaluation scores since
Score2 = Score3. Have an insight into the negative test cases mtg62 and mtg63 , the buggy
program passes both follow-up test cases t6f2 and t6f3 while the buggy program fails t6s2
and t6s3 . Therefore, MR2 and MR3 perform equally in this illustration example. We then
examine MR2 first according to the tie-breaking strategy.
2) Execution path coverage driven. As shown in Fig. 2, there exist six execution paths
in the faulty “mid” program. The nodes in Fig. 2 indicate the statements in program.
Pi(1 6 i 6 6) represents the ith execution path across the relevant nodes. The coverage
information of each statement of corresponding test case examined on faulty program is
reported in Tab. 1. “•” indicates the statement is executed by the test case; “• •” represents
that the statement is executed by the source and follow-up test case; “• ” implies that the
statement is only executed by source test case, while “ •” suggests that the statement is
only executed by follow-up test case. Take the s4 row and the 8th column as example, “•
” indicates that statement s4 is executed by the source test case t1s2 but not executed by the
follow-up test case t1f2 .
Following the definition of s−path and f −path in Section 4.2 and coverage information
in Tab. 1, the s− path and f − path for three MRs are summarized as follows.
s− path={P2, P1, P4, P5, P3, P2}={P2, P1, P4, P5, P3};
f − path1={P2, P1, P4, P5, P3, P2}={P2, P1, P4, P5, P3};
f − path2={P5, P4, P1, P6, P6, P5}={P5, P4, P1, P6};
f − path3={P4, P6, P5, P6, P2, P3}={P4, P6, P5, P2, P3};
For MR1, s − path ∪ f − path1 covers all of the six execution traces, and s − path is
absolutely identical with f − path1 which follows the case of Fig. 1(c), therefore MR1

is the worst metamorphic relation in fault detection capability. For MR2, s − path ∪ f −
path2 = {P1, P2, P3, P4, P5, P6} and s − path ∩ f − path2 = {P1, P4, P5}, which is
the case of Fig. (1).b. Hence, MR2 performs better than MR1. For MR3, s − path ∪
f − path3 = {P1, P2, P3, P4, P5, P6} and s − path ∩ f − path3 = {P2, P3, P4, P5}. In
accordance with the argument of execution path coverage driven strategy, the s−path∩f−
path should be as small as possible and the relevant MR performs well. Since |s− path∪
f −path2| = |s−path∪f −path3| and |s−path∩f −path2| < |s−path∩f −path3|,
MR2 outperforms MR3. Thus, MR2 performs best and MR1 performs worst in fault
detection capability. This helps debuggers to choose MR2 to inspect first.

5.2.3 Analysis

The two patches generated from one MR and three MRs show distinct evaluation results.
Patch2 satisfies all the three MRs, while Patch1 satisfies MR1 and MR2 and violates MR3,
which demonstrates our proposition that the patch generated from one MR is plausible. The
repair effectiveness, especially repair quality, is improved significantly by applying more

METARO3: Metamorphic Relation Group for Automatic Program Repair 923

s1

s3

s2

s4 s8

s5 s6

s13 s7 s13

s13

Y N

Y N

Y N

s9

s10 s11

Y N

s13 s12 s13

s13

Y N
P1

P2

P3

P4

P5

P6

Figure 2: The execution paths of “mid” program

than one MRs to guide the repair and evaluation process. Therefore, METARO3 is superior
to APR-MT.
According to the ranking results of three MRs with two selection strategies, both strategies
can identify the same ranking lists with MR2 ranks in the first place and MR1 ranks
last. That is, MR2 performs best while MR1 performs worst in fault detection capability.
However, negative test case driven strategy seems inferior to execution path coverage
driven strategy since MR2 has the same performance to MR3 with the former one, while
MR2 is more powerful than MR3 with the later one. This is reasonable that both source
and follow-up test cases determines execution results, which affects the effectiveness of
selection strategies. The impact of test cases will be discussed in depth in Section 6.

6 Threats to validity
6.1 Metamorphic relations

The key insight of our approach is the metamorphic relation group which contains more
than one MRs. We consider MR3 is not implementable to expose errors in the faulty
program even though both mtg13 , mtg23 , mtg53 and mtg63 cover the faulty statement s7.

924 CMES, vol.121, no.3, pp.909-928, 2019

Additionally, as a strategy of test case generation [Chen, Cheung and Yiu (1998)], MR is
also used to generate follow-up test cases along with source test cases, which affects the
execution path coverage of f − path. Hence, it is worthwhile to identify efficient, diverse
and nonredundant MRs for METARO3 in the future work.

