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Solving Fully Fuzzy Nonlinear Eigenvalue Problems of Damped
Spring-Mass Structural Systems Using Novel Fuzzy-Affine
Approach

S. Rout! and S. Chakraverty®*

Abstract: The dynamic analysis of damped structural system by using finite element
method leads to nonlinear eigenvalue problem (NEP) (particularly, quadratic eigenvalue
problem). In general, the parameters of NEP are considered as exact values. But in actual
practice because of different errors and incomplete information, the parameters may have
uncertain or vague values and such uncertain values may be considered in terms of fuzzy
numbers. This article proposes an efficient fuzzy-affine approach to solve fully fuzzy
nonlinear eigenvalue problems (FNEPs) where involved parameters are fuzzy numbers
viz. triangular and trapezoidal. Based on the parametric form, fuzzy numbers have been
transformed into family of standard intervals. Further due to the presence of interval
overestimation problem in standard interval arithmetic, affine arithmetic based approach
has been implemented. In the proposed method, the FNEP has been linearized into a
generalized eigenvalue problem and further solved by using the fuzzy-affine approach.
Several application problems of structures and also general NEPs with fuzzy parameters
are investigated based on the proposed procedure. Lastly, fuzzy eigenvalue bounds are
illustrated with fuzzy plots with respect to its membership function. Few comparisons are
also demonstrated to show the reliability and efficacy of the present approach.

Keywords: Fuzzy nonlinear eigenvalue problem, fuzzy set theory, affine arithmetic,
interval overestimation problem, triangular fuzzy number, trapezoidal fuzzy number,
fuzzy-affine approach.

1 Introduction

The nonlinear eigenvalue problem (NEP) is an emerging class of dynamical problems
arising from a variety of science and engineering applications. Let us consider the

function N :Q — C™" , where QQ < C is an open set. The NEP is to find the scalars

and nonzero vectors (x, A1) € C” x Q) such that
N(A)x=0. (1)

where A is called the eigenvalue and x is known as the corresponding eigenvector.
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There are wide varieties of applications of NEPs in the dynamic analysis of various science
and engineering problems viz. structural mechanics and acoustic systems, simulation of
electrical circuits, modeling micro-electronic mechanical systems, fluid mechanics and
signal processing, etc. NEP plays an important role in the application of structural
dynamics. In general, dynamic analysis of structural problems of damped spring-mass
system gets converted into NEP (particularly quadratic eigenvalue problem (QEP)).
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Figure 1: One degree-of-freedom damped spring-mass structural system

The equation of motion for the structural ambient vibrational problems of the system
given in Fig. 1 may be written as

Mii(t)+ Cu(t)+ Ku(t) =0, (2)

where M is mass matrix, C the damping matrix, K stiffness matrix. Substituting
it

u=xe"" in the governing equation of motion (Eq. (2)) due to dynamic analysis of
structures may be reduced to a QEP

(K+AC+AM)x=0, 3)

where A =iw stands for the eigenvalue and x is the corresponding eigenvector of the
above problem.

Many investigations are carried out by various researchers to handle the crisp NEPs.
Basic theories and properties of matrix structural analysis are presented by Przemieniecki
[Przemieniecki (1968)]. Further, Gohberg et al. [Gohberg, Lancaster and Rodman (1982)]
discussed various concepts and propertied of matrix polynomials. Rajakumar [Rajakumar
(1993)] developed the Lanczos algorithm for the solution of QEPs in engineering
applications. The backward error analysis of polynomial eigenvalue problems (which is a
particular type of NEP) is explained by Tisseur [Tisseur (2000)]. Tisseur et al. [Tisseur
and Meerbergen (2001)] illustrated a review work on solving crisp QEPs given by Eq. (3)
using several numerical techniques. Their work is based upon the linearization of the
NEP into standard eigenvalue problem (SEP) and generalized eigenvalue problem (GEP).
Mehrmann et al. [Mehrmann and Watkins (2002)] studied the linearization procedure to
solve polynomial eigenvalue problems with Hamiltonian structure. Structured eigenvalue
method for the computation of corner singularities in 3D anisotropic elastic structures has
been studied by Apel et al. [Apel, Mehrmann and Watkins (2002)]. Further, Bai et al.
[Bai and Su (2005)] proposed a second-order Arnoldi method (SOAR) to solve the crisp
QEP. Study of a special form of NEP known as rational eigenvalue problems and its
solution via linearization technique was presented by Su et al. [Su and Bai (2011)].
Wetherhold et al. [Wetherhold and Padliya (2014)] designed different aspects of
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nonlinear vibration analysis of rectangular orthotropic membranes. Again a backward
error analysis of polynomial eigenvalue problems solved by linearization has been
studied by Lawrence et al. [Lawrence, Van Barel and Van Dooren (2016)]. Solov’ev et al.
[Solov’ev and Solov’ev (2018)] developed a finite element approximation of the minimal
cigenvalue of a NEP. NEP is solved by Saad et al. [Saad, EI-Guide and Miedlar
(2019)] using a rational approximation method. The linearised and nonlinearised
solutions of nonlinear multiparameter eigenvalue problems are discussed by Kurseeva et
al. [Kurseeva, Tikhov, and Valovik (2019)]. Bender et al. [Bender, Komijani and Wang
(2019)] studied NEP for generalized Painlevé equations. Moreover, Newton method is
widely used to solve NEP having crisp parameters. For instance, Kressner [Kressner
(2009)] developed a block Newton method for the solution of NEPs. An improved
Newton method was also proposed by Fazeli et al. [Fazeli and Rabiei (2016)] to solve
NEPs. Further, Gao et al. [Gao, Yang and Meza (2009)] described the solution of a class
of NEPs by Newton’s method.

In general, all the parameters associated with the NEP are considered as crisp or exact
values. But in real practice, because of different errors and incomplete information, one
may have only the vague and imprecise parameters which are uncertain in nature. Fuzzy
set theory and interval analysis are two major fields to handle these parameters. In fuzzy
set theory, the fuzzy numbers may be converted into corresponding interval forms using
n-cut method. Few literature studies related to the basic concepts and properties of fuzzy

set theory are discussed here. Zadeh [Zadeh (1965)] first introduced the concepts of fuzzy
sets and fuzzy numbers. Many excellent books have been written by few authors viz.,
Dubois [Dubois (1980)], Kaufmann et al. [Kaufmann and Gupta (1988)], Zimmermann
[Zimmermann (2001)], Hanss [Hanss (2005)], Zadeh et al. [Zadeh, Fu and Tanaka
(2014)], Chakraverty et al. [Chakraverty, Tapaswini and Behera (2016)] and Chakraverty
et al. [Chakraverty and Perera (2018)] etc.

