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Abstract: A gear fault detection analysis method based on Fractional Wavelet Transform 
(FRWT) and Back Propagation Neural Network (BPNN) is proposed. Taking the changing 
order as the variable, the optimal order of gear vibration signals is determined by discrete 
fractional Fourier transform. Under the optimal order, the fractional wavelet transform is 
applied to eliminate noise from gear vibration signals. In this way, useful components of 
vibration signals can be successfully separated from background noise. Then, a set of feature 
vectors obtained by calculating the characteristic parameters for the de-noised signals are 
used to characterize the gear vibration features. Finally, the feature vectors are divided into 
two groups, including training samples and testing samples, which are input into the BPNN 
for learning and classification. Experimental results showed that this gear fault detection 
analysis method could well maintain the useful signal components related to gear faults and 
effectively extract the weak fault feature. The accuracy rate reached 96.67% in the 
identification of the type of gear fault. 
 
Keywords: Gear fault detection preparation, factional wavelet transform, back 
propagation neural network. 

1 Introduction 
With the rapid development of modern industry, mechanical equipment is becoming more 
complex and efficient. A gear is a key component for motion and power transmission and 
a strict gear fault detection procedure is required for ensuring superior transmission 
performance and quality [Ni, Peng, Stöbener et al. (2019); Goch, Ni, Peng et al. (2017); 
Chen, Sun, Shi et al. (2016); Amaranth and Praveen Krishna (2012); Shi, Lin and Lin 
(2013); Samanta (2004); Chen, Sun, Shi et al. (2017); Wiemann, Stein and Kniel (2017)]. 
For meshing gears, gear faults are always found in the vibration signal. In the production 
environment, vibration signals not only contain the useful information (gear transmission 
and the fault information), but also have a large number of strong background noise signals. 
Therefore, fault feature extraction and pattern recognition are two critical problems to be 
solved [Sahoo, Laskar, Das et al. (2019); Dadon, Koren, Klein et al. (2019); Park, Kim and 
Na (2019)]. 
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The traditional spectrum analysis method based on Fast Fourier Transform (FFT) is only 
suitable for the analysis of stationary signals. However, measured dynamic signals often 
contain a large number of non-stationary signal components. The time-frequency analysis 
method, a new method developed in the fault analysis field, can overcome the disadvantage 
of the traditional spectrum analysis method. Therefore, many time-frequency analysis 
methods are proposed, including Wavelet Transform (WT), Fractional Fourier Transform 
(FRFT), Short-time Fractional Fourier Transform (SFRFT), Radon-Wigner Transform and 
Fractional Wavelet Transform (FRWT). However, WT is only limited in the time-
frequency domain [Bajric, Zuber, Krimpas et al. (2016); Shao and Deng (2018); Mallat 
(1989); Peng and Chu (2004); Gargour, Gabrea and Ramachandran (2009)]. FRFT cannot 
characterize local features of signals [Almeida (1994); Yuan (2008); Narayanan and 
Prabhu (2003)]. The high resolution of SFRFT cannot be achieved simultaneously in the 
time domain and fractional domain [Tao, Li and Wang (2010)]. Radon-Wigner transform 
is based on quadratic transformations, which have cross terms [Wood and Barry (1994)].  
In addition, method of selection of amplitudes of frequency (MSAF), method of selection 
of amplitudes of frequency-multiexpanded (MSAF-MULTIEXPANDED), shortened 
method of frequencies selection (SMOFS) and shortened method of frequencies selection- 
Multiexpanded (SMOFS-MULTIEXPANDED) are feature extraction methods [Adam 
(2016, 2018, 2019); Adam and Witold (2018)]. There is no need to connect a measuring 
sensor with the machine for acoustic-based measurements, which can analyze acoustic 
signals in places with limited or no access. However, there are still some problems and 
difficulties. One of the difficulties to solve was selection of training samples. It can be 
noticed that the recognition results depended on selected training samples. All samples are 
measured by one microphone. If the acoustic signal is measured by another type of 
microphone, then it can cause errors of recognition. The second of the difficulties to solve 
was the testing (classification) of a new unknown test samples. The third of the difficulties 
to solve was background noises. They cannot work for a machine that does not generate 
acoustic signals. Background noises can be also problem, if we analyze several devices in 
one place and at the same time. What’s more, the acoustic-based analysis was expensive. 
Cons of this solution are the higher cost and size of the computer. 
Because of the complex structure and various defect forms of gear transmission system, 
the pattern recognition based on artificial intelligence has become an inevitable trend.  
Fractional Wavelet Transform (FRWT), proposed originally by Mendlovic in 1997, 
combines wavelet transform with fractional order theory and have significant advantages 
in signal processing [Mendlovic, Zalevsky and Mas (1997); Chen and Zhao (2005); Zhuo 
(2018)]. Based on the wavelet transform and the fractional Fourier transform, the 
Fractional wavelet transform (FRWT) is applied to the decomposition and reconstruction 
of the signals. And it is proved that the transform satisfies the law of conservation of energy. 
The fractional wavelet transform domain is related to the time-frequency domain to some 
extent. So essentially, the synthesis and decomposition of fractal-order wavelet transform 
is a consistent transformation in the time-frequency domain. Compared with the traditional 
time-frequency analysis method, the fractional wavelet transform has an important 
advantage that it has a single adjustable variable, namely the fractional-order. Therefore, 
the fractional wavelet transform can be better used to filter various random signals, which 
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obtain good analysis and processing results. 
Back Propagation neural network (BPNN) proposed by Rumelhart and McCelland in 1986 
[Qin, Yang and Cheng (2008)] is a multi-layer feed-forward neural network trained by 
error back-propagation algorithm, which has the advantages of fast computation and low 
memory consumption [Samanta (2004); Samanta, Al-Balushi and Al-Araimi (2003)]. 
BPNN can learn and store input-output mapping relationships. It is not required to reveal 
the mathematical equations describing the mapping relations. Therefore, it avoids the 
deficiency of traditional fault analysis method based on sideband. Back Propagation neural 
network has good self-learning and classification ability, which can be used to identify 
fault types in fault diagnosis [Zhao (2018); Yang, Duan, Yu et al. (2018); Huang, Liang, 
Lei et al. (2019); Wang, Ji and Ji (2019)]. 
In this paper, a gear fault detection analysis method based on Fractional Wavelet Transform 
and Back Propagation Neural Network is proposed. The optimal order on two-dimensional 
plane is obtained from mixed vibration signals though discrete fractional Fourier transform. 
Then, the vibration signal is subjected to the fractional wavelet transform with the optimal 
order. The fractional wavelet reconstruction is completed by combining low frequency 
coefficient with high frequency coefficient after threshold quantization. In the de-noised 
signal, energy values in the frequency band are extracted to build feature vectors, which 
can be used in BPNN to further realize the intelligent identification of the faulty gear. 
With FRWT and BPNN, the method can quickly achieve the gear fault detection. 
Furthermore, the gear quality can be checked according to the detection results. Therefore, 
this method may be used as a powerful analysis method for the quality diagnosis of gears. 

