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Abstract: The dynamic analysis of damped structural system by using finite element 
method leads to nonlinear eigenvalue problem (NEP) (particularly, quadratic eigenvalue 
problem). In general, the parameters of NEP are considered as exact values. But in actual 
practice because of different errors and incomplete information, the parameters may have 
uncertain or vague values and such uncertain values may be considered in terms of fuzzy 
numbers. This article proposes an efficient fuzzy-affine approach to solve fully fuzzy 
nonlinear eigenvalue problems (FNEPs) where involved parameters are fuzzy numbers 
viz. triangular and trapezoidal. Based on the parametric form, fuzzy numbers have been 
transformed into family of standard intervals. Further due to the presence of interval 
overestimation problem in standard interval arithmetic, affine arithmetic based approach 
has been implemented. In the proposed method, the FNEP has been linearized into a 
generalized eigenvalue problem and further solved by using the fuzzy-affine approach. 
Several application problems of structures and also general NEPs with fuzzy parameters 
are investigated based on the proposed procedure. Lastly, fuzzy eigenvalue bounds are 
illustrated with fuzzy plots with respect to its membership function. Few comparisons are 
also demonstrated to show the reliability and efficacy of the present approach.      
     
Keywords: Fuzzy nonlinear eigenvalue problem, fuzzy set theory, affine arithmetic, 
interval overestimation problem, triangular fuzzy number, trapezoidal fuzzy number, 
fuzzy-affine approach. 

1 Introduction 
The nonlinear eigenvalue problem (NEP) is an emerging class of dynamical problems 
arising from a variety of science and engineering applications. Let us consider the 
function mmCN ×→Ω:  , where C⊆Ω  is an open set. The NEP is to find the scalars 
and nonzero vectors   Ω×∈ mCx ),( λ  such that 

0)( =xN λ .                                                                                                                    (1) 

where λ  is called the eigenvalue and x  is known as the corresponding eigenvector. 
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There are wide varieties of applications of NEPs in the dynamic analysis of various science 
and engineering problems viz. structural mechanics and acoustic systems, simulation of 
electrical circuits, modeling micro-electronic mechanical systems, fluid mechanics and 
signal processing, etc. NEP plays an important role in the application of structural 
dynamics. In general, dynamic analysis of structural problems of damped spring-mass 
system gets converted into NEP (particularly quadratic eigenvalue problem (QEP)).  

 
Figure 1: One degree-of-freedom damped spring-mass structural system 

The equation of motion for the structural ambient vibrational problems of the system 
given in Fig. 1 may be written as 

0)()()( =++ tKutuCtuM  ,                                                                                              (2)  

where M  is mass matrix, C  the damping matrix, K  stiffness matrix. Substituting 
tixeu ⋅= ω  in the governing equation of motion (Eq. (2)) due to dynamic analysis of 

structures may be reduced to a QEP 

0)( 2 =++ xMCK λλ ,                                                                                                    (3) 

where ωλ i=  stands for the eigenvalue and x  is the corresponding eigenvector of the 
above problem. 
Many investigations are carried out by various researchers to handle the crisp NEPs. 
Basic theories and properties of matrix structural analysis are presented by Przemieniecki 
[Przemieniecki (1968)]. Further, Gohberg et al. [Gohberg, Lancaster and Rodman (1982)] 
discussed various concepts and propertied of matrix polynomials. Rajakumar [Rajakumar 
(1993)] developed the Lanczos algorithm for the solution of QEPs in engineering 
applications. The backward error analysis of polynomial eigenvalue problems (which is a 
particular type of NEP) is explained by Tisseur [Tisseur (2000)]. Tisseur et al. [Tisseur 
and Meerbergen (2001)] illustrated a review work on solving crisp QEPs given by Eq. (3) 
using several numerical techniques. Their work is based upon the linearization of the 
NEP into standard eigenvalue problem (SEP) and generalized eigenvalue problem (GEP). 
Mehrmann et al. [Mehrmann and Watkins (2002)] studied the linearization procedure to 
solve polynomial eigenvalue problems with Hamiltonian structure. Structured eigenvalue 
method for the computation of corner singularities in 3D anisotropic elastic structures has 
been studied by Apel et al. [Apel, Mehrmann and Watkins (2002)]. Further, Bai et al. 
[Bai and Su (2005)] proposed a second-order Arnoldi method (SOAR) to solve the crisp 
QEP. Study of a special form of NEP known as rational eigenvalue problems and its 
solution via linearization technique was presented by Su et al. [Su and Bai (2011)]. 
Wetherhold et al. [Wetherhold and Padliya (2014)] designed different aspects of 
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nonlinear vibration analysis of rectangular orthotropic membranes. Again a backward 
error analysis of polynomial eigenvalue problems solved by linearization has been 
studied by Lawrence et al. [Lawrence, Van Barel and Van Dooren (2016)]. Solov’ev et al. 
[Solov’ev and Solov’ev (2018)] developed a finite element approximation of the minimal 
eigenvalue of a NEP. NEP is solved by Saad et al. [Saad, El-Guide and Miedlar 
(2019)] using a rational approximation method. The linearised and nonlinearised 
solutions of nonlinear multiparameter eigenvalue problems are discussed by Kurseeva et 
al. [Kurseeva, Tikhov, and Valovik (2019)]. Bender et al. [Bender, Komijani and Wang 
(2019)] studied NEP for generalized Painlevé equations. Moreover, Newton method is 
widely used to solve NEP having crisp parameters. For instance, Kressner [Kressner 
(2009)] developed a block Newton method for the solution of NEPs. An improved 
Newton method was also proposed by Fazeli et al. [Fazeli and Rabiei (2016)] to solve 
NEPs. Further, Gao et al. [Gao, Yang and Meza (2009)] described the solution of a class 
of NEPs by Newton’s method. 
In general, all the parameters associated with the NEP are considered as crisp or exact 
values. But in real practice, because of different errors and incomplete information, one 
may have only the vague and imprecise parameters which are uncertain in nature. Fuzzy 
set theory and interval analysis are two major fields to handle these parameters. In fuzzy 
set theory, the fuzzy numbers may be converted into corresponding interval forms using 
η -cut method. Few literature studies related to the basic concepts and properties of fuzzy 
set theory are discussed here. Zadeh [Zadeh (1965)] first introduced the concepts of fuzzy 
sets and fuzzy numbers. Many excellent books have been written by few authors viz., 
Dubois [Dubois (1980)], Kaufmann et al. [Kaufmann and Gupta (1988)], Zimmermann 
[Zimmermann (2001)], Hanss [Hanss (2005)], Zadeh et al. [Zadeh, Fu and Tanaka 
(2014)], Chakraverty et al. [Chakraverty, Tapaswini and Behera (2016)] and Chakraverty 
et al. [Chakraverty and Perera (2018)] etc. 
Standard interval arithmetic’s (IA) underlying assumption about the independency of all 
the operands is responsible for its overestimation problem. In this regard, affine 
arithmetic (AA) proves itself as an efficient tool to handle the overestimation problem 
and results with comparatively tighter enclosures. The concept of AA and its application 
in computer graphics are firstly introduced by Comba et al. [Comba and Stolfi (1993)]. 
After a few year, Stolfi et al. [Stolfi and De Figueiredo (2003)] illustrated the 
overestimation problem in case of standard IA and how AA is able to overcome it. 
Further, the concepts, properties and several applications of AA have been discussed by 
De Figueiredo et al. [De Figueiredo and Stolfi (2004)]. Miyajima et al. [Miyajima and 
Kashiwagi (2004)] proposed a dividing method by utilizing the best multiplication in 
Akhmerov [Akhmerov (2005)] developed an interval-affine Gaussian algorithm for 
constrained systems. A direct method for solving parametric interval linear systems with 
non-affine dependencies is demonstrated by Skalna [Skalna (2009)]. Rump et al. [Rump 
and Kashiwagi (2015)] discussed the improvements and implementations of Skalna et al. 
[Skalna and Hladík (2017)] developed a new algorithm for Chebyshev minimum-error 
multiplication of reduced affine forms. An optimization model based on improved affine 
arithmetic for interval power flow analysis has been developed by Xu et al. [Xu, Gu, Gao 
et al. (2016)]. Further, Adusumilli et al. [Adusumilli and Kumar (2018)] studied the 
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modified affine arithmetic based continuation power flow analysis for voltage stability 
assessment under uncertainty. An affine arithmetic-based energy management system for 
isolated microgrids has been illustrated by Romero-Quete et al. [Romero-Quete and 
Cañizares (2018)]. Wang et al. [Wang, Wang, Teng et al. (2018)] discussed an affine 
arithmetic-based multi-objective optimization method for energy storage systems 
operating in active distribution networks with uncertainties.  
There are many works of literature available for the solution of uncertain linear 
eigenvalue problems viz. uncertain SEP ( xxA ~~~~ λ= ) and uncertain GEP ( xBxA ~~~~~ λ= ). 
Hladik et al. [Hladik, Daney and Tsigaridas (2011)] proposed a filtering method for 
solving interval eigenvalue problems, which is based on the concept of sufficient 
conditions for singularity and regularity of interval matrices given by Rex et al. [Rex and 
Rohn (1998)]. The real eigenvalue bounds of linear (that is standard and generalized) real 
interval eigenvalue problems are studied by Leng [Leng (2014)]. Further, Mahato et al. 
[Mahato and Chakraverty (2016b)] extended the filtering algorithm given by Hladik et al. 
[Hladik, Daney and Tsigaridas (2011)] for eigenvalue bounds of fuzzy symmetric 
matrices to solve standard eigenvalue problem. Also, the filtering algorithm for real 
eigenvalue bounds of both interval and fuzzy GEPs are illustrated by Mahato et al. 
[Mahato and Chakraverty (2016a)]. To the best of our knowledge, there exist very few 
literature studies for the solution of uncertain (interval and/or fuzzy) NEPs. Chakraverty 
et al. [Chakraverty and Mahato (2018)] have been solved nonlinear interval eigenvalue 
problems for damped spring-mass systems using two methods viz. linear sufficient 
regularity perturbation (LSRP) method and direct sufficient regularity perturbation 
(DSRP) method. Further by using IA, Sadangi [Sadangi (2013)] solved interval NEPs.  
This article is organized as follows. The present section of the article contains the 
introduction and literature survey. In Section 2, necessary preliminaries related to fuzzy 
set theory are discussed. These concepts are useful for the present investigation. Further, 
AA and its properties are included in Section 3. A fuzzy-affine approach (FAA) has been 
developed in Section 4. In Section 5, the general form of both crisp, as well as fuzzy 
nonlinear eigenvalue problem (FNEP) and the linearization procedure to convert it into 
GEP, are included. Then, the proposed method is explained in Section 6. Four illustrative 
numerical examples related to structural dynamics are investigated in Section 7, followed 
by concluding remarks in Section 8. 