Standard interval arithmetic’s (IA) underlying assumption about the independency of all
the operands is responsible for its overestimation problem. In this regard, affine
arithmetic (AA) proves itself as an efficient tool to handle the overestimation problem
and results with comparatively tighter enclosures. The concept of AA and its application
in computer graphics are firstly introduced by Comba et al. [Comba and Stolfi (1993)].
After a few year, Stolfi et al. [Stolfi and De Figueiredo (2003)] illustrated the
overestimation problem in case of standard IA and how AA is able to overcome it.
Further, the concepts, properties and several applications of AA have been discussed by
De Figueiredo et al. [De Figueiredo and Stolfi (2004)]. Miyajima et al. [Miyajima and
Kashiwagi (2004)] proposed a dividing method by utilizing the best multiplication in
Akhmerov [Akhmerov (2005)] developed an interval-affine Gaussian algorithm for
constrained systems. A direct method for solving parametric interval linear systems with
non-affine dependencies is demonstrated by Skalna [Skalna (2009)]. Rump et al. [Rump
and Kashiwagi (2015)] discussed the improvements and implementations of Skalna et al.
[Skalna and Hladik (2017)] developed a new algorithm for Chebyshev minimum-error
multiplication of reduced affine forms. An optimization model based on improved affine
arithmetic for interval power flow analysis has been developed by Xu et al. [Xu, Gu, Gao
et al. (2016)]. Further, Adusumilli et al. [Adusumilli and Kumar (2018)] studied the
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modified affine arithmetic based continuation power flow analysis for voltage stability
assessment under uncertainty. An affine arithmetic-based energy management system for
isolated microgrids has been illustrated by Romero-Quete et al. [Romero-Quete and
Canizares (2018)]. Wang et al. [Wang, Wang, Teng et al. (2018)] discussed an affine
arithmetic-based multi-objective optimization method for energy storage systems
operating in active distribution networks with uncertainties.

There are many works of literature available for the solution of uncertain linear

eigenvalue problems viz. uncertain SEP ( AX = AX) and uncertain GEP ( AX = ABX).
Hladik et al. [Hladik, Daney and Tsigaridas (2011)] proposed a filtering method for
solving interval eigenvalue problems, which is based on the concept of sufficient
conditions for singularity and regularity of interval matrices given by Rex et al. [Rex and
Rohn (1998)]. The real eigenvalue bounds of linear (that is standard and generalized) real
interval eigenvalue problems are studied by Leng [Leng (2014)]. Further, Mahato et al.
[Mahato and Chakraverty (2016b)] extended the filtering algorithm given by Hladik et al.
[Hladik, Daney and Tsigaridas (2011)] for eigenvalue bounds of fuzzy symmetric
matrices to solve standard eigenvalue problem. Also, the filtering algorithm for real
eigenvalue bounds of both interval and fuzzy GEPs are illustrated by Mahato et al.
[Mahato and Chakraverty (2016a)]. To the best of our knowledge, there exist very few
literature studies for the solution of uncertain (interval and/or fuzzy) NEPs. Chakraverty
et al. [Chakraverty and Mahato (2018)] have been solved nonlinear interval eigenvalue
problems for damped spring-mass systems using two methods viz. linear sufficient
regularity perturbation (LSRP) method and direct sufficient regularity perturbation
(DSRP) method. Further by using A, Sadangi [Sadangi (2013)] solved interval NEPs.

This article is organized as follows. The present section of the article contains the
introduction and literature survey. In Section 2, necessary preliminaries related to fuzzy
set theory are discussed. These concepts are useful for the present investigation. Further,
AA and its properties are included in Section 3. A fuzzy-affine approach (FAA) has been
developed in Section 4. In Section 5, the general form of both crisp, as well as fuzzy
nonlinear eigenvalue problem (FNEP) and the linearization procedure to convert it into
GEP, are included. Then, the proposed method is explained in Section 6. Four illustrative
numerical examples related to structural dynamics are investigated in Section 7, followed
by concluding remarks in Section 8.

2 Preliminaries

In this section, basic definitions related to present work viz. fuzzy set, fuzzy numbers and
fuzzy arithmetic are illustrated [Dubois (1980); Kaufmann and Gupta (1988); Zimmermann
(2001); Hanss (2005); Zadeh, Fu and Tanaka (2014)].

2.1 Fuzzy set
A fuzzy set is the set of ordered pairs and may be defined as

F={(x, u:(x)):xe X, 1 (x) €[0,1]}, 4)

where g (x) is known as the membership function of F and X be the universal set.
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2.2 Fuzzy number

The fuzzy number F is defined as a special type of fuzzy set (given in Eq. (4)) that
obeys the following properties:

1. F isnormal, (that is 3x € R: I?(x) =1);

2. F isconvex;

3. The membership function 4 (x) is piecewise continuous.

n-cut of a fuzzy number: Each 7 -cut F (n7) of the fuzzy number F, is a standard
closed interval which depends upon the value of 77 €[0,1], and is represented as

F(n)=[F@n).F)]. (5)

Here F(77) is the lower bound and F'(77) is the upper bound of F (n7) . It may be noted

that the fuzzy set F may be expressed uniquely and completely through the family of its
n -cuts. Further, in the above second property, F is convex means all the n -cuts of F ,

F(T]) ={xe R| F(x)> nt,n €[0,1] are closed standard intervals.

There exist different types of fuzzy numbers viz. triangular fuzzy number (TFN),
trapezoidal fuzzy number (TrFN), Gaussian fuzzy number (GFN) and exponential fuzzy
number (EFN), etc. In our work mainly TFN and TrFN are considered.

2.2.1 Triangular fuzzy number (TFN)
TFN may be represented by a triplet T = (t,,t,,1;) . It generally has a linear graph (that

is the composition of left-increasing and right-decreasing linear functions) as shown in
Fig. 2. It may be noted that in TFN, there exists exactly one x, € R such that

4z (x,)=1. Here x, is known as the mean value of T . The membership function

45(x) of a TFN T = (¢,,t,,t;) may be defined as follows:

0, X<t,x>t
x—t
/uf(x): —17 xe[tlatz] : (6)
tz_tl
t,—Xx
2 5 xe[tzat3]
t3_t2
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Figure 2: Triangular fuzzy number (TFN) T

2.2.2 Trapezoidal fuzzy number (TrFN)
TrFN may be represented by a quadruplet L= (/,,1,,1,,1,) . As shown in Fig. 3, there is
an interval x €[/,,/;] such that u;(x)=1. Thus, the membership function x;(x) may

be defined as follows:

0, x<l,x>1,
x—1
ﬁ: xe[llalz]
_ 2 1
luz(x)_ 1’ x€[12,13] . (7)
l,—x
= xell,l
o [F,1,]

HL

L L L

Figure 3: Trapezoidal fuzzy number (TrFN) L

2.3 Fuzzy matrix
A matrix [N ]=(n,,) of order m x n may be referred as fuzzy matrix, if each element
(ﬁpq) for p=12,---,m and g =1,2,---,n is a fuzzy number. In this article, TFN and

TrFN are particularly used. Further, a fuzzy matrix may be considered as non-negative
([IV 1> 0), if each element of the fuzzy matrix is a non-negative fuzzy number.
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2.4 Parametric form of fuzzy number

Any fuzzy number can be parameterized by using 77 -cut. Thus, F (n7) is the parametric

form of the fuzzy number F represented as ﬁ(n) =[F(n),F(n)] for n €[0,1]. It may

be noted that lower and upper bounds of the parametric form of fuzzy number must have
the following properties:

1. The lower bound F(7) is a left bounded continuous non-decreasing function over
[0,1].

2. The upper bound F'(77) is a right bounded continuous non-increasing function over
[0,1].

3. F(p)<F(n) for n[0,1].

Firstly, the TFN T = (t,,t,,t;) is converted into its parametric form by 77 -cut approach as

T =T, TN =11, +7(t, = 1,),t, = 7(t; ~1,)] where 7 €[0,1]. ®)
Next, the TrFN L = (1,,1,,15,1,) also transformed into its parametric form as
2(77) =[L(), LM]1=1[}, +n(l, =1),1, —n(l, — )], where 17 € [0,1]. ©)

In this regard, some of the terminologies of a fuzzy number F () =[F),Fn)]

through its parametric form may be described as follows:

Center: ﬁc = %{M +m} . (10)
Width: F, = F(17)— F(n). (11)
Radius: ﬁA :%{W—M} (12)

2.5 Fuzzy arithmetic (FA)

As mentioned in Section 2.4, any fuzzy number can be regarded as a family of standard
intervals by using the parametric form (77 -cut). Let us consider two fuzzy numbers in its

parametric representations as S =[S(),S(n)] and T =[T(n),T(n)]. Therefore, the

standard interval-based FA may be illustrated as
ST ={S®T:SeSn),T eT(n) for n€[0,1]}, (13)

where ‘® ’ stands for all the binary operations viz. {+,—,-,/}. In this regard, all the FA is
discussed as follows:

Addition: S +T =[S() +T(1),S(n)+T()]; (14)
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Subtraction: S — 7T = [S() - m,% -T(m]; (15)
Scalar multiplication: ¢ - S = Lae-S0p). - S(p). o= 0; (16)
o St.a-S()] @ <0
Multiplication: S -7 =[min{Z(S,T)},max{Z(S,T)}], (17)
where Z(S,7)={S()-T(1),S(7)-T(1).S()-T(),S(0)- T(1):
, 1 ;L , 0¢S
Reciprocal: 5 =3 S S() ; (18)
(—o0,), 0eS
~ - 1 ~
Division: %:S’-%: [w’S(n)]{T(U),T(ﬂ)} ’ S; (19)
(—00,00) 0eS
Power:
- If n>0 is an odd integer, then (§)" = |S(77)",S(77)"J; (20)
NN S
- If n> 0 is an even integer, then (§)" = NGNS S <0. (21)

[0, maxiS(n)",Sm)" (i 0eS

3 Affine arithmetic (AA)

One of the main obstacles in the wide-spread use of interval arithmetic (IA) in numerical
calculations is that the range estimates computed with standard IA tend to be too large,
especially in complicated expressions or long iterative computations. This is mainly due
to the interval overestimation problem [De Figueiredo and Stolfi (2004); Skalna (2009)].
This overestimation problem is mainly because of IA’s underlying assumption that the
variables of the arguments to primitive operations may vary independently over their
given intervals. In this regard, affine arithmetic (AA) [De Figueiredo and Stolfi (2004)] is
a model for self-validated numerical computation that aims to attack the interval
overestimation problem in standard IA. AA keeps track of first-order correlations
between computed and input quantities. These correlations are automatically exploited in
primitive operations, with the result that in many cases AA is able to produce interval
estimates that are much better than the ones obtained with standard IA. Also, AA
provides a geometric representation for the joint range of related quantities that can be
exploited to increase the efficacy of interval methods.
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3.1 Affine representation

Affine form representation is a linear polynomial of real variables &, known as noise

symbols and these symbols lie in a particular interval X = [—1,1]. Suppose, S denotes

37 s, Then

the affine form representation of an ideal quantity S € S, + |- z; |S ;

it may be expressed as

o b4
SeS=8,+>" S&=S8+8¢&++5,,6,,+5,8,, (22)
where ¢, € X =[-1,1] for i=12,---,p . Here, the initial term S, is known as the
central value of .S and each associate coefficient .S . for i=1,2,---, p of the respective

noise symbol &; is called the partial deviation of S. These partial deviations are finite
real numbers.

Further, all the noise symbols of an affine form representation are unique and
independent to each other, whereas in two different affine form representations there may
exist some common noise symbols. The number of noise symbols for different
representations may not be equal. New noise symbols may also be generated during
affine computations.

3.2 Conversion between AA and IA

Suppose S is an affine form representation of the ideal quantity S given as follows:
S=8,+Y" S&=5+5¢&++5,¢,.

The total deviation of the above affine form representation may be illustrated as

Dy =377 IS,|=[8|+[Sa|+++-+]S, | - (23)

Thus the interval bounds [S] of the affine form representation S may be computed as

[S1=[S, — Dg,S, + Dy]. (24)
It may be noted that for every noise symbol ranges over the interval X = [—1,1]
independently, [S] is the smallest interval that contains all the possible values of S.

After S is converted into [S], all the presented correlation information in the affine
form is discarded.
Conversely,

The affine form representation of the interval [S]=[S, g] may be calculated as

S=S,+S,¢,., (25)
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1 - 1 -
where S, 25(§+S) is the center and S, ZE(S—E) is the radius of the given

interval [S]. Further, £, € X = [-1,1] is the newly generated noise symbol that should
not be present in any other existing affine representations.
3.3 Affine arithmetic operations
Let us consider two affine representations S and T such that,
O p - p
S=S,+Y) S& and T =T, +> " T, .

Then, the AA operations the affine representations may be defined as follows [De
Figueiredo and Stolfi (2004)]:

Addition: S+7 =(S, +T))+ > (S, +T)é, ; (26)
Subtraction: $—7T = (S, —T,) + Zf; (S, -T)e,; (27
Scalar multiplication: - S = o - S, + z; (a-S,)e; ,where o <R ; (28)
Multiplication: S -7 = S,T, + Zil (ST, +STy)e; +k,¢,, (29)
where

, &, eX=[-11].

‘Kq‘ = ‘Zil Sigi ’ Zi]j—;’gi

Here, ¢, is the newly generated noise symbol during multiplication and ‘K‘q‘ is the upper

bound of the approximation error.

P B S A
Division: 5= § - =50 =" |8, =LT, |e, , provided S = {0} [Skalna (2009)].
T T T, T4~ T,

(30)
To prove that AA is an efficient tool to overcome the “interval overestimation problem”,
the following example of an interval nonlinear function is considered.

Example 1: Let us consider a nonlinear function such that
f(S,T)=S8*+2T*-28T, (31)
where VS €[1,3] and VT €[5,7].
Applying standard interval computations, the following result is obtained.
[F1CS1,(T]) =[ST* +2[T]* - 2[S][T]

=[9,97] (32)
Therefore, for standard IA f(S,7T) €[9,97].
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Further, the interval bounds of the present variables are converted into its affine form
representations as follows:

[S1=[13]= S =2+¢, (33a)
[T]1=[571=T =6+¢, (33b)
where ¢, and &, are the noise symbols of the affine form representations and

g, €[-L1] for i =1,2. Then by using AA operations, the affine form of the nonlinear
function f(S,7) may be evaluated as follows:

F(S,T)=8*+2T*-28T
=52-8¢ +20¢, + &, +2¢, - 2¢, (34)

where &, € [-L1] for i =3,4,5 are newly generated noise symbols during the affine
operation to evaluate the required result.