2 Fundamental principles 
2.1 Fractional wavelet transform 
FRFT has attracted wide attention from many researchers in various fields, especially in 
signal processing. The discrete form of fractional Fourier transform is required in 
processing digital signals in engineering. The discrete order fractional Fourier transform of 
signal is defined as: 
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where 1 cot 2A jα α π= − ; α is a rotation angle and / 2pα π= , p is the order of discrete 

order fractional Fourier transform, which is an arbitrary real number; x∆ is the signal 
bandwidth; N indicates sample length, ( )2N x= ∆ . 
FRWT aims to improve the multi-resolution wavelet analysis theory [Huang (1988)]. For 
the signal ( )x t , its fractional wavelet transform is expressed as: 

( ) *( , ) ( , ) ( ) ( )p
p abW a b B t t x t t dt dtψ

+∞ +∞

−∞ −∞
′ ′ ′= ∫ ∫

 (2) 

where * ( )ab tψ  is a wavelet basis function; a  is the dilation factor; b  is the translation factor; 
( )pB t,t′ is a kernel function: 
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where nH is n -order Hermite polynomials; p is the order of FRWT and ranges from 0 to 1. 
The reconstruction formula of fractional wavelet transform is: 
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2.2 Back propagation neural network 
Back Propagation neural network, one of the mature neural networks, is a multi-layer 
network trained with the weights of nonlinear differentiable functions [Li, Han and Yu 
(2017); Jiang, Zhang, Xuan et al. (2016); Xu, Zhang, Wang et al. (2015)]. The learning 
rule of BPNN is a gradient descent algorithm. The weights and thresholds of the network 
are adjusted constantly by back-propagation to minimize the square error of the network. 
As shown in Fig. 1, the BPNN is composed of an input layer, a hidden layer and an output 
layer. The number of input layer nodes is determined by the number of characteristic values 
contained in a feature vector. The number of output layer nodes is determined by gear fault 
types. For the determination of the number of hidden layer nodes, there is no definite 
theoretical rule. In the specific design, a practical approach is to train and compare different 
neurons, so it needs to properly add a little margin. Moreover, the number of hidden layer 
nodes is affected by the number of input layer nodes, the number of output layer nodes, the 
target type number and other factors. In this paper, the number of hidden layer nodes is 
determined as: 

( )max,
2

I O Cn n n
n

+
=  (5) 

where n  is the number of hidden layer nodes; In is the number of input layer nodes; On is 
the number of output layer nodes; Cn is the number of target classification. 