2 Preliminaries 
In this section, basic definitions related to present work viz. fuzzy set, fuzzy numbers and 
fuzzy arithmetic are illustrated [Dubois (1980); Kaufmann and Gupta (1988); Zimmermann 
(2001); Hanss (2005); Zadeh, Fu and Tanaka (2014)].    

2.1 Fuzzy set 
A fuzzy set is the set of ordered pairs and may be defined as 

]}1,0[)(,:))(,{(~
~~ ∈∈= xXxxxF FF µµ ,                                                                        (4) 

where )(~ xFµ  is known as the membership function of F~  and X  be the universal set.  
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2.2 Fuzzy number 

The fuzzy number F~  is defined as a special type of fuzzy set (given in Eq. (4)) that 
obeys the following properties: 

1. F~  is normal, (that is ∈∃x  ℝ 1)(~: =xF ); 

2. F~  is convex; 
3. The membership function )(~ xFµ  is piecewise continuous. 

η -cut of a fuzzy number: Each η -cut )(~ ηF  of the fuzzy number F~ , is a standard 
closed interval which depends upon the value of ]1,0[∈η , and is represented as  

])(,)([)(~ ηηη FFF = .                                                                                                       (5) 

Here )(ηF  is the lower bound and )(ηF  is the upper bound of )(~ ηF . It may be noted 

that the fuzzy set F~  may be expressed uniquely and completely through the family of its 
η -cuts. Further, in the above second property, F~  is convex means all the η -cuts of F~ , 

∈= xF {)(~ η  ℝ ]1,0[},)(~| ∈≥ ηηxF  are closed standard intervals. 
There exist different types of fuzzy numbers viz. triangular fuzzy number (TFN), 
trapezoidal fuzzy number (TrFN), Gaussian fuzzy number (GFN) and exponential fuzzy 
number (EFN), etc. In our work mainly TFN and TrFN are considered.  

2.2.1 Triangular fuzzy number (TFN) 

TFN may be represented by a triplet ),,(~
321 tttT = . It generally has a linear graph (that 

is the composition of left-increasing and right-decreasing linear functions) as shown in 
Fig. 2. It may be noted that in TFN, there exists exactly one ∈0x  ℝ   such that 

1)( 0~ =xTµ . Here 0x  is known as the mean value of T~ . The membership function 

)(~ xTµ  of a TFN ),,(~
321 tttT =  may be defined as follows: 
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Figure 2: Triangular fuzzy number (TFN) T~  

2.2.2 Trapezoidal fuzzy number (TrFN) 

TrFN may be represented by a quadruplet ),,,(~
4321 llllL = . As shown in Fig. 3, there is 

an interval ],[ 32 llx∈  such that ( ) 1L xµ =


. Thus, the membership function )(~ xLµ  may 
be defined as follows: 
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Figure 3: Trapezoidal fuzzy number (TrFN) L~  

2.3 Fuzzy matrix 

A matrix )~(]~[ pqnN =  of order nm×  may be referred as fuzzy matrix, if each element 

)~( pqn  for mp ,,2,1 =  and nq ,,2,1 =  is a fuzzy number. In this article, TFN and 
TrFN are particularly used. Further, a fuzzy matrix may be considered as non-negative 
( 0]~[ ≥N ), if each element of the fuzzy matrix is a non-negative fuzzy number.  
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2.4 Parametric form of fuzzy number 

Any fuzzy number can be parameterized by using η -cut. Thus, )(~ ηF  is the parametric 

form of the fuzzy number F~  represented as ])(,)([)(~ ηηη FFF =  for ]1,0[∈η . It may 
be noted that lower and upper bounds of the parametric form of fuzzy number must have 
the following properties: 
1. The lower bound )(ηF  is a left bounded continuous non-decreasing function over 

[0,1]. 

2. The upper bound )(ηF  is a right bounded continuous non-increasing function over 
[0,1]. 

3. )()( ηη FF ≤  for ]1,0[∈η . 