6.2 Source test cases

Since follow-up test cases are generated from source test cases and relevant MR, source test
cases affect not only source execution path s− path but also follow-up execution path f −
path and affect the execution result of mtg , satisfy or violate consequently. For example,
the source test case (5, 5, 5) in mtg41 , mtg42 and mtg43 is considered as a ineffective source
test case, because all of the follow-up paths are the same as source paths and three MRs are
satisfied by faulty program when executing the three mtgs. Therefore, (5,5,5) cannot reveal
any mistakes in faulty program and benefit the detection effectiveness of MRs. Selection
of good source test cases with impractical test cases wiped off will undoubtedly increase
the effectiveness of METARO3.

7 Related work
Over the past decades, various techniques have been proposed to advance the effectiveness
of program repair in terms of repair quality and repair cost (e.g., patch overfitting, test case
reduction, search space constrain).
Oliveira et al. [Oliveira, Souza, Le Goues et al. (2016)] propose three crossover operators to
explore new repairs for buggy program under repair. OP1Space generates two offspring by
swapping the tail of one subspace chosen randomly. Unif1Space generates a binary mask
for the chosen subspace, which actually is the index to be used in two parent representation
spaces. OPAllS swaps the larger part of parent representation instead of swapping the tail
of single space of OP1Space. In their recent work [Oliveira, de Souza, Le Goues et al.
(2018)], the mutation operator, Subspace Mutation, is used to change one point of the
random chosen space and produce a new edit for buggy program.
Hua et al. [Hua, Zhang, Wang et al. (2018)] present a novel technique, SketchFix, which
transforms the faulty program to a sketch based on AST node-level schemas that represents
all candidate patches of same schemas. Debuggers then compile and execute only one
sketch rather than hundreds of candidate patches on tests. Thus, SketchFix can reduce the
repair space and the amount of compile and execution times considerably.
Xiong et al. [Xiong, Liu, Zeng et al. (2018)] check the patch correctness by investigating
the similarity of test case executions. The failing test cases are likely to behave differently
on buggy and fixed programs, which help to filter out some incorrect patches.
Yi et al. [Yi, Ahmed, Karkare et al. (2017)] integrate program repair with intelligent
tutoring system for programming to increase the repair rate of programs submitted by
introductory programming student and professional developer.
Yu et al. [Yu, Martinez, Danglot et al. (2017)] present two test case generation approaches
with purpose of alleviating overfitting problem for search-based and semantics-based
program repair, namely MinImpact and UnsatGuided respectively.

METARO3: Metamorphic Relation Group for Automatic Program Repair 925

FootPatch [van Tonder and Le Goues (2018)], a static program repair technique, is
implemented by utilizing Separation Logic to repair programs of pointer safety properties
with the pre-specified semantic effects instead of test case execution.

8 Conclusion and future work
Program repair is a labor-intensive activity in software testing. Automatic program repair is
proposed for the automation of fault localization, bug fix and patch evaluation procedures.
Test suite based APR techniques produce patches with the existence of test oracles. Jiang
et al. [Jiang, Chen, Kuo et al. (2017b)] integrate metamorphic testing with test suite based
APR to deliver a patch without the need of test oracles. One of the challenges in APR-MT
is the repair quality of generated patches, because APR-MT takes only one MR to repair
faulty program and evaluate generated patches.
To address this challenge, we propose to use multiple MRs which should be hard satisfied
by generated patches, and these MRs are ordered with their fault detection capability
to speed up the repair process. According to the illustration example, our approach is
demonstrated to produce program patch of higher quality than that of APR-MT. Moreover,
we evaluate the generated patch with not only the input MTGs in MR level but also the
source and follow-up test cases in test case level, which provides a more precise assessment
for the effectiveness of METARO3 and the quality of generated patches.

Acknowledgement: The work was supported by a grant from National Natural Science
Foundation of China (No. 61772423).