Input Layer Hidden Layer Output Layer
 

Figure 1: Back Propagation neural network structure 
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3 Intelligent analysis method of gear fault detection 
3.1 Noise removal based on fractional wavelet transform 
The fractional wavelet transform combines the advantages of fractional Fourier transform 
and wavelet transform. So it highlights many advantages including multi-resolution 
analysis in wavelet transform, time-frequency focusing of fractional Fourier transform and 
so on. Though de-noising the gear vibration signal containing background noise, the 
deficiency of single transformation is overcome to ensure the consistency and validity of 
time-frequency resolution. Therefore, it is suitable to extract and analyze gear fault features. 
The flow chart of the fractional wavelet transform is shown in Fig. 2. 
The mixed vibration signal ( )s t  is collected by a sensor, ( ) ( ) ( )s t x t w t= +  .The signal ( )s t
contains the useful component of the gear vibration signal ( )x t and the background noise 
signal ( )w t .The specific implement method is described as follows: 
1. The mixed vibration signal ( )s t   is subjected to the discrete fractional Fourier 

transform with the order p  . Signal energy is distributed in two-dimensional p u−  
plane. 

2. The peak point is searched on two-dimensional plane ( , )p u formed by in Step 1.The 

optimal order optp  is obtained by calculating 
2

,
arg max ( )p

p u
X u . 

Original signals

Get an optimal order popt

popt order FRWT for the signals

FRFT

Search peak point
 in two-dimensional p-u plane

De-noising (coefficient threshold quantification)

Coefficient  reconstruction

Signals after de-noising
 

Figure 2: Flow chart of the fractional wavelet transform 
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3. The appropriate wavelet decomposition order is selected as N . The mixed vibration 
signal ( )s t is subjected to the fractional wavelet transform with the order optp . Its thN  
low frequency coefficient Nca  and high frequency coefficients from 1st  to thN  layer 

1 2, , Ncd cd cd  are obtained. 
4. The high frequency coefficients 1 2( , , )Ncd cd cd  is subjected to threshold processing. 

The threshold is selected by 2 log( ( ) / log(2)))sqrt n nη = ∗ ∗（ , where n  is the number of 
wavelet coefficients. The threshold function is 

( )( ) ,, ,
,

,

sgn

0

i ji j i j
i j

i j

ω ηω ω η
ω

ω η

 ≥−= 
<



, 
(6) 

where η  is the threshold coefficient and ,i jω  is the wavelet decomposition coefficient. 
After threshold processing, the high frequency coefficients are respectively denoted 
as 1 2, , Ncd cd cd′ ′ ′

 . 
5. Through combining thN   low frequency coefficient Nca   with the high frequency 

coefficient 1 2( , , )Ncd cd cd′ ′ ′
 after threshold quantization, optp -order fractional wavelet 

reconstruction is completed. Therefore, it can get the useful gear transmission signal 
component and realize the separation from background noise. 

3.2 Signal feature 
The 10 time-domain statistical parameters are selected as the characteristic parameters of 
gear vibration signal after de-noising, including 5 dimensional parameters and 5 
dimensionless parameters. The formulas are shown in Tab. 1. 

Table 1: Time-domain statistical parameters of signal and its calculation formulas 

No. Dimensional 
parameters Calculation formulas 

1 Peak value max minppvX X X= −  

2 Mean value 
1

1
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x
n
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=
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3 
Root mean 
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1
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5 Kurtosis 
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6 Waveform index rms

s

X
K

u
=
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7 Peak index max

rms

X
C

X
=

 

8 Pulse index max

s

X
I

u
=

 

9 Margin index max

r

X
L

X
=

 

10 Kurtosis index 4v
rms

K
X
β

=  

Notes: maxX  is the maximum of the signal; minX  is the minimum of the signal; ( )x n  is the 
signal at the sampling point n ; N is total data length; x is average value; 0M : is median or 
mode; σ is standard deviation; su  is average amplitude.  