Firstly, the TFN ),,(~
321 tttT =  is converted into its parametric form by η -cut approach as  

)](),([])(,)([)(~
233121 ttttttTTT −−−+== ηηηηη  where ]1,0[∈η .                       (8) 

Next, the TrFN ),,,(~
4321 llllL =  also transformed into its parametric form as  

)](),([])(,)([)(~
344121 llllllLLL −−−+== ηηηηη , where ]1,0[∈η .                      (9) 

In this regard, some of the terminologies of a fuzzy number ])(,)([)(~ ηηη FFF =  
through its parametric form may be described as follows:  

Center: })()({
2
1~ ηη FFFc += .                                                                                    (10) 

Width: )()(~ ηη FFFw −= .                                                                                            (11) 

Radius: })()({
2
1~ ηη FFF −=∆ .                                                                                   (12) 

2.5 Fuzzy arithmetic (FA) 
As mentioned in Section 2.4, any fuzzy number can be regarded as a family of standard 
intervals by using the parametric form (η -cut). Let us consider two fuzzy numbers in its 

parametric representations as ])(,)([~ ηη SSS =  and ])(,)([~ ηη TTT = . Therefore, the 
standard interval-based FA may be illustrated as 

)(),(:{~~ ηη TTSSTSTS ∈∈⊗=⊗  for ]}1,0[∈η ,                                                 (13) 

where ‘⊗ ’ stands for all the binary operations viz. /},,,{ ⋅−+ . In this regard, all the FA is 
discussed as follows: 

Addition: ])()(,)()([~~ ηηηη TSTSTS ++=+ ;                                                           (14) 
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Subtraction: ])()(,)()([~~ ηηηη TSTSTS −−=− ;                                                     (15) 

Scalar multiplication: 






<⋅⋅
≥⋅⋅

=⋅
0])(,)([
0],)(,)([~

αηαηα
αηαηα

α
SS
SS

S ;                                      (16) 

Multiplication: )}]~,~(max{)},~,~([min{~~ TSZTSZTS =⋅ ,                                           (17) 

where )()(,)()(,)()(,)()({)~,~( ηηηηηηηη TSTSTSTSTSZ ⋅⋅⋅⋅= ;    

Reciprocal: 
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∉
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Division: 
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;                                     (19) 

Power:  

­ If 0>n  is an odd integer, then [ ]nnn SSS )(,)()~( ηη= ;                                        (20) 

­ If 0>n  is an even integer, then 

[ ]
[ ]

{ }[ ]
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)~(
ηη
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ηη

.        (21) 

3 Affine arithmetic (AA) 
One of the main obstacles in the wide-spread use of interval arithmetic (IA) in numerical 
calculations is that the range estimates computed with standard IA tend to be too large, 
especially in complicated expressions or long iterative computations. This is mainly due 
to the interval overestimation problem [De Figueiredo and Stolfi (2004); Skalna (2009)]. 
This overestimation problem is mainly because of IA’s underlying assumption that the 
variables of the arguments to primitive operations may vary independently over their 
given intervals. In this regard, affine arithmetic (AA) [De Figueiredo and Stolfi (2004)] is 
a model for self-validated numerical computation that aims to attack the interval 
overestimation problem in standard IA. AA keeps track of first-order correlations 
between computed and input quantities. These correlations are automatically exploited in 
primitive operations, with the result that in many cases AA is able to produce interval 
estimates that are much better than the ones obtained with standard IA. Also, AA 
provides a geometric representation for the joint range of related quantities that can be 
exploited to increase the efficacy of interval methods. 
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3.1 Affine representation 
Affine form representation is a linear polynomial of real variables iε  known as noise 

symbols and these symbols lie in a particular interval 𝕏𝕏 = [−1,1]. Suppose, Ŝ  denotes 
the affine form representation of an ideal quantity [ ]∑∑ ==

−+∈
p

i i
p

i i SSSS
110 , . Then 

it may be expressed as 

pppp
p

i ii SSSSSSSS εεεε ++++=+=∈ −−=∑ 1111010
ˆ

 ,                                       (22) 

where ∈iε 𝕏𝕏 = [−1,1]  for pi ,,2,1 = . Here, the initial term 0S  is known as the 
central value of Ŝ  and each associate coefficient iS  for pi ,,2,1 =  of the respective 

noise symbol iε  is called the partial deviation of Ŝ . These partial deviations are finite 
real numbers. 
Further, all the noise symbols of an affine form representation are unique and 
independent to each other, whereas in two different affine form representations there may 
exist some common noise symbols. The number of noise symbols for different 
representations may not be equal. New noise symbols may also be generated during 
affine computations. 

3.2 Conversion between AA and IA  

Suppose Ŝ  is an affine form representation of the ideal quantity S  given as follows: 

pp
p

i ii SSSSSS εεε +++=+= ∑ =
11010

ˆ . 

The total deviation of the above affine form representation may be illustrated as 

p
p

i iS SSSSD +++==∑ =
211

 .                                                                          (23) 

Thus the interval bounds ][S  of the affine form representation Ŝ  may be computed as 

],[][ 00 SS DSDSS +−= .                                                                                             (24) 

It may be noted that for every noise symbol ranges over the interval 𝕏𝕏 = [−1,1] 
independently, ][S  is the smallest interval that contains all the possible values of Ŝ . 

After Ŝ  is converted into ][S , all the presented correlation information in the affine 
form is discarded. 
Conversely, 

The affine form representation of the interval ],[][ SSS =  may be calculated as 

qqSSS ε+= 0
ˆ ,                                                                                                               (25) 
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where )(
2
1

0 SSS +=  is the center and )(
2
1 SSSq −=  is the radius of the given 

interval ][S . Further, ∈qε 𝕏𝕏 = [−1,1] is the newly generated noise symbol that should 
not be present in any other existing affine representations. 

3.3 Affine arithmetic operations 

Let us consider two affine representations Ŝ  and T̂  such that, 

∑=
+=

p

i iiSSS
10

ˆ ε  and ∑=
+=

p

i iiTTT
10

ˆ ε . 

Then, the AA operations the affine representations may be defined as follows [De 
Figueiredo and Stolfi (2004)]: 

Addition: ∑=
+++=+

p

i iii TSTSTS
100 )()(ˆˆ ε ;                                                         (26) 

Subtraction: ∑=
−+−=−

p

i iii TSTSTS
100 )()(ˆˆ ε ;                                                    (27) 

Scalar multiplication: ∑=
⋅+⋅=⋅

p

i iiSSS
10 )(ˆ εααα , where ∈α ℝ ;                       (28) 

Multiplication: qq
p

i iii TSTSTSTS εκε +++=⋅ ∑ =1 0000 )(ˆˆ ,                                     (29) 

where 

∑∑ ==
⋅≥

p

i ii
P

i iiq TS
11
εεκ , ∈iε 𝕏𝕏 = [−1,1]. 

Here, qε  is the newly generated noise symbol during multiplication and qκ  is the upper 

bound of the approximation error. 

Division: ∑= 







−+=⋅=

p

i iii T
T
SS

TT
S

T
S

T
S

1
0

0

0

0

ˆ
1

ˆ
1ˆ

ˆ
ˆ

ε , provided }0{ˆ ≠S  [Skalna (2009)].    

(30) 
To prove that AA is an efficient tool to overcome the “interval overestimation problem”, 
the following example of an interval nonlinear function is considered. 
Example 1: Let us consider a nonlinear function such that  

STTSTSf 22),( 22 −+= ,                                                                                          (31) 

where ]3,1[∈∀S  and ]7,5[∈∀T . 
Applying standard interval computations, the following result is obtained. 