Hence after converting the resulting affine solution into its interval bounds using Eq. (24),
we may have

F(S,T)=[52-33,52+33] =[19,85]. (35)

Since the central value and the total deviation of the affine function f are f, =52 and

df = 33 respectively. Therefore, it may be clearly noticed from Eq. (32) and Eq. (35) that
/8.7y e fS.1) < [FNSLITD. (36)

The present example shows that AA may result in better enclosures as compare to the
standard IA. Moreover, Skalna et al. [Skalna and Hladik (2017)] developed an algorithm
for Chebyshev minimum-error multiplication of reduced affine forms which will result in
the interval [23.5,85]. Thus minimum-error Chebyshev multiplication of affine forms is

indeed a good approximation than that of AA. Hence, the proposed procedure may be
extended by using Chebyshev minimum-error multiplication instead of standard AA
multiplication (given in Eq. (29)) for better results.

4 Fuzzy-affine form

From Section 2.4, a fuzzy number may be regarded as a family of intervals by
parameterized by using 77 -cut method. That interval further may be transformed into an

affine form representation to handle the fuzzy number more efficiently.
Now, let us assume a TFN T = (t,,t,,t;) . Parameterizing it using 77 -cut as mentioned in
Eq. (8), we may have

T(n) =T, T =1t, +n(t, —t,),t; —n(t; —t,)] for n €[0,1].

Further, the above interval quantity may be transformed into its affine form
representation (Eq. (25)) as



958 CMES, vol.121, no.3, pp.947-980, 2019

R 1 1
T(n,&;) :E{(tl +1,)+n(2t, -t _t3)}+5{(t3 —t)+n@t, —t)ter, (37
for n €[0,1] and &, e[-L1].

In the similar fashion, a TrFN L= (1,,1,,1,,l,) may be converted into its fuzzy-affine

form using Eq. (25) as follows:
L(n,&,) = %{(11 )+, + L) = = 1); +%{(14 =L+ +5) = +1)e, » (38)
for n €[0,1] and &, e[-L1].

Let us consider the fuzzy-affine forms S (17,&5) and T (17,&,) of two fuzzy numbers S
and 7' (where 17 €[0,1] and &, &, €[-1,1]) respectively. Then all the arithmetic for

fuzzy-affine numbers can be obtained as

R(,64,6,) = S(1,6)®T(1,¢,). (39)

Therefore, the resulting solution may be computed as

S *f:[ min ]é(n,es,gr), max 1]1%(77,%,&)} for V1 €[0,1]. (40)

es,erel-11

Example 2: Let us consider the nonlinear function f(S,7)=S”+2T>—2ST that

given in Eq. (31) of Example 1, in which the consisting variables are taken in the form of
TFNs such as

vSeS=(123)and VT T =(5,6,7). (41)

Then after parameterizing the above TFNs (41a) and (41b) as given in Section 2.4, we
may have

§(77) =[1+7n3—-n] and T (1) =[5+1,7-7] for n €[0,1]. (42)
Applying basic FA given in Section 2.5, the following result is obtained.

FE@.T@) =10’ +427+9.n" ~ 467 +97] (43)
Further, the fuzzy-affine forms of S and T are found below.

S(n,&)=2+(1-n)¢, and T(57,6,) =6+(1-7)¢, , (44)

where 17 €[0,1] and &, =[-1,1] for i =1,2 are the noise symbols of the fuzzy-affine
forms.

Then by using FAA, the required fuzzy-affine form of the given nonlinear function
f(S8,T) is obtained as follows:

F(S@,&).T(,2,) =52-8(1-n)z, +20(1=n), + (1-n) &, + 2(1-1) &, - 2(1-n)’ &
(45)
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where g, € [-L1] for i = 3,4,5 are newly generated noise symbols during FAA.

Corresponding fuzzy (TFN) functional value of the nonlinear function f(S,T) is plotted

in Fig. 2. In the figure, the lines marked with ‘0’ depict the FAA and the line marked
with “*’ stand for FA. From the plot, it may be noted that FAA is more efficient and
results in better enclosures than basic FA with respect to the considered example.

¥ Fuzzy Arithmetic
.g 0.8 Wl+Fuzzy-affine Arithmetic | |
g
Z 06"
£
=
,UJ
504-
2
g
g
202" X L
| | |
0¥ ‘

t o
10 20 30 40 50 60 70 80 90 100

Figure 2: Comparison plot between fuzzy arithmetic (FA) and fuzzy-affine approach (FAA)

Further, Tab. 1 contains the fuzzy functional values of the given nonlinear function for
1 =0,0.1,0.3,0.6,0.8,1 . Therefore, it may be seen from Tab. 1 that the FAA yields
tighter outer bounds to the functional value as compared with standard FA.

Table 1: Comparison table between FA and FAA for some values of 77

Fuzzy arithmetic (FA) Fuzzy-affine approach (FAA)
Iterations - v
Lower bound ( i ) Upper bound ( f ) Lower bound ( 1 ) Upper bound ( f )
n=0 9.0000 97.0000 19.0000 85.0000
n=0.1 13.2100 92.4100 22.7500 81.2500
n=0.3 21.6900 83.2900 29.9500 74.0500
n=0.6 34.5600 69.7600 40.0000 64.0000
n=0.8 43.2400 60.8400 46.2000 57.8000
n=1
— 52.0000 52.0000 52.0000 52.0000
(f=1)

It may be clearly noticed that for Example 2, FAA results in better and tighter enclosures
as compared to basic FA.

5 Nonlinear eigenvalue problem (NEP)

In this section, general definitions and notations about NEP are discussed. Further, the
linearization procedure [Tisseur and Meerbergen (2001); Mehrmann and Watkins (2002)]
of NEP having degree ‘ m ’ into GEP has been illustrated here.
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5.1 Nonlinear eigenvalue problem
The NEP having parameters in the form of crisp numbers is defined as

N(A)x=0, (46)

where A is the crisp eigenvalue of and x is the eigenvector corresponding to the
eigenvalue A of the above problem. Further, N(A) is the matrix-valued nonlinear

function of A . The general form of the above NEP having degree ‘ m > may be illustrated
as follows:

N(A)x=D ¥Nx=(Ny+NA+-+N, A" +N, 2" x=0, (47)
Jj=0

where the coefficients N, for j = 0,1,---,m are crisp square matrices.

It may be noted that the linear eigenvalue problem is a special case with m =1,

N(A)=N, - AN,. (48)

For Ny=A4 and N, = B, Eq. (48) is known as GEP whereas for Ny = 4 and N, =/

(¢ I * stands for the identity matrix) it is known as a standard eigenvalue problem.
Moreover, depending upon the degree of A, there exist different forms of NEPs such as
quadratic eigenvalue problem (QEP) ( N(A)x = (N, + N,A+ N,A2*)x =0) and cubic
eigenvalue problem (CEP) (N(1)x = (N, + N,A+ N,2* + N,A))x = 0), etc.