3.3 Gear fault pattern recognition 
The feature vectors in Section 3.2 are used as the sample inputs in BPNN for training and 
recognition. In this paper, the neural network contains a hidden layer. After training a large 
number of feature vectors, the weight matrix and threshold matrix are recorded. The 
training process is completed in order to recognize intelligently gear faults. The flow chart 
is shown in Fig. 3. 

    

Weight initialization

Sample input, Calculating  output of each layer

Calculating output layer errors

Correction of output layer weights

Calculating local gradient

Correction of hidden layer weights

Are there untrained samples ?

Is the overall average error 
less than the set value ?

End

Start

N

N

Y

Y

 

Figure 3: Flow chart of BPNN 

Sample training steps of BPNN are described as follows: 
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1. Initialize weight matrix and threshold. The mode counter and training counter of the 
sample are set as 1. The error, learning rate, and the minimum precision and the 
maximum number of iterations allowed in the network are initialized. 

2. Input training samples and calculate the output of the hidden layer ko  and the output 
of the output layer iy : 

( )
1

M

i i ij j i
j

y net v xφ φ θ
=

 
= = + 

 
∑  (7) 
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3. Calculate the sample output error pE . 

( )2

1

1
2

L

p k k
k

E t o
=

= −∑  (9) 

The network has different errors for different samples. The total error of the system E  
can be obtained by accumulating output errors of all samples: 

( )2
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1
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E t o

= =
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4. Check whether the training process of all samples are completed. If not, go to Step 2. 
Otherwise, go to Step 5. 

5. Adjust the weights and thresholds of each layer according to the following formulas: 

( ) ( )
1 1
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= =
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(11) 
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( ) ( )
1 1

P L
p p

i k k ki i
p k

t o w netθ η φ
= =

′∆ = − ⋅ ⋅∑∑
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(14) 

The iterative increment of weights and the thresholds for each neuron updates the 
weight and threshold for the next round of network learning and training. Its update 
formula is 

( ) ( ) ( ) ( )1 , 1ki ki ki ij ij ijw n w n w v n v n v+ = + ∆ + = + ∆ , (15) 
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6. Check whether the total error of the network meets the accuracy requirements. If it is 
less than the minimum precision allowed by the network, the training is completed. 
Otherwise, it will return to Step 2 and continue. 

7. Check whether the number of iterations reach its maximum. If it is less than the 
maximum of iterations, the training returns to Step 2 and continues. Otherwise, the 
training is completed. 

4 Experiments 
In this paper, gear vibration signals were collected by the test rig (Fig. 4). It is composed 
of a gear rolling inspection machine, acceleration sensors and testing gears (Fig. 5). The 
gears are a pair of spiral bevel gears, whose driving and driven wheel share a gear tooth 
number of 17, with a transmission ratio of 1:1. The rotation speed of driving wheel is 750-
1000 rpm. The sampling frequency of the vibration signal sound is 20 kHz. Parameters of 
driving and driven wheel are shown in Tab. 2.  

                
Figure 4: Test rig diagram           Figure 5: Test rig and acceleration sensors 

Table 2: Parameters of driving gear and driven gear 

Parameters Module Whole depth Number of teeth Pressure angle Helical 
angle 

Driving 
gear 8.034483 15.17 mm 17 20° 35° 

Driven 
gear 8.034483 15.17 mm 17 20° 35° 

Parameters Spiral direction Addendum 
coefficient 

Addendum Clearance 
coefficient 

Tangential 
modification 
coefficient 

Driving 
gear levorotation 0.8 0.188 -0.064 

Driven 
gear dextrorotation 0.8 0.188 +0.064 

 

 

Driven Gear Driving Gear 

Acceleration Sensor 
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There are two acceleration sensors in the experimental device, and they are mounted on the 
driving gear base and the driven gear base respectively. The tested gears include normal 
gears, gears with reduced meshing clearance (reduced by 0.035 mm), and gears with 
increased meshing clearance (increased by 0.035 mm). 
As shown in Fig. 6, it can be seen that there are obvious modulation phenomena in the time 
and frequency domain of the gear vibration signals obtained from the experimental 
measurements. Ambient noise obscures the vibration signal produced by the meshing of 
gears, so it is not effective to distinguish the three gear types according to the time and 
frequency domain curve. 