]][[2][2][])[],]([[ 22 TSTSTSf −+=  

                                                           ]97,9[=                                                                (32)      

Therefore, for standard IA ]97,9[),( ∈TSf .  
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Further, the interval bounds of the present variables are converted into its affine form 
representations as follows: 

12ˆ]3,1[][ ε+=⇒= SS                                                                                               (33a) 

26ˆ]7,5[][ ε+=⇒= TT                                                                                             (33b) 

where 1ε  and 2ε  are the noise symbols of the affine form representations and 
]1,1[−∈iε  for 2,1=i . Then by using AA operations, the affine form of the nonlinear 

function ),( TSf  may be evaluated as follows: 

TSTSTSf ˆˆ2ˆ2ˆ)ˆ,ˆ(ˆ 22 −+=  

                                  54321 2220852 εεεεε −+++−=                                           (34) 

where ]1,1[−∈iε  for 5,4,3=i  are newly generated noise symbols during the affine 
operation to evaluate the required result. 
Hence after converting the resulting affine solution into its interval bounds using Eq. (24), 
we may have 

]85,19[]3352,3352[)ˆ,ˆ(ˆ =+−=TSf .                                                                        (35) 

Since the central value and the total deviation of the affine function f̂  are 520 =f  and 
33=fd  respectively. Therefore, it may be clearly noticed from Eq. (32) and Eq. (35) that 

 ])[],]([[)ˆ,ˆ(ˆ),( TSfTSfTSf ⊂∈ .                                                                              (36) 
The present example shows that AA may result in better enclosures as compare to the 
standard IA. Moreover, Skalna et al. [Skalna and Hladík (2017)] developed an algorithm 
for Chebyshev minimum-error multiplication of reduced affine forms which will result in 
the interval ]85,5.23[ . Thus minimum-error Chebyshev multiplication of affine forms is 
indeed a good approximation than that of AA. Hence, the proposed procedure may be 
extended by using Chebyshev minimum-error multiplication instead of standard AA 
multiplication (given in Eq. (29)) for better results. 

4 Fuzzy-affine form 
From Section 2.4, a fuzzy number may be regarded as a family of intervals by 
parameterized by using η -cut method. That interval further may be transformed into an 
affine form representation to handle the fuzzy number more efficiently. 

Now, let us assume a TFN ),,(~
321 tttT = . Parameterizing it using η -cut as mentioned in 

Eq. (8), we may have 

)](),([])(,)([)(~
233121 ttttttTTT −−−+== ηηηηη  for ]1,0[∈η .         

Further, the above interval quantity may be transformed into its affine form 
representation (Eq. (25)) as 
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TT tttttttttT εηηεη )}(){(
2
1)}2(){(

2
1),(ˆ

311331231 −+−+−−++= ,                   (37) 

for ]1,0[∈η  and ]1,1[−∈Tε . 

In the similar fashion, a TrFN ),,,(~
4321 llllL =  may be converted into its fuzzy-affine 

form using Eq. (25) as follows: 

LL llllllllllllL εηηεη ))}()((){(
2
1))}()((){(

2
1),(ˆ

423114413241 +−++−+−−+++= , (38) 

for ]1,0[∈η  and ]1,1[−∈Lε . 

Let us consider the fuzzy-affine forms ),(ˆ
SS εη  and ),(ˆ

TT εη  of two fuzzy numbers S~  
and T~  (where ]1,0[∈η  and ]1,1[, −∈TS εε ) respectively. Then all the arithmetic for 
fuzzy-affine numbers can be obtained as  

),(ˆ),(ˆ),,(ˆ
TSTS TSR εηεηεεη ⊗= .                                                                             (39) 

Therefore, the resulting solution may be computed as 





=∗

−∈−∈
),,(ˆmax),,,(ˆmin~~

]1,1[,]1,1[, TSTS RRTS
TSTS

εεηεεη
εεεε  

for ]1,0[∈∀η .                     (40) 

Example 2: Let us consider the nonlinear function STTSTSf 22),( 22 −+=  that 
given in Eq. (31) of Example 1, in which the consisting variables are taken in the form of 
TFNs such as   

)3,2,1(~
=∈∀ SS  and )7,6,5(~ =∈∀ TT .                                                                   (41) 

Then after parameterizing the above TFNs (41a) and (41b) as given in Section 2.4, we 
may have 

]3,1[)(~ ηηη −+=S  and ]7,5[)(~ ηηη −+=T  for ]1,0[∈η .                                    (42) 

Applying basic FA given in Section 2.5, the following result is obtained.                                                      

 ]9746,942[)(~),(~(~ 22 +−++= ηηηηηη TSf                                                         (43) 

Further, the fuzzy-affine forms of S~  and T~  are found below. 

11 )1(2),(ˆ εηεη −+=S  and 22 )1(6),(ˆ εηεη −+=T ,                                                (44) 
where ]1,0[∈η  and ]1,1[−=iε  for 2,1=i  are the noise symbols of the fuzzy-affine 
forms.  
Then by using FAA, the required fuzzy-affine form of the given nonlinear function 

),( TSf  is obtained as follows: 

5
2

4
2

3
2

2121 )1(2)1(2)1()1(20)1(852)),(ˆ),,(ˆ(ˆ εηεηεηεηεηεηεη −−−+−+−+−−=TSf  

(45)  
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where ]1,1[−∈iε  for 5,4,3=i are newly generated noise symbols during FAA. 

Corresponding fuzzy (TFN) functional value of the nonlinear function ),( TSf  is plotted 
in Fig. 2. In the figure, the lines marked with ‘□’ depict the FAA and the line marked 
with ‘*’ stand for FA. From the plot, it may be noted that FAA is more efficient and 
results in better enclosures than basic FA with respect to the considered example. 

 
Figure 2: Comparison plot between fuzzy arithmetic (FA) and fuzzy-affine approach (FAA)  

Further, Tab. 1 contains the fuzzy functional values of the given nonlinear function for  
1,8.0,6.0,3.0,1.0,0=η . Therefore, it may be seen from Tab. 1 that the FAA yields 

tighter outer bounds to the functional value as compared with standard FA.  

Table 1: Comparison table between FA and FAA for some values of η  

Iterations 
Fuzzy arithmetic (FA) Fuzzy-affine approach (FAA) 

Lower bound ( f ) Upper bound ( f ) Lower bound ( f ) Upper bound ( f ) 

0η =  9.0000 97.0000 19.0000 85.0000 
0.1η =  13.2100 92.4100 22.7500 81.2500 

0.3η =  21.6900 83.2900 29.9500 74.0500 

0.6η =  34.5600 69.7600 40.0000 64.0000 

0.8η =  43.2400 60.8400 46.2000 57.8000 

1η =  

( f f= ) 
52.0000 52.0000 52.0000 52.0000 

It may be clearly noticed that for Example 2, FAA results in better and tighter enclosures 
as compared to basic FA. 

5 Nonlinear eigenvalue problem (NEP) 
In this section, general definitions and notations about NEP are discussed. Further, the 
linearization procedure [Tisseur and Meerbergen (2001); Mehrmann and Watkins (2002)] 
of NEP having degree ‘ m ’ into GEP has been illustrated here.  
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5.1 Nonlinear eigenvalue problem 
The NEP having parameters in the form of crisp numbers is defined as 

0)( =xN λ ,                                                                                                                    (46) 

where λ  is the crisp eigenvalue of and x  is the eigenvector corresponding to the 
eigenvalue λ  of the above problem. Further, )(λN  is the matrix-valued nonlinear 
function of λ . The general form of the above NEP having degree ‘ m ’ may be illustrated 
as follows: 

0)()(
0

1
110 =++++==∑

=

−
− xNNNNxNxN

m

j

m
m

m
mj

j λλλλλ  ,                         (47) 

where the coefficients jN  for mj ,,1,0 =  are crisp square matrices. 

It may be noted that the linear eigenvalue problem is a special case with 1=m , 

10)( NNN λλ −= .                                                                                                         (48) 

For AN =0  and BN =1 , Eq. (48) is known as GEP whereas for AN =0  and IN =1  
(‘ I ’ stands for the identity matrix) it is known as a standard eigenvalue problem. 
Moreover, depending upon the degree of λ , there exist different forms of NEPs such as 
quadratic eigenvalue problem (QEP) ( 0)()( 2

210 =++= xNNNxN λλλ ) and cubic 

eigenvalue problem (CEP) ( 0)()( 3
3

2
210 =+++= xNNNNxN λλλλ ), etc. 