References
Barr, E. T.; Harman, M.; McMinn, P.; Shahbaz, M.; Yoo, S. (2015): The oracle problem
in software testing: A survey. IEEE Transactions on Software Engineering, vol. 41, no.
5, pp. 507-525.
Chen, T. Y.; Cheung, S. C.; Yiu, S. M. (1998): Metamorphic testing: a new approach
for generating next test cases. Technical report, Technical Report HKUST-CS98-01 .
Department of Computer Science, Hong Kong University.
Chen, T. Y.; Kuo, F. C.; Liu, H.; Poon, P. L.; Towey, D. et al. (2018): Metamorphic
testing: a review of challenges and opportunities. ACM Computing Surveys, vol. 51, no. 1,
pp. 1-27.
Gazzola, L.; Micucci, D.; Mariani, L. (2017): Automatic software repair: a survey. IEEE
Transactions on Software Engineering, vol. 45, no. 1, pp. 43-67.
Gupta, R.; Pal, S.; Kanade, A.; Shevade, S. (2017): Deepfix: fixing common c language
errors by deep learning. Thirty-First AAAI Conference on Artificial Intelligence, pp. 1345-
1351.
Hua, J.; Zhang, M.; Wang, K.; Khurshid, S. (2018): Sketchfix: a t ool f or automated
program repair approach using lazy candidate generation. Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 888-891.

926 CMES, vol.121, no.3, pp.909-928, 2019

Jiang, M.; Chen, T. Y.; Kuo, F. C.; Ding, Z.; Choi, E. H. et al. (2017): A revisit
of the integration of metamorphic testing and test suite based automated program repair.
IEEE/ACM 2nd International Workshop on Metamorphic Testing, pp. 14-20.
Jiang, M.; Chen, T. Y.; Kuo, F. C.; Towey, D.; Ding, Z. (2017): A metamorphic testing
approach for supporting program repair without the need for a test oracle. Journal of
Systems and Software, vol. 126, pp. 127-140.
Kaleeswaran, S.; Tulsian, V.; Kanade, A.; Orso, A. (2014): Minthint: automated
synthesis of repair hints. Proceedings of the 36th International Conference on Software
Engineering, pp. 266-276.
Kong, X.; Zhang, L.; Wong, W. E.; Li, B. (2018): The impacts of techniques, programs
and tests on automated program repair: an empirical study. Journal of Systems and
Software, vol. 137, pp. 480-496.
Le Goues, C.; Dewey Vogt, M.; Forrest, S.; Weimer, W. (2012): A systematic study
of automated program repair: fixing 55 out of 105 bugs for $8 each. 34th International
Conference on Software Engineering, pp. 3-13.
Le Goues, C.; Holtschulte, N.; Smith, E. K.; Brun, Y.; Devanbu, P. et al. (2015):
The manybugs and introclass benchmarks for automated repair of c programs. IEEE
Transactions on Software Engineering, vol. 41, no. 12, pp. 1236-1256.
Le Goues, C.; Nguyen, T.; Forrest, S.; Weimer, W. (2012): Genprog: a generic method
for automatic software repair. IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 54-72.
Liu, K.; Koyuncu, A.; Kim, K.; Kim, D.; Bissyande, T. F. D. A. (2018): Lsrepair:
live search of fix ingredients for automated program repair. 25th Asia-Pacific Software
Engineering Conference.
Liu, X.; Zhong, H. (2018): Mining stackoverflow for program repair. IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering, pp. 118-129.
Liu, Y.; Zhang, L.; Zhang, Z. (2018): A survey of test based automatic program repair.
Journal of Software, vol. 13, no. 8, pp. 437-453.
Long, F.; Rinard, M. (2015): Staged program repair with condition synthesis. Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, pp. 166-178.
Long, F.; Rinard, M. (2016): An analysis of the search spaces for generate and
validate patch generation systems. IEEE/ACM 38th International Conference on Software
Engineering, pp. 702-713.
Long, F.; Rinard, M. (2016): Automatic patch generation by learning correct code. ACM
SIGPLAN Notices, vol. 51, no. 1, pp. 298-312.
Martinez, M.; Monperrus, M. (2016): Astor: a program repair library for java (demo).
Proceedings of the 25th International Symposium on Software Testing and Analysis, pp.
441-444.
Martinez, M.; Monperrus, M. (2019): Astor: exploring the design space of generate-
and-validate program repair beyond genprog. Journal of Systems and Software, vol. 151,
pp. 65-80.