5.2 Fuzzy nonlinear eigenvalue problem (FNEP)

The case where uncertain parameters are considered in the form of fuzzy numbers, the
NEP may be referred as FNEP and is denoted as follows:

N =0, (49)
where 1 is the fuzzy eigenvalue, X is the corresponding fuzzy eigenvector and N (/T )

is the fuzzy matrix-valued nonlinear function in 1. The general form of the FNEP of
degree ‘ m ’ may be considered in the following form.

m

NOF =Y INX=(Ny+NA++N, A" +N,A"K =0, (50)

=0
where each of the coefficients N ; for j= 0,1,---,m are fuzzy square matrices of order
nxn having elements (), for p,g=12,---,n in the form of either TFNs or TrFNs.
In the similar manner as given for crisp quantities in Section 5.1, fuzzy QEP

(N(A)X =(N, + N, + N,2)Z =0)

and fuzzy CEP (N(1)X = (N, + N,A + N,A* + N,2*)x = 0), may also be defined.
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5.3 Linearization of nonlinear eigenvalue problem
Let us consider the general form of NEP given by Eq. (47) having degree m as follows:

NA)x=Y N x=(Ny+NA+-+N, A" +N, A" )x=0,

Jj=0
= Nyx + N Ax + oo +N, A"x+N A"x=0. (51)
We now define new variables x, for j=1,2,---,m such that,
x=xand x,, =Ax, =x for j=12,---,m—1 (52)
Therefore substituting Eq. (52) in Eq. (51), the given NEP N(A)x =0 may get

transformed into a linear eigenvalue problem as follows:
Nox, + N\ Ax, + NyAx, +----- +N, Ax, +N, Ax, =0. (53)

Further the above system in Eq. (53) can be represented in the following matrix form
[Mehrmann and Watkins (2002)].

_NO| 0 0 xl Nl Nm—l m xl
0 |1 0| [x, I 0 | o0 :
I T N P ) . E : (54)
. . . . . : . . . X
0 [0 1) |x, 0 1 0 X,

The above system yields the GEP Ax" = ABx", where (4 — AB) e Cmn,
It may be noted that the NEP N(A)x =0 has the same eigenvalues as the newly formed
GEP Ax" = ABx  with the eigenvectors

w \[ T T T T T m—1_T
(x) :[x, 2 Xy X, ] :[x Ax e AT x|

The NEP N(A)x =0 of degree ‘m * (whose coefficient matrices is of order n x n) has

“mn’ number of eigenvalues because after linearization the coefficient matrices of the
newly formed GEP are of order mn x mn .

6 Proposed method for FNEP
Let us consider the FNEP (Eq. (50)) of degree ‘ m ’ as follows:

N(Z);:Zj:-/ﬁjf:(ﬁo+ﬁ]z+ ...... _|_N

J=0

A"+ N MR =0, (55)

where all the coefficient matrices N ; for j= 0,1,---,m are fuzzy matrices of order

nxn having elements (7,) , for p,q=1,2,---,n in the form of either TFNs or TrFNs.

Thus, the fuzzy coefficient matrices may be written as
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(ﬁj)]l (ﬁj)u (ﬁj)ln
(ﬁj)ZI (ﬁj)ZZ (ﬁj)Zn

Nj: : : : 9forj:O’17”'am' (56)
(ﬁj)n] (ﬁj)nZ (ﬁj)nn

Adopting the parameterization of each fuzzy number as given in Section 2.4 (by using7] -

cut), the FNEP Eq. (55) in is converted into fuzzy parametric NEP.

NA@Em) =2 A2 (N (3 = (N, (o) + Ny A @) +-+---+ N, () 2" ()3 (7) = 0> 57)
=0

where the fuzzy parametric coefficient matrices may be written as

[(n/.(n))”,(n/. (M1 [(n, (’7))12?(”;(77))12] [(n, (U))ln»(n; (M), ]

[, (1))01, (n; )y 1 [ () s (0, (1)) ] oo oo [(;()),,5(m; (1)), ]
N, (m) = : : . :

[, (1)), (1)), 1 [y ()),00 (0 (D)0 1 oo oo [y ()),,05 (1 (1)), ]

for 7 €[0,1].

Further, the fuzzy parametric NEP is again converted into its affine form representation
as given in Section 4. Thus, the fuzzy-affine NEP of degree m may be written as

NG, &) A e N3, e) =D (2 (1.6, (n.8,,,)}% (.67 =0 5
Jj=0 s

= (N1, €0,) + N, (0,8, )A @1, €7 44 N, (0,8, A" (7, €)}T(,67) = 0

where & may be either a newly generated noise symbol or a function existing noise

symbols ¢, . Here the coefficient matrices are in the form of fuzzy-affine

representations given as

(ﬁj(n’gj,ll))ll (ﬁj(n’gj,lz))lz (ﬁj(n9‘c"j,ln))ln

(ﬁj (77a5j,21))21 (ﬁj(nagj,zz))zz (ﬁj (77,8,»,2,1 )2,
N;(n.¢;,,)= . . , (59)

(ﬁ] (n’gj,nl))nl (ﬁj (77981‘,;12))112 e e (ﬁj (77781";1;1 ))nn

where 77 €[0,1] and ;e €[-11] for j =0,1,---,m and p,q=0,1,---,n . Moreover,

2(77,5*) and )?(77,8*) are the corresponding fuzzy-affine forms of fuzzy eigenvalue 1
and fuzzy eigenvector X of the FNEP respectively.
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Thus, the FNEP is transformed into a form involving several parameters such as 77 and

e . Hence, now it can be linearized into GEP.

Utilizing the linearization procedure for the NEP given in Section 5.3, the fuzzy-affine
NEP may be transformed into a fuzzy-affine GEP as

A(n,e)x"(n.") = An.e)B(p,eHF (n.€"). (60)
- N,(7.8,,) |0 - 0
R 0 1 0
where A= . L . and
O 0 mnxmn
(Nl (77a51,pq) Nm—l (nﬂgm—l,pq) | Nm (77’5m,pq)
R I 0 0
B= ) ) ) )
0 I 0

mnxmn

Further, the fuzzy-affine GEP (60) is converted to standard eigenvalue problem
containing different parameters viz. 77 and g given as follows:

P(n,e)3" (n,e") = A, e)3 (,€), (61)

where P(7.6)=(B(n.e)) " * dm.e").
The above standard eigenvalue problem (Eq. (61)) may be solved symbolically (by using
MATLAB code “e=eig(A)”) with symbols 7€[0,]] and &, e[-1,1] for

J-Pq
j=01,---,m and p,q=0,,---,n. Thus, the required eigenvalue solutions in fuzzy-
affine forms /:Ll. (n,&") for i =1,2,---,mn may be computed.

Since every consisting noise symbols vary from -1 to 1, the fuzzy parametric eigenvalues
/T[ () =[4.(17),4,(n7)] may be determined as follows:

A.(7)= min ﬁ,,.(n,g*) and 4,(17) = max /7;.(77,8*), fori=12,---,mn. (62)
4 & -11]

& e-11]

Finally, all the fuzzy solutions of the FNEP of degree m can be evaluated by varying 7
from 0 to 1.