5.2 Fuzzy nonlinear eigenvalue problem (FNEP) 
The case where uncertain parameters are considered in the form of fuzzy numbers, the 
NEP may be referred as FNEP and is denoted as follows: 

0~)~(~ =xN λ ,                                                                                                                   (49) 

where λ~  is the fuzzy eigenvalue, x~  is the corresponding fuzzy eigenvector and )~(~ λN  

is the fuzzy matrix-valued nonlinear function in λ~ . The general form of the FNEP of 
degree ‘ m ’ may be considered in the following form. 

0~)~~~~~~~(~~~~)~(~
0

1
110 =++++== ∑

=

−
− xNNNNxNxN

m

j

m
m

m
mj

j λλλλλ  ,                   (50) 

where each of the coefficients jN~  for mj ,,1,0 =  are fuzzy square matrices of order 

nn×  having elements pqjn )~(  for nqp ,,2,1, =  in the form of either TFNs or TrFNs. 

In the similar manner as given for crisp quantities in Section 5.1, fuzzy QEP 

 ( 0~)~~~~~(~)~(~ 2
210 =++= xNNNxN λλλ )  

and fuzzy CEP ( 0)~~~~~~~(~)~(~ 3
3

2
210 =+++= xNNNNxN λλλλ ), may also be defined. 
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5.3 Linearization of nonlinear eigenvalue problem 
Let us consider the general form of NEP given by Eq. (47) having degree m  as follows: 

0)()(
0

1
110 =++++==∑

=

−
− xNNNNxNxN

m

j

m
m

m
mj

j λλλλλ  ,  

01
110 =++++⇒ −
− xNxNxNxN m

m
m

m λλλ  .                                                    (51) 

We now define new variables jx  for mj ,,2,1 =  such that, 

xx =:1  and xxx j
jj λλ ==+ :1  for 1,,2,1 −= mj                                                     (52) 

Therefore substituting Eq. (52) in Eq. (51), the given NEP 0)( =xN λ  may get 
transformed into a linear eigenvalue problem as follows: 

011221110 =+++++ −− mmmm xNxNxNxNxN λλλλ  .                                          (53) 

Further the above system in Eq. (53) can be represented in the following matrix form 
[Mehrmann and Watkins (2002)]. 



















⋅



















⋅=



















⋅

















−

−

−

m

m

mm

m x
x

x

I

I
NNN

x

x
x

I

I
N

1

111

2

10

00

00

00

00
00











λ .                             (54) 

The above system yields the GEP ** BxAx λ= , where ∈− )( BA λ ℂ𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚. 

It may be noted that the NEP 0)( =xN λ  has the same eigenvalues as the newly formed 

GEP ** BxAx λ=  with the eigenvectors 

( ) [ ] [ ]TTmTTTT
m

TTT xxxxxxx 1
21

* ,,,,,, −== λλ  .  

The NEP 0)( =xN λ  of degree ‘ m ’ (whose coefficient matrices is of order nn× ) has 
‘ mn ’ number of eigenvalues because after linearization the coefficient matrices of the 
newly formed GEP are of order mnmn× .   

6 Proposed method for FNEP  
Let us consider the FNEP (Eq. (50)) of degree ‘ m ’ as follows:  

0~)~~~~~~~(~~~~)~(~
0

1
110 =++++== ∑

=

−
− xNNNNxNxN

m

j

m
m

m
mj

j λλλλλ  ,                   (55) 

where all the coefficient matrices jN~  for mj ,,1,0 =  are fuzzy matrices of order 

nn×  having elements pqjn )~(  for nqp ,,2,1, =  in the form of either TFNs or TrFNs. 
Thus, the fuzzy coefficient matrices may be written as 
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





















=

nnjnjnj

njjj

njjj

j

nnn

nnn
nnn

N

)~()~()~(

)~()~()~(
)~()~()~(

~

21

22221

11211











, for mj ,,1,0 = .                                  (56) 

Adopting the parameterization of each fuzzy number as given in Section 2.4 (by usingη -
cut), the FNEP Eq. (55) in is converted into fuzzy parametric NEP.   

0)(~)}(~)(~)(~)(~)(~{)(~)}(~)(~{)(~))(~(~
0

10 =+++==∑
=

ηηληηληηηηηληηλ xNNNxNxN
m

j

m
mj

j


, (57) 

where the fuzzy parametric coefficient matrices may be written as  

     

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

[( ( )) , ( ( )) ] [( ( )) , ( ( )) ] [( ( )) , ( ( )) ]

[( ( )) , ( ( )) ] [( ( )) , ( ( )) ] [( ( )) , ( ( )) ]
( )

[( ( )) , ( ( )) ] [( ( )) , ( ( )) ] [( ( )) ,

j j j j j n j n

j j j j j n j n

j

j n j n j n j n j nn

n n n n n n

n n n n n n
N

n n n n n

η η η η η η

η η η η η η
η

η η η η η

=

 

 



   

   

  ( ( )) ]j nnn η

 
 
 
 
 
 
 
  
 

 

for ]1,0[∈η . 
Further, the fuzzy parametric NEP is again converted into its affine form representation 
as given in Section 4. Thus, the fuzzy-affine NEP of degree m  may be written as 

0),(~)},(~),(~),(~),(~),(~{

0),(~)},(~),(~{),(ˆ)),(ˆ)(,(ˆ

**
,

*
,11,00

0

*
,

****

=+++⇒

== ∑
=

εηεηλεηεηλεηεη

εηεηεηλεηεηλεη

xNNN

xNxN

m
pqmmpqpq

m

j
pqjj

j



, (58) 

where *ε  may be either a newly generated noise symbol or a function existing noise 
symbols pqj ,ε . Here the coefficient matrices are in the form of fuzzy-affine 
representations given as 























=

nnnnjjnnjjnnjj

nnjjjjjj

nnjjjjjj

pqjj

nnn

nnn
nnn

N

)),(~()),(~()),(~(

)),(~()),(~()),(~(
)),(~()),(~()),(~(

),(ˆ

,22,11,

22,2222,2121,

11,1212,1111,

,

εηεηεη

εηεηεη
εηεηεη

εη











,        (59) 

where ]1,0[∈η  and ]1,1[, −∈pqjε  for mj ,,1,0 =  and nqp ,,1,0, = . Moreover, 

),(ˆ *εηλ  and ),(ˆ *εηx  are the corresponding fuzzy-affine forms of fuzzy eigenvalue λ~  
and fuzzy eigenvector x~  of the FNEP respectively.   
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Thus, the FNEP is transformed into a form involving several parameters such as η  and 
*ε . Hence, now it can be linearized into GEP. 

Utilizing the linearization procedure for the NEP given in Section 5.3, the fuzzy-affine 
NEP may be transformed into a fuzzy-affine GEP as 

),(ˆ),(ˆ),(ˆ),(ˆ),(ˆ ******* εηεηεηλεηεη xBxA = ,                                                           (60) 

where                             

mnmn

pq

I

I
N

A

×
















−

=

00

00
00),(

ˆ

,00



εη

 and 

 

mnmn

pqmmpqmmpq

I

I
NNN

B

×

−−



















=

00

00
),(),(),(

ˆ

,,11,11



 εηεηεη

. 

Further, the fuzzy-affine GEP (60) is converted to standard eigenvalue problem 
containing different parameters viz. η  and *ε  given as follows: 

),(ˆ),(ˆ),(ˆ),(ˆ ****** εηεηλεηεη xxP = ,                                                                         (61) 

where ( ) ),(ˆ*),(ˆ),(ˆ *1** εηεηεη ABP
−

= . 
The above standard eigenvalue problem (Eq. (61)) may be solved symbolically (by using 
MATLAB code “e=eig(A)”) with symbols ]1,0[∈η  and ]1,1[, −∈pqjε  for 

mj ,,1,0 =  and nqp ,,1,0, = . Thus, the required eigenvalue solutions in fuzzy-

affine forms ),(ˆ *εηλi  for mni ,,2,1 =  may be computed.  