 
(a) 

 
(b) 

 
(c) 

Figure 6: Gear vibration signals. (a) Original signals and Fourier frequency spectrum of 
the normal gears; (b) Original signals and Fourier frequency spectrum of the gears with 
reduced meshing clearance; (c) Original signals and Fourier frequency spectrum of the 
gears with increased meshing clearance 
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The vibration signals of the above three kinds of gears are analyzed by the method proposed 
in this paper. The flow chart is shown in Fig. 7. 
Step 1: For the collected gear vibration signal, discrete fractional Fourier transform with 
order p  is applied to distribute signal energy in two-dimensional p u−  plane. The order 
p   increases from 0 to 2 with a step size of 0.01. Through the peak value search and 

calculation, an optimal order optp  is determined on the 2-dimensional plane. In the 
experiment, an optimal order optp  for the gear vibration signal with gears with reduced 
meshing clearance is 1.103. 

Input original signals

p    [0,2]，step 0.01

Search an optimal order popt

popt order FRWT for the signals
(decomposition, de-noising and reconstruction)

Calculate the characteristic parameters of the 
signals after de-noising

A set of eigenvectors is composed of the 
characteristic parameters  Training samples

BPNN prediction model

Testing samples  Training through the BPNN 

FRFT in two-dimensional p-u plane

Output testing results

∈

 

Figure 7: Diagram of the methodology based on FRWT and BPNN 

Step 2: Fractional wavelet transform is applied in the signal filtering to get useful gear 
vibration signal, which is decomposed and reconstructed by db6 3-layer wavelet packet to 
obtain the decomposition energy spectrum. Frequency of gear vibration signal ranges from 
0 to 2000 Hz and the sampling frequency sf  is 20 kHz. Therefore, when k -layer wavelet 
packet decomposition is performed with the gear vibration signal, the node bandwidth at 
the thk  layer is 
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12
s

BW k

f
f += , (16) 

where the frequency range of each node is: 

~ ( 1) , 0,1, 2,..., 2 1.k
BW BWmf m f m+ = − , (17) 

where m  represents the node number at the thk  layer in wavelet decomposition. 
And the de-noised gear signals are shown in Fig. 8.   

 

(a) 

 

(b) 

 

(c) 

Figure 8: De-noised gear signals. (a) De-noised signals and Fourier frequency spectrum 
of the normal gears; (b) De-noised signals and Fourier frequency spectrum of the gears 
with reduced meshing clearance; (c) De-noised signals and Fourier frequency spectrum of 
the gears with increased meshing clearance 
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Step 3: The statistical parameters are selected as the characteristic parameters of the 
vibration signal after de-noising, including peak value, mean value, root mean square value, 
skewness, kurtosis, waveform index, peak index, pulse index, margin index and kurtosis 
index (Fig. 9). 

 
Note: Units of the parameters 1 through 5 are respectively m/s2, m/s2, m/s2, (m/s2)3, (m/s2)4; 
the parameters 6 through 10 are dimensionless parameters. 

Figure 9: Characteristic parameters of the vibration signal after de-noising 

Step 4: The BPNN is used to classify and study 60 groups of the feature vectors of the 
vibration signals after de-noising. The feature vectors are divided into two types: 30 groups 
of training samples and 30 groups of testing samples. Both training samples and testing 
samples contain 10 groups of normal gears, 10 groups of gears with reduced meshing 
clearance, and 10 groups of gears with increased meshing clearance. For the BPNN, the 
node numbers of input layer, hidden layer and output layer are respectively 10, 7 and 3. 
The error condition during training is that the error is less than 0.0001 or the learning times 
are not less than 10000 times. After training, 30 groups of testing samples are input into 
the BPNN. The numbers 1-10 indicate the feature vectors of the vibration signals for 
normal gears. The numbers 11-20 indicate the feature vectors of the vibration signals for 
gears with reduced meshing clearance (reduced by 0.03 mm). The numbers 21-30 indicate 
the feature vectors of the vibration signals for gears with increased meshing clearance 
(increased by 0.03 mm). The identification results of the BPNN are shown in Tab. 4. 
As shown in Tab. 4, the training and prediction results of three gear-fault types using the 
BPNN can reach an accuracy of 96.67%. 