7 Numerical Examples

To illustrate the applicability of the proposed method, five numerical examples have been
solved in this section. Initially, a fuzzy QEP is considered having parameters in the form
of TFNs. In the next problem, a damped spring-mass structural system (in which all the
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parameters are in the form of TrFN) is solved by using the present approach. Further, in
both third and fourth problems an application problem from structural dynamics is
handled, which contains ‘7’ degrees-of-freedom connected damped spring-mass system.
In the third one, the degree-of-freedom is taken as 3 and the parameters are in the form of
TFN, while the forth problem contains TrFNs and has 5 degrees-of-freedom. Finally, a
fuzzy CEP has worked out whose parameters are TFNs.

Example 3. Let us consider a fuzzy QEP (Eq. (50)) (crisp form given in Fazeli et al.
[Fazeli and Rabici (2016)]) N(4)X = (N, + N,A + N,A*)X = 0, where the coefficient
matrices are considered as 4x4 fuzzy matrices (the elements are in TFNs) given as
follows:

-3.0475 -2.1879 -1.9449 -2.8242
P -2.6500 -2.4724 -23515 -2.1053
°1-0.7456 -0.6423 -1.3117 -0.1852|

—4.0500 -3.0631 -2.8121 -3.7794

(0.20,0.22,0.24)  (0.01,0.02,0.03)  (0.10,0.12,0.14)  (0.13,0.14,0.15)
(0.01,0.02,0.03)  (0.12,0.14,0.16)  (0.03,0.04,0.05) (—0.08,—0.06,—0.04)
(0.10,0.12,0.14)  (0.03,0.04,0.05)  (0.24,0.28,0.32)  (0.04,0.08,0.12)
(0.13,0.14,0.15) (~0.08,-0.06,—0.04) (0.04,0.08,0.12)  (0.22,0.26,0.30)

1

1 (0.07,0.17,0.27) (-0.35,-0.25,-0.15)  (0.50,0.54,0.58)

o | (044,047,050 1 (0.65,0.67,0.69)  (~0.34,-0.32,-0.30)

271 (~0.15,-0.11,-0.07)  (0.30,0.35,0.40) 1 (~0.78,-0.74,-0.70) |
(0.50,0.55,0.60)  (0.40,0.43,0.46)  (0.30,0.36,0.42) 1

Here, particularly the N, matrix is taken as a crisp matrix and the other two are fuzzy

matrices having elements as TFNs. The above fuzzy matrices ]\71 and N , are
parameterized by using 77 -cut approach given in Section 2.4 as follows:

[0.22+0.027,024-0.027]  [0.01+0.017,0.03-0.017]  [0.10+0.02,0.14-0.027]  [0.13+0.01,0.15-0.01p]
§ )= [0.01+0.017,0.03-0.017]  [0.12+0.02,0.16-0.027]  [0.03+0.017,0.05-0.01p] [-0.08+0.0277,-0.04 - 0.0277]
1 10.1040.020.0.14-0.027]  [0.03+0.017,005-0017]  [0.24+0.047,032-0.047]  [0.04+0.047,0.12~0.04n]

[0.13+0.017,0.15-0.017] [-0.08+0.027,-0.04-0.027] [0.04+0.047,0.12-0.047]  [0.22+0.047,0.30~0.0477] |

1 [0.07+0.19,027-0.1p]  [-0.35+0.17,-0.15-0.1y]  [0.50 +0.047,0.58-0.067] |
- [0.44+0.037,0.50 - 0.037] 1 [0.65+0.021,0.69 - 0.027] [0.34 +0.0277,-0.30-0.027]
2D 20,15 +0.047,-0.07 - 0.047] [0.30+0.057,0.40—0.057] 1 [<0.78 +0.0477,-0.70 - 0.047]

[0.50+0.057,0.60—0.057]  [0.40+0.037,0.46-0.037] [0.30+0.067,0.42 - 0.067] 1

Further, the parametric fuzzy numbers are changed to its fuzzy-affine form by adopting
the procedure given in Section 4. Thus the FNEP with different parameters and the fuzzy-
affine coefficients are in the form
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0.22+(0.02-0.027)e,  0.02+(0.01-0.01p)e,  0.12+(0.02-0.027)e;,  0.14+(0.01-0.01p)z,
0.02+(0.01-0.01n)e,  0.14+(0.02-0.02n)¢,  0.04+(0.01-0.017)z, —0.06+(0.02-0.027)z,

N )06 = 0.12+(0.02-0.027)e,  0.04+(0.01-0.01n)g,,  0.28+(0.04—0.04n)e,,  0.08+(0.04—0.047)e,,
0.14+(0.01-0.017)g,, —0.06+(0.02-0.027)e,, 0.08+(0.04-0.0477)s,,  0.22+(0.02-0.027)¢,,
1 0.17+(0.1-0.17)5,,  —-0.25+(0.1-0.17)5,,  0.54+(0.04—0.047)z,,
e, _| 047+(0.03-0.037)éy 1 0.67+(0.02-0.0277)s,, —0.32+(0.02-0.027)s,,
PRPTET I 0,114 (0.04 - 0.047)e,,  0.35+(0.05-0.057)¢,, 1 —0.74 +(0.04 — 0.0417)e,
0.55+(0.05-0.057)g,,  0.43+(0.03-0.037)&,, 0.36+(0.06—0.067)&, 1

Now, utilizing the linearization procedure given in Section 5.3, the fuzzy-affine NEP is

linearized into fuzzy-affine GEP AR" = AB%", where

1 _NO O and é: Nl(n’gi)izl,-n,l(w |N2(77’gl‘)l‘:17’...,28

0 |1 I | 0

Then the fuzzy eigenvalues in the form of TFN are evaluated by adopting the proposed
method given in Section 6. Finally, all the fuzzy eigenvalue plots are depicted in Figs.
3(a)-3(h).
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Figure 3: First-eighth eigenvalue plots for Example 3 (a-h)

Example 4. Let us consider a FNEP (IZ +AC+A*M )X =0 from Eq. (3) of damped
spring-mass structural system, where all the coefficient matrices of the problem may be
taken as 3x3 fuzzy matrices having uncertainty in the form of TrFNs. Here the
corresponding fuzzy mass, stiffness and damping matrices are given below.