Since every consisting noise symbols vary from -1 to 1, the fuzzy parametric eigenvalues 
])(,)([)(~ ηληληλ iii =  may be determined as follows:  

),(ˆmin)( *

]1,1[*
εηληλ

ε
ii

−∈
=  and ),(ˆmax)( *

]1,1[*
εηληλ

ε
ii

−∈
= , for mni ,,2,1 = .                 (62) 

Finally, all the fuzzy solutions of the FNEP of degree m  can be evaluated by varying η  
from 0 to 1. 
 

7 Numerical Examples 
To illustrate the applicability of the proposed method, five numerical examples have been 
solved in this section. Initially, a fuzzy QEP is considered having parameters in the form 
of TFNs. In the next problem, a damped spring-mass structural system (in which all the 
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parameters are in the form of TrFN) is solved by using the present approach. Further, in 
both third and fourth problems an application problem from structural dynamics is 
handled, which contains ‘ n ’ degrees-of-freedom connected damped spring-mass system. 
In the third one, the degree-of-freedom is taken as 3 and the parameters are in the form of 
TFN, while the forth problem contains TrFNs and has 5 degrees-of-freedom. Finally, a 
fuzzy CEP has worked out whose parameters are TFNs.   
Example 3. Let us consider a fuzzy QEP (Eq. (50)) (crisp form given in Fazeli et al. 
[Fazeli and Rabiei (2016)]) 0~)~~~~~(~)~(~ 2

210 =++= xNNNxN λλλ , where the coefficient 
matrices are considered as 44×  fuzzy matrices (the elements are in TFNs) given as 
follows: 

0

3.0475 2.1879 1.9449 2.8242
2.6500 2.4724 2.3515 2.1053
0.7456 0.6423 1.3117 0.1852
4.0500 3.0631 2.8121 3.7794

N

− − − − 
 − − − − =
 − − − −
 
− − − − 

 , 

 1

(0.20,0.22,0.24) (0.01,0.02,0.03) (0.10,0.12,0.14) (0.13,0.14,0.15)
(0.01,0.02,0.03) (0.12,0.14,0.16) (0.03,0.04,0.05) ( 0.08, 0.06, 0.04)
(0.10,0.12,0.14) (0.03,0.04,0.05) (0.24,0.28,0.32) (0.04,0.08,0.12)
(

N
− − −

=

0.13,0.14,0.15) ( 0.08, 0.06, 0.04) (0.04,0.08,0.12) (0.22,0.26,0.30)

 
 
 
 
 

− − − 

 and 

 2

1 (0.07,0.17,0.27) ( 0.35, 0.25, 0.15) (0.50,0.54,0.58)
(0.44,0.47,0.50) 1 (0.65,0.67,0.69) ( 0.34, 0.32, 0.30)

( 0.15, 0.11, 0.07) (0.30,0.35,0.40) 1 ( 0.78, 0.74, 0.70)
(0.50,0.55,0.60) (0.40,0.43,0.46) (0.30

N

− − −
− − −

=
− − − − − −



,0.36,0.42) 1

 
 
 
 
 
 

. 

Here, particularly the 0
~N  matrix is taken as a crisp matrix and the other two are fuzzy 

matrices having elements as TFNs. The above fuzzy matrices 1
~N  and 2

~N  are 
parameterized by using  η -cut approach given in Section 2.4 as follows:   



















−+−+−−+−−+
−+−+−+−+
−−+−−+−+−+

−+−+−+−+

=

]04.030.0,04.022.0[]04.012.0,04.004.0[]02.004.0,02.008.0[]01.015.0,01.013.0[
]04.012.0,04.004.0[]04.032.0,04.024.0[]01.005.0,01.003.0[]02.014.0,02.010.0[

]02.004.0,02.008.0[]01.005.0,01.003.0[]02.016.0,02.012.0[]01.003.0,01.001.0[
]01.015.0,01.013.0[]02.014.0,02.010.0[]01.003.0,01.001.0[]02.024.0,02.022.0[

)(~
1

ηηηηηηηη
ηηηηηηηη
ηηηηηηηη

ηηηηηηηη

ηN
             



















−+−+−+
−−+−−+−−+−
−−+−−+−+

−+−−+−−+

=

1]06.042.0,06.030.0[]03.046.0,03.040.0[]05.060.0,05.050.0[
]04.070.0,04.078.0[1]05.040.0,05.030.0[]04.007.0,04.015.0[
]02.030.0,02.034.0[]02.069.0,02.065.0[1]03.050.0,03.044.0[

]06.058.0,04.050.0[]1.015.0,1.035.0[]1.027.0,1.007.0[1

)(~
2

ηηηηηη
ηηηηηη
ηηηηηη

ηηηηηη

ηN
 

Further, the parametric fuzzy numbers are changed to its fuzzy-affine form by adopting 
the procedure given in Section 4. Thus the FNEP with different parameters and the fuzzy-
affine coefficients are in the form 
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

















−+−+−+−−+
−+−+−+−+
−+−−+−+−+
−+−+−+−+

==

16151413

1211109

8765

4321

16,,11

)02.002.0(22.0)04.004.0(08.0)02.002.0(06.0)01.001.0(14.0
)04.004.0(08.0)04.004.0(28.0)01.001.0(04.0)02.002.0(12.0

)02.002.0(06.0)01.001.0(04.0)02.002.0(14.0)01.001.0(02.0
)01.001.0(14.0)02.002.0(12.0)01.001.0(02.0)02.002.0(22.0

),(~

εηεηεηεη
εηεηεηεη
εηεηεηεη
εηεηεηεη

εη
iiN

                 
17 18 19

20 21 22
2 17, ,28

23 24

1 0.17 (0.1 0.1 ) 0.25 (0.1 0.1 ) 0.54 (0.04 0.04 )
0.47 (0.03 0.03 ) 1 0.67 (0.02 0.02 ) 0.32 (0.02 0.02 )

( , )
0.11 (0.04 0.04 ) 0.35 (0.05 0.05 ) 1 0.74 (0.04 0.04 )i iN

η ε η ε η ε
η ε η ε η ε

η ε
η ε η ε η ε=

+ − − + − + −
+ − + − − + −

=
− + − + − − + −



25

26 27 280.55 (0.05 0.05 ) 0.43 (0.03 0.03 ) 0.36 (0.06 0.06 ) 1η ε η ε η ε

 
 
 
 
 

+ − + − + − 

 
Now, utilizing the linearization procedure given in Section 5.3, the fuzzy-affine NEP is 
linearized into fuzzy-affine GEP ** ˆˆˆˆˆ xBxA λ= , where  








−
=

I
NA
0

0~
ˆ 0  and 








= ==

0
),(~),(~

ˆ 28,,17216,,11

I
NNB iiii 

εηεη
. 

Then the fuzzy eigenvalues in the form of TFN are evaluated by adopting the proposed 
method given in Section 6. Finally, all the fuzzy eigenvalue plots are depicted in Figs. 
3(a)-3(h).  

 
(a)                                                                   (b) 
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(c)                                                                        (d) 

 
(e)                                                                           (f) 

 
(g)                                                                          (h) 

Figure 3: First-eighth eigenvalue plots for Example 3 (a-h) 

Example 4. Let us consider a FNEP 0~)~~~~~( 2 =++ xMCK λλ  from Eq. (3) of damped 
spring-mass structural system, where all the coefficient matrices of the problem may be 
taken as 33×  fuzzy matrices having uncertainty in the form of TrFNs. Here the 
corresponding fuzzy mass, stiffness and damping matrices are given below. 

