METARO3: Metamorphic Relation Group for Automatic Program Repair 927

Mechtaev, S.; Nguyen, M. D.; Noller, Y.; Grunske, L.; Roychoudhury, A. (2018):
Semantic program repair using a reference implementation. Proceedings of the 40th
International Conference on Software Engineering, pp. 129-139.
Mechtaev, S.; Yi, J.; Roychoudhury, A. (2016): Angelix: scalable multiline program
patch synthesis via symbolic analysis. Proceedings of the 38th International Conference on
Software Engineering, pp. 691-701.
Nguyen, H. D. T.; Qi, D.; Roychoudhury, A.; Chandra, S. (2013): Semfix: program
repair via semantic analysis. 35th International Conference on Software Engineering, pp.
772-781.
Nguyen, T. H. (2014): Automating Program Verification and Repair Using Invariant
Analysis and Test Input Generation. PhD thesis, The University of New Mexico.
Oliveira, V. P. L.; de Souza, E. F.; Le Goues, C.; Camilo-Junior, C. G. (2018):
Improved representation and genetic operators for linear genetic programming for
automated program repair. Empirical Software Engineering, pp. 1-27.
Oliveira, V. P. L.; Souza, E. F.; Le Goues, C.; Camilo-Junior, C. G. (2016): Improved
crossover operators for genetic programming for program repair. International Symposium
on Search Based Software Engineering, pp. 112-127.
Qi, Y.; Mao, X.; Lei, Y. (2013): Efficient automated program repair through fault-recorded
testing prioritization. IEEE International Conference on Software Maintenance, pp. 180-
189.
Rojas, J. M.; Campos, J.; Vivanti, M.; Fraser, G.; Arcuri, A. (2015): Combining
multiple coverage criteria in search-based unit test generation. International Symposium
on Search Based Software Engineering, pp. 93-108.
Roychoudhury, A. (2016): Semfix and beyond: semantic techniques for program repair.
Proceedings of the International Workshop on Formal Methods for Analysis of Business
Systems, pp. 2-2.
Saha, R. K.; Lyu, Y.; Yoshida, H.; Prasad, M. R. (2017): Elixir: effective object-
oriented program repair. 32nd IEEE/ACM International Conference on Automated Software
Engineering, pp. 648-659.
Tu, J.; Xie, X.; Chen, T. Y.; Xu, B. (2019): On the analysis of spectrum based fault
localization using hitting sets. Journal of Systems and Software, vol. 147, pp. 106-123.
van Tonder, R.; Le Goues, C. (2018): Static automated program repair for heap properties.
IEEE/ACM 40th International Conference on Software Engineering, pp. 151-162.
Weimer, W.; Fry, Z. P.; Forrest, S. (2013): Leveraging program equivalence for adaptive
program repair: models and first results. 2 8th I EEE/ACM I nternational Conference on
Automated Software Engineering, pp. 356-366.
Weiss, A.; Guha, A.; Brun, Y. (2017): Tortoise: interactive system configuration repair.
32nd IEEE/ACM International Conference on Automated Software Engineering, pp. 625-
636.
Wong, W. E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F. (2016): A survey on software fault
localization. IEEE Transactions on Software Engineering, vol. 42, no. 8, pp. 707-740.

928 CMES, vol.121, no.3, pp.909-928, 2019

Wu, T.; Dong, Y.; Chen, T. Y.; Jiang, M.; Lau, M. et al. (2017): Integration of
metamorphic testing with program repair methods based on adaptive search strategies and
program equivalence. International Conference on Formal Engineering Methods, pp. 413-
429.
Xiong, Y.; Liu, X.; Zeng, M.; Zhang, L.; Huang, G. (2018): Identifying patch
correctness in test-based program repair. Proceedings of the 40th International Conference
on Software Engineering, pp. 789-799.
Xiong, Y.; Wang, J.; Yan, R.; Zhang, J.; Han, S. et al. (2017): Precise condition
synthesis for program repair. IEEE/ACM 39th International Conference on Software
Engineering, pp. 416-426.
Xuan, J.; Martinez, M.; Demarco, F.; Clement, M.; Marcote, S. L. et al. (2017): Nopol:
automatic repair of conditional statement bugs in java programs. IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34-55.
Yang, J.; Zhikhartsev, A.; Liu, Y.; Tan, L. (2017): Better test cases for better automated
program repair. Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 831-841.
Yi, J.; Ahmed, U. Z.; Karkare, A.; Tan, S. H.; Roychoudhury, A. (2017): A feasibility
study of using automated program repair for introductory programming assignments.
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pp.
740-751.
Yu, Z.; Martinez, M.; Danglot, B.; Durieux, T.; Monperrus, M. (2017): Test case
generation for program repair: a study of feasibility and effectiveness.
arXiv:1703.00198.