(8.7,8.9,9.1,9.3)
(-3.1,-3.05,-2.95,-2.9)
0

K=

[ (11.7,11.9,12.1,12.3)
(—4.1,-4.05,-3.95,-3.9)
0

™
Il

and

(-3.1,-3.05,-2.95,-2.9)
(8.7,8.9,9.1,9.3)
(-3.1,-3.05,-2.95,-2.9)

(-4.1,-4.05,-3.95,-3.9)
(11.7,11.9,12.1,12.3)
(—4.1,-4.05,~3.95,-3.9)

0
(-3.1,-3.05,-2.95,-2.9)
(8.7,8.9,9.1,9.3)

0
(—4.1,-4.05,-3.95,-3.9)
(11.7,11.9,12.112.3) |
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(1.8,1.9,2.1,2.2) 0 0
M = 0 (1.8,1.9,2.1,2.2) 0
0 0 (1.8,1.9,2.1,2.2)

As worked out in Example 3, here the FNEP is also transformed into fuzzy-affine GEP
A% = AB%" , where
d= [_ K(n,€)0...7 | O—I and A= (C(nagi)i:&m,m | M(nﬂgi)i:lim,ﬂ—l'
Lo 1] I
The above system is solved by using the proposed approach (Section 6) and the fuzzy

eigenvalues of the problem are computed. The trapezoidal fuzzy plots of the resulting
eigenvalues are illustrated in Figs. 4(a)-4(f).
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a2 a2

QFuzy eigenvalue Fuzzy eigenvalue

0 - 09 v
9905 09 0895 089 0885 088 0875 087 0865 086 085 084 4835 98 4825 -0.82 815

ks ks
(e) Q)
Figure 4: First to sixth eigenvalue plots for Example 4 (a-f)

Example 5. In Fig. 5, we consider a connected damped spring-mass structural system of
‘n’ degrees-of-freedom, where the crisp form is given by Tisseur et al. [Tisseur and
Meerbergen (2001)] and interval form is by Chakraverty et al. [Chakraverty and Mahato
(2018)]. This system may easily be converted into a NEP of the second degree (that is

QEP) N(A)x=(K+CA+MAP)x=0, where K, C and M are the respective
stiffness, damping and mass matrices.

According to Fig. 5, m; (ith mass) is connected with m,,, ( (i+1)st mass) for
i =1,---,n through a spring of stiffness k, and a damper of damping factor d, . Further,
the ith mass is connected to the ground with spring of stiffness x,; and damper of
damping factor 7, . Here, the mass matrix is a diagonal matrix such as

M =diag(m,,---,m,) and both the stiffness and damping matrices are symmetric

tridiagonal matrices given by
K =Tldiag(k,, -+, k, ,,OM1" + diag(x,, -, x,),

C =Tldiag(d,,--,d, ,,001" +diag(z,, ,7,) ,
where I1=(5, ;= , ;.,), 0, is the ‘Kronecker delta’.
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R ki T, hpy T
T 3]
dy d; 1 d; dn_1

Figure 5: n degrees-of-freedom connected damped spring-mass system
For this particular application problem of structural dynamics, each mass may be weighted
as unity (that is m, = 1kg for i =0,---,n). Further, except for the first and last springs, all

other springs have a constant stiffness ( x ) while first and last spring have twice stiffness
than others (that is x; = x, = 2x). Similarly, every damper has also a constant damping

factor (7 ) except first and last. The damping factors of the first and last dampers are
7, =7, = 27 . In this regard, all the involving matrices may be obtained as

K =k -tridiag(-1,3,-1), C =t -tridiag(-1,3,-1) and M =1, .
Due to uncertain or vague environments, the dynamic analysis of structural system leads to
fuzzy QEP N (/T )% = (K + AC + 2*M )X = 0, where the coefficients are fuzzy matrices.

Here uncertainties are considered as TFNs. and corresponding stiffness and damping
matrices may be written as

K =« -tridiag[(~1.02,—1,-0.98),(2.94,3,3.06),(~1.02,~1,-0.98)] ,
C = ¢ - tridiag[(-1.01,-1,-0.99),(2.97,3,3.03), (-1.01,—1,—0.99)] and M =1

When the constants for stiffness and damping factor are k¥ =5 and 7 =10 respectively
and the degree-of-freedom be considered as 3, the following stiffness, damping and mass
matrices are formed.

nxn *°

(14.715,15.3) (-5.1,-5,-4.9) 0
K'=[(-5.1,-5-4.9) (14.7,1515.3) (-5.1,-5,-4.9)],
0 (-5.1,-5,-4.9) (14.7,15,15.3)
(29.7,30,30.3)  (~10.1,-10,-9.9) 0
C =|(-10.1-10,-9.9)  (29.7,30,30.3)  (-10.1,-10,-9.9) | and M =1I,,;.
0 (-10.1,-10,-9.9)  (29.7,30,30.3)

Adopting the proposed procedure, the above fuzzy QEP (IZ +AC+A°M )X =0 is
converted to fuzzy-aftine QEP (I% +AC+ 1M )X =0 and finally to fuzzy-affine GEP
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AR" = AB%" which is solved by using the proposed method. All the fuzzy (TFN)
eigenvalue plots are depicted in Figs. 6(a)-6(f).
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Figure 6: First to sixth eigenvalue plots for Example 5 (a-f)

Example 6. Further, the above problem has been considered with the TrFNs. Thus the
involving matrices are taken in the form as
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K = k- tridiag[(—1.02,-1.01,-0.99,-0.98),(2.94,2.98,3.02,3.06),(—1.02,-1.01,-0.99,~0.98)]

C =t - tridiag[(-1.01,-1.005,-0.995,-0.99),(2.97,2.99,3.01,3.03), (—1.01,-1.005,-0.995,-0.99)]
and M = I,.,.

Here, the constants of stiffness and damping factor are considered same as Example 5 but
the degree-of-freedom is taken as n=5. Then the corresponding mass, stiffness and
damping matrices may be written as

M=1 5%59
(147,149,15.115.3)  (=5.1,-5.05,-4.95,-4.9) 0 0
(-5.1,-5.05,-4.95,-4.9)  (14.7,149,15.1,15.3)  (-5.1,-5.05,-4.95,-4.9) 0
K= 0 (-5.1,-5.05,-4.95-49)  (147]14.9,15.1153)  (-5.1,-5.05,-4.95-4.9) 0
0 0 (-5.1,-5.05,-4.95,-4.9)  (14.7,14.9,15.1,15.3)  (-5.1,-5.05,-4.95,-4.9)
0 0 0 (-5.1,-5.05,-4.95-49)  (14.7,14.9,15.115.3)
and
(29.7,29.9,30.1,30.3) (-10.1,-10.05,-9.95,-9.9) 0 0 0
(-10.1,-10.05-9.95-9.9)  (29.7,29.9,30.1,30.3)  (-10.1,-10.05,-9.95,-9.9) 0 0
C= 0 (-10.1,-10.05-9.95-9.9)  (29.7,29.930.1,30.3)  (~10.1,-10.05,-9.95,-9.9) 0
0 0 (-10.1,-10.05-9.95-9.9)  (29.7,29.9,30.1,30.3)  (-10.1,-10.05,-9.95,-9.9)
0 0 0 (~10.1,-10.05,-9.95,-9.9) (29.7,29.9,30.1,30.3)

In the similar fashion as Example 5, the above fuzzy QEP ([Z +AC+1*M )X =0 is

transformed into fuzzy-affine GEP AR = AB% by utilizing the affine transformation as
well as the linearization.