−−−−
−−−−−−−−

−−−−
=

)3.9,1.9,9.8,7.8()9.2,95.2,05.3,1.3(0
)9.2,95.2,05.3,1.3()3.9,1.9,9.8,7.8()9.2,95.2,05.3,1.3(

0)9.2,95.2,05.3,1.3()3.9,1.9,9.8,7.8(
~K

,  

















−−−−
−−−−−−−−

−−−−
=

)3.12,1.12,9.11,7.11()9.3,95.3,05.4,1.4(0
)9.3,95.3,05.4,1.4()3.12,1.12,9.11,7.11()9.3,95.3,05.4,1.4(

0)9.3,95.3,05.4,1.4()3.12,1.12,9.11,7.11(
~C

 and 
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














=

)2.2,1.2,9.1,8.1(00
0)2.2,1.2,9.1,8.1(0
00)2.2,1.2,9.1,8.1(

~M . 

As worked out in Example 3, here the FNEP is also transformed into fuzzy-affine GEP 
** ˆˆˆˆˆ xBxA λ= , where  








−
= =

I
K

A ii

0
0),(ˆ 7,,1εη

 and 







= ==

0
),(~),(~

ˆ 17,,1514,,8

I
MCA iiii 

εηεη
. 

The above system is solved by using the proposed approach (Section 6) and the fuzzy 
eigenvalues of the problem are computed. The trapezoidal fuzzy plots of the resulting 
eigenvalues are illustrated in Figs. 4(a)-4(f). 

 
                                       (a)                                                                 (b) 

 
                                         (c)                                                               (d) 
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                                          (e)                                                             (f) 

Figure 4: First to sixth eigenvalue plots for Example 4 (a-f) 

Example 5. In Fig. 5, we consider a connected damped spring-mass structural system of 
‘ n ’ degrees-of-freedom, where the crisp form is given by Tisseur et al. [Tisseur and 
Meerbergen (2001)] and interval form is by Chakraverty et al. [Chakraverty and Mahato 
(2018)]. This system may easily be converted into a NEP of the second degree (that is 
QEP) 0)()( 2 =++= xMCKxN λλλ , where K , C  and M  are the respective 
stiffness, damping and mass matrices. 
According to Fig. 5, im  ( ith  mass) is connected with 1+im  ( sti )1( +  mass) for 

ni ,,1=  through a spring of stiffness ik  and a damper of damping factor id . Further, 
the ith  mass is connected to the ground with spring of stiffness iκ  and damper of 
damping factor iτ . Here, the mass matrix is a diagonal matrix such as 

),,( 1 nmmdiagM =  and both the stiffness and damping matrices are symmetric 
tridiagonal matrices given by 

),,()0,,,( 111 n
T

n diagkkdiagK κκ  +ΠΠ= − , 

),,()0,,,( 111 n
T

n diagdddiagC ττ  +ΠΠ= − , 
where )( 1,, +−=Π jiji δδ , ji,δ  is the ‘Kronecker delta’.    
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Figure 5: n  degrees-of-freedom connected damped spring-mass system 

For this particular application problem of structural dynamics, each mass may be weighted 
as unity (that is kgmi 1=  for ni ,,0= ). Further, except for the first and last springs, all 
other springs have a constant stiffness (κ ) while first and last spring have twice stiffness 
than others (that is κκκ 21 == n ). Similarly, every damper has also a constant damping 
factor (τ ) except first and last. The damping factors of the first and last dampers are 

τττ 21 == n . In this regard, all the involving matrices may be obtained as 
)1,3,1( −−⋅= tridiagK κ , )1,3,1( −−⋅= tridiagC τ  and nnIM ×= . 

Due to uncertain or vague environments, the dynamic analysis of structural system leads to 
fuzzy QEP 0~)~~~~~(~)~(~ 2 =++= xMCKxN λλλ , where the coefficients are fuzzy matrices.  
Here uncertainties are considered as TFNs. and corresponding stiffness and damping 
matrices may be written as  

)]98.0,1,02.1(),06.3,3,94.2(),98.0,1,02.1[(~ −−−−−−⋅= tridiagK κ ,

)]99.0,1,01.1(),03.3,3,97.2(),99.0,1,01.1[(~
−−−−−−⋅= tridiagC τ  and nnIM ×=~

. 

When the constants for stiffness and damping factor are 5=κ  and 10=τ  respectively 
and the degree-of-freedom be considered as 3, the following stiffness, damping and mass 
matrices are formed. 

















−−−
−−−−−−

−−−
=

)3.15,15,7.14()9.4,5,1.5(0
)9.4,5,1.5()3.15,15,7.14()9.4,5,1.5(

0)9.4,5,1.5()3.15,15,7.14(
IK , 

















−−−
−−−−−−

−−−
=

)3.30,30,7.29()9.9,10,1.10(0
)9.9,10,1.10()3.30,30,7.29()9.9,10,1.10(

0)9.9,10,1.10()3.30,30,7.29(
~C  and 33

~
×= IM . 

Adopting the proposed procedure, the above fuzzy QEP 0~)~~~~~( 2 =++ xMCK λλ  is 

converted to fuzzy-affine QEP 0ˆ)ˆˆˆˆˆ( 2 =++ xMCK λλ  and finally to fuzzy-affine GEP 
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** ˆˆˆˆˆ xBxA λ=  which is solved by using the proposed method. All the fuzzy (TFN) 
eigenvalue plots are depicted in Figs. 6(a)-6(f). 

 
                                   (a)                                                                   (b) 

 
                                 (c)                                                                      (d) 

 
                               (e)                                                                        (f) 

Figure 6: First to sixth eigenvalue plots for Example 5 (a-f) 

Example 6. Further, the above problem has been considered with the TrFNs. Thus the 
involving matrices are taken in the form as 
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)]98.0,99.0,01.1,02.1(),06.3,02.3,98.2,94.2(),98.0,99.0,01.1,02.1[(~ −−−−−−−−⋅= tridiagK κ
)]99.0,995.0,005.1,01.1(),03.3,01.3,99.2,97.2(),99.0,995.0,005.1,01.1[(~

−−−−−−−−⋅= tridiagC τ

and nnIM ×=~
. 

Here, the constants of stiffness and damping factor are considered same as Example 5 but 
the degree-of-freedom is taken as 5=n . Then the corresponding mass, stiffness and 
damping matrices may be written as 

55
~

×= IM ,  























−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−

=

)3.15,1.15,9.14,7.14()9.4,95.4,05.5,1.5(000
)9.4,95.4,05.5,1.5()3.15,1.15,9.14,7.14()9.4,95.4,05.5,1.5(00

0)9.4,95.4,05.5,1.5()3.15,1.15,9.14,7.14()9.4,95.4,05.5,1.5(0
00)9.4,95.4,05.5,1.5()3.15,1.15,9.14,7.14()9.4,95.4,05.5,1.5(
000)9.4,95.4,05.5,1.5()3.15,1.15,9.14,7.14(

~K

  
and  























−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−

=

)3.30,1.30,9.29,7.29()9.9,95.9,05.10,1.10(000
)9.9,95.9,05.10,1.10()3.30,1.30,9.29,7.29()9.9,95.9,05.10,1.10(00

0)9.9,95.9,05.10,1.10()3.30,1.30,9.29,7.29()9.9,95.9,05.10,1.10(0
00)9.9,95.9,05.10,1.10()3.30,1.30,9.29,7.29()9.9,95.9,05.10,1.10(
000)9.9,95.9,05.10,1.10()3.30,1.30,9.29,7.29(

~C
 

In the similar fashion as Example 5, the above fuzzy QEP 0~)~~~~~( 2 =++ xMCK λλ  is 

transformed into fuzzy-affine GEP ** ˆˆˆˆˆ xBxA λ=  by utilizing the affine transformation as 
well as the linearization. 
Following the proposed procedure, the trapezoidal fuzzy eigenvalues for the above 
system are computed. Corresponding fuzzy plots have been included in Figs. 7(a)-7(j). 

 
                             (a)                                                                         (b) 
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                                (c)                                                                       (d) 

 
                                 (e)                                                                       (f) 

 
                                (g)                                                                        (h) 
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                                 (i)                                                                      (j) 

Figure 7: First to tenth eigenvalue plots for Example 6 (a-j) 

Example 7. Finally, let us consider a fuzzy CEP (interval form given in Chakraverty and 
Mahato [Chakraverty and Mahato (2018)]) 

0~)~~~~~~~(~)~(~ 3
3

2
210 =+++= xNNNNxN λλλλ , where the coefficient matrices are 

considered as 55×  fuzzy matrices (whose the elements are in the form of TFNs) given 
as follows: 























=

)1.5,5,9.4(0000
0)1.5,5,9.4(000
00)1.5,5,9.4(00
000)1.5,5,9.4(0
0000)1.5,5,9.4(

~
0N , 

 























−−−
−−−−−−

−−−−−−
−−−−−−

−−−

=

)1.9,9,9.8()9.2,3,1.3(000
)9.2,3,1.3()1.9,9,9.8()9.2,3,1.3(00

0)9.2,3,1.3()1.9,9,9.8()9.2,3,1.3(0
00)9.2,3,1.3()1.9,9,9.8()9.2,3,1.3(
000)9.2,3,1.3()1.9,9,9.8(

~
1N , 

 























−−−
=

)1.12,12,9.11(0000
)33.33,32.33,31.33()9.279,280,1.280(0)6.250,5.250,4.250(0

00)016.0,015.0,014.0(00
000)6.10,5.10,4.10(0
0)1.6,6,9.5(00)1.1,1,9.0(

~
2N

 

and 
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





















−−−
=

)1.12,12,9.11(0000
)33.33,32.33,31.33()9.279,280,1.280(0)6.250,5.250,4.250(0

00)016.0,015.0,014.0(00
000)6.10,5.10,4.10(0
0)1.6,6,9.5(00)1.1,1,9.0(

~
2N

The center eigenvalues of the above fuzzy eigenvalue problem 
0~)~~~~~~~( 3

3
2

210 =+++ xNNNN λλλ  have been computed, which yields fifteen 
eigenvalues out of which seven eigenvalues are real. Accordingly, by using the proposed 
method, the seven real triangular fuzzy eigenvalues have been evaluated. Corresponding 
triangular fuzzy plots have been included in Figs. 8(a)-8(g). 

 
                                   (a)                                                                      (b) 

 
                                   (c)                                                                   (d) 
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                                    (e)                                                                   (f) 

 
                                                                        (g) 

Figure 8: First to seventh eigenvalue plots for Example 7 (a-g) 

Result discussions: 
The center of all the fuzzy eigenvalue solutions (for 1=η ) of the FNEP given in 
Example 3 coincides with the crisp eigenvalue solutions of the crisp NEP obtained by 
Fazeli et al. [Fazeli and Rabiei (2016)] as shown in Tab. 2 and results with tighter 
enclosures (for 0=η ). Also for some values of the membership function viz. =η 0, 0.2, 
0.5, 0.7 and 1, the eigenvalues of Example 3 are listed in Tab. 2. Similarly, we may have 
that all the central values of the fuzzy eigenvalues in Examples 4 to 6 are equal with the 
results of NEP for crisp case. Further for Example 6, it may be noticed that the present 
procedure results in better enclosures for the interval case of NEP as given in 
Chakraverty et al. [Chakraverty and Mahato (2018)] (for 0=η ). Moreover, the crisp 
eigenvalues of the NEP given in Tisseur et al. [Tisseur and Meerbergen (2001)] are same 
as the center of the trapezoidal fuzzy eigenvalues of Example 6 obtained by substituting 

1=η  in the solutions. 
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Table 2: Fuzzy eigenvalue bounds of Example 3 for different values of η  

Iterations 

Lower 
and 

upper 
bounds  

1λ  2λ  3λ  4λ  5λ  6λ  7λ  8λ  

0=η  
λ  -2.7332 2.2197 -1.3607 -0.8510 -0.4219 0.7931 0.6194 0.2374 

λ  -2.5478 2.4431 -1.1193 -0.8267 -0.3415 0.7971 0.6643 0.2466 

2.0=η  
λ  -2.7126 2.2391 -1.3297 -0.8487 -0.4123 0.7940 0.6228 0.2384 

λ  -2.5647 2.4174 -1.1381 -0.8294 -0.3482 0.7970 0.6583 0.2458 

5.0=η  
λ  -2.6828 2.2693 -1.2869 -0.8453 -0.3986 0.7951 0.6281 0.2398 

λ  -2.5905 2.3805 -1.1681 -0.8332 -0.3587 0.7969 0.6501 0.2444 

7.0=η  
λ  -2.6635 2.2902 -1.2604 -0.8430 -0.3900 0.7958 0.6320 0.2408 

λ  -2.6082 2.3568 -1.1893 -0.8357 -0.3660 0.7968 0.6451 0.2435 

1=η   

( λλ = ) 

λ  -2.6353 2.3227 -1.2234 -0.8394 -0.3776 0.7967 0.6382 0.2422 

λ  -2.6353 2.3227 -1.2234 -0.8394 -0.3776 0.7967 0.6382 0.2422 

Crisp eigenvalues 
[Fazeli and Rabiei 

(2016)] 
-2.6353 2.3227 -1.2234 -0.8394 -0.3776 0.7967 0.6382 0.2422 

 
Table 3: Comparison of lower and upper fuzzy eigenvalue bounds and its center for 
Example 7 

Real 
Eigenvalues 

Present Method [Chakraverty and Mahato (2018)] 

Lower 
( 0=η ) 

Upper 
( 0=η ) 

Center 
( 1=η ) Lower Upper Center 

1λ  -8.1195 -7.9384 -8.0275 -8.1495 -7.9092 -8.0275 

2λ  7.0667 7.2056 7.1351 7.0638 7.2084 7.1351 

3λ  -2.7162 -2.5781 -2.6457 -2.7669 -2.5299 -2.6457 

4λ  -1.7863 -1.7512 -1.7684 -1.8320 -1.7073 -1.7684 

5λ  -1.3095 -1.3020 -1.3057 -1.3399 -1.2738 -1.3057 

6λ  -0.9280 -0.9016 -0.9148 -0.9438 -0.8901 -0.9148 

7λ  -0.9920 -0.9933 -0.9926 -0.9950 -0.9885 -0.9926 
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Moreover, the results of fuzzy CEP (for 0=η ) of Example 7 are compared with the 
interval eigenvalue bounds of the interval CEP of Chakraverty et al. [Chakraverty and 
Mahato (2018)] in Tab. 3 and are found to be in good agreement. It may be noted from 
Tab. 3 that the present approach gives comparatively tighter bounds than Chakraverty et 
al. [Chakraverty and Mahato (2018)] and the center eigenvalues for both the cases are 
coincide with each other [Chakraverty and Mahato (2018)].   

8 Conclusion 
In this article, an efficient fuzzy-affine approach (FAA) has been proposed to solve fully 
FNEPs of damped spring-mass structural system. FAA is developed to overcome the 
overestimation problems. FAA is found to give better enclosures than basic FA. Further, 
by utilizing fuzzy-affine form, the FNEP is transformed into a form of NEP having 
different parameters in terms of noise symbols and membership functions which may 
easily be linearized to GEP. Fuzzy eigenvalues are computed by varying the parameters 

iε  from -1 to 1 and η  from 0 to 1. Several examples of damped spring-mass structural 
problems with other quadratic and cubic eigenvalue problems are included to show the 
powerfulness and efficacy of the proposed procedure.  
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