Following the proposed procedure, the trapezoidal fuzzy eigenvalues for the above
system are computed. Corresponding fuzzy plots have been included in Figs. 7(a)-7(j).
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Figure 7: First to tenth eigenvalue plots for Example 6 (a-j)
Example 7. Finally, let us consider a fuzzy CEP (interval form given in Chakraverty and
Mahato [Chakraverty and Mahato (2018)))
N(A)X =(Ny+ N,A +N,2* + N,A*)¥ =0 , where the coefficient matrices are

considered as 5x5 fuzzy matrices (whose the elements are in the form of TFNs) given
as follows:

[(4.9,5,5.1) 0 0 0 0
0 (4.9,5,5.1) 0 0 0
N, = 0 0 (4.9,5,5.1) 0 0 ,
0 0 0 (4.9,5,5.1) 0
0 0 0 0 (4.9,5,5.1)
(8.9.99.1) (-3.1,-3,-2.9) 0 0 0 i
(-3.1,-3,-2.9)  (8.999.1) (-3.1,-3,-2.9) 0 0
N, = 0 (-3.1,-3,-2.9)  (8.9,99.1)  (-3.1,-3,-2.9) 0 ’
0 0 (-3.1,-3,-2.9)  (8.9,9,9.1)  (-3.1,-3,-2.9)
| 0 0 0 (-3.1,-3,-2.9)  (8.9,9,9.1)
[(0.9,1,1.1) 0 0 (5.9,6,6.1) 0 ]
0 (10.4,10.5,10.6) 0 0 0
N,=| 0 0 (0.014,0.015,0.016) 0 0
0 (250.4,250.5,250.6) 0 (-280.1,-280,-279.9) (33.31,33.32,33.33)
|0 0 0 0 (11.9,12,12.1)

and
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(0.9,1,1.1) 0 0 (5.9,6,6.1) 0
0 (10.4,10.5,10.6) 0 0 0
N,=| 0 0 (0.014,0.015,0.016) 0 0
0 (250.4,250.5,250.6) 0 (~280.1,-280,-279.9) (33.31,33.32,33.33)
0 0 0 0 (11.9,12,12.1)

The  center ecigenvalues of the above fuzzy  eigenvalue  problem
(N, +N,A+N,A* +N,A°)¥ =0 have been computed, which yields fifteen

eigenvalues out of which seven eigenvalues are real. Accordingly, by using the proposed
method, the seven real triangular fuzzy eigenvalues have been evaluated. Corresponding
triangular fuzzy plots have been included in Figs. 8(a)-8(g).
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Figure 8: First to seventh eigenvalue plots for Example 7 (a-g)

Result discussions:

The center of all the fuzzy eigenvalue solutions (for 7 =1) of the FNEP given in
Example 3 coincides with the crisp eigenvalue solutions of the crisp NEP obtained by
Fazeli et al. [Fazeli and Rabiei (2016)] as shown in Tab. 2 and results with tighter
enclosures (for 77 = 0). Also for some values of the membership function viz. 77 =0, 0.2,
0.5, 0.7 and 1, the eigenvalues of Example 3 are listed in Tab. 2. Similarly, we may have
that all the central values of the fuzzy eigenvalues in Examples 4 to 6 are equal with the
results of NEP for crisp case. Further for Example 6, it may be noticed that the present
procedure results in better enclosures for the interval case of NEP as given in
Chakraverty et al. [Chakraverty and Mahato (2018)] (for 7 = 0). Moreover, the crisp
eigenvalues of the NEP given in Tisseur et al. [Tisseur and Meerbergen (2001)] are same
as the center of the trapezoidal fuzzy eigenvalues of Example 6 obtained by substituting
1 =1 in the solutions.
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Table 2: Fuzzy eigenvalue bounds of Example 3 for different values of 7
Lower
and
Iterations upper ﬂ,, /12 ﬂg /14 /15 ﬂ.é 17 ﬂ,g
bounds
0 & -2.7332 22197  -13607 -0.8510 -0.4219 0.7931 0.6194 0.2374
7= Z -2.5478  2.4431 -1.1193  -0.8267 -0.3415  0.7971  0.6643  0.2466
0.0 /_1 -2.7126  2.2391  -1.3297 -0.8487 -0.4123  0.7940 0.6228 0.2384
=" Z -2.5647 24174  -1.1381 -0.8294 -0.3482  0.7970  0.6583 0.2458
0.5 & -2.6828 22693  -1.2869 -0.8453 -0.3986  0.7951  0.6281 0.2398
7= Z -2.5905 23805 -1.1681 -0.8332  -0.3587  0.7969  0.6501 0.2444
0 & -2.6635 22902  -1.2604 -0.8430 -0.3900  0.7958  0.6320 0.2408
7= 7 /_1 -2.6082 23568  -1.1893  -0.8357 -0.3660  0.7968  0.6451 0.2435
n= 1 & -2.6353 23227  -1.2234 -0.8394 -0.3776  0.7967  0.6382 0.2422
(i = Z) 2 -2.6353 23227  -1.2234 -0.8394 -0.3776  0.7967  0.6382 0.2422
Crisp eigenvalues
[Fazeli and Rabiei -2.6353 23227  -1.2234 -0.8394 -0.3776  0.7967  0.6382 0.2422

(2016)]

Table 3: Comparison of lower and upper fuzzy eigenvalue bounds and its center for

Example 7
Present Method [Chakraverty and Mahato (2018)]
Eig;evzllues Lower Upper Center Lower Upper Center
(n=0) (n=0) (=D
A -8.1195 -7.9384 -8.0275 -8.1495 -7.9092 -8.0275
A 7.0667 7.2056 7.1351 7.0638 7.2084 7.1351
A -2.7162 -2.5781 -2.6457 -2.7669 -2.5299 -2.6457
Ay -1.7863 -1.7512 -1.7684 -1.8320 -1.7073 -1.7684
As -1.3095 -1.3020 -1.3057 -1.3399 -1.2738 -1.3057
A -0.9280 -0.9016 -0.9148 -0.9438 -0.8901 -0.9148
A, -0.9920 -0.9933 -0.9926 -0.9950 -0.9885 -0.9926
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Moreover, the results of fuzzy CEP (for 7 =0) of Example 7 are compared with the

interval eigenvalue bounds of the interval CEP of Chakraverty et al. [Chakraverty and
Mahato (2018)] in Tab. 3 and are found to be in good agreement. It may be noted from
Tab. 3 that the present approach gives comparatively tighter bounds than Chakraverty et
al. [Chakraverty and Mahato (2018)] and the center eigenvalues for both the cases are
coincide with each other [Chakraverty and Mahato (2018)].

8 Conclusion

In this article, an efficient fuzzy-affine approach (FAA) has been proposed to solve fully
FNEPs of damped spring-mass structural system. FAA is developed to overcome the
overestimation problems. FAA is found to give better enclosures than basic FA. Further,
by utilizing fuzzy-affine form, the FNEP is transformed into a form of NEP having
different parameters in terms of noise symbols and membership functions which may
easily be linearized to GEP. Fuzzy eigenvalues are computed by varying the parameters

g, from -1 to 1 and 77 from O to 1. Several examples of damped spring-mass structural

problems with other quadratic and cubic eigenvalue problems are included to show the
powerfulness and efficacy of the proposed procedure.
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