Table 4: Identification results of the BPNN 

No. BPNN identification values Identification results T / F 
1 0.9724 0.0538 0.0107 Normal gear T 
2 0.9392 0.0258 0.0380 Normal gear T 
3 0.9677 0.0301 0.0184 Normal gear T 
4 0.1712 0.0224 0.7921 Gear with increased meshing clearance F 
5 0.9586 0.0281 0.0246 Normal gear T 
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6 0.9640 0.0764 0.0107 Normal gear T 
7 0.9214 0.0283 0.0467 Normal gear T 
8 0.9301 0.0153 0.0607 Normal gear T 
9 0.9742 0.0429 0.0117 Normal gear T 

10 0.8898 0.0288 0.0645 Normal gear T 
11 0.0289 0.9746 0.0010 Gear with reduced meshing clearance T 
12 0.0285 0.9748 0.0021 Gear with reduced meshing clearance T 
13 0.0316 0.9729 0.0015 Gear with reduced meshing clearance T 
14 0.0259 0.9772 0.0013 Gear with reduced meshing clearance T 
15 0.0277 0.9758 0.0010 Gear with reduced meshing clearance T 
16 0.0271 0.9765 0.0010 Gear with reduced meshing clearance T 
17 0.0269 0.9767 0.0014 Gear with reduced meshing clearance T 
18 0.0305 0.9775 0.0021 Gear with reduced meshing clearance T 
19 0.0238 0.9785 0.0011 Gear with reduced meshing clearance T 
20 0.0230 0.9786 0.0011 Gear with reduced meshing clearance T 
21 0.0478 0.0105 0.9691 Gear with increased meshing clearance T 
22 0.0423 0.0101 0.9737 Gear with increased meshing clearance T 
23 0.0420 0.0201 0.9739 Gear with increased meshing clearance T 
24 0.1796 0.0115 0.8468 Gear with increased meshing clearance T 
25 0.0420 0.0101 0.9745 Gear with increased meshing clearance T 
26 0.0411 0.0108 0.9738 Gear with increased meshing clearance T 
27 0.0006 0.0578 0.9323 Gear with increased meshing clearance T 
28 0.0420 0.0124 0.9731 Gear with increased meshing clearance T 
29 0.0013 0.0584 0.9361 Gear with increased meshing clearance T 
30 0.0056 0.0578 0.9324 Gear with increased meshing clearance T 
Note: Ideally, the recognition result of the normal gear is [1 0 0]; the recognition result of the gear with reduced 
meshing clearance is [0 1 0]; the recognition result of the gear with increased meshing clearance is [0 0 1]. 
Since it is impossible that the simulation results are equal to 0 or 1, their results need to be adjusted. The 
results below 0.25 are expressed as 0 and the results above 0.75 are expressed as 1.  

In this paper, a comparative experiment is carried out for the de-noising effect of fractional 
order transformation. When the feature signals of the above original data are extracted 
without FRWT for background noise elimination and then recognized by BPNN, the 
classification accuracy of gear type is only 78%. In addition, support vector machine 
method is selected to replace BPNN for gear fault pattern recognition. With the same 
number of samples, the classification accuracy of gear type can only reach 86.67%, as 
shown in Fig. 10.  
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Figure 10: Classification accuracy of gear type based on support vector machine 

Experimental results proved that the FRWT proposed in this paper could effectively extract 
useful signals reflecting the fault feature under a background condition filled with powerful 
noise. The BPNN can intelligently recognize gear fault types without the artificial 
manipulation. Combining FRWT and BPNN, the method can quickly achieve the gear fault 
detection. Furthermore, the gear quality can be checked according to the detection results. 

5 Conclusions 
This paper proposes a gear fault detection analysis method based on FRWT and BPNN. 
The FRWT method is applied to eliminate noise from the collected gear vibration signal, 
thus realizing the separation of the useful component of vibration signal from the 
background noise. A set of feature vectors are obtained by calculating the characteristic 
parameters for the de-noised signal, which are used in training and classification with the 
BPNN. The FRWT can extract useful signals to reflect the gear fault features and achieve 
good elimination effects on background noise. In addition, the automatic recognition of 
gear fault is realized through the clustering and classification of vibration signal vectors by 
the BPNN. Therefore, the gear vibration analysis method based on FRWT and BPNN is 
intelligent, efficient and accurate. 
In order to further improve the accuracy and efficiency of gear fault diagnosis, we will 
continue to do the following work: 1) Increase the number of training samples. It will obtain 
more prominent gear features, which improve the accuracy of intelligent detection. At the 
same time, increase the type of gear faults. It will improve the gear fault analysis and 
intelligent detection of various gear faults. On this basis, we will explore how to further 
reduce the computational complexity of the algorithm and improve the operation speed, 
which further improve the accuracy of the algorithm; 2) For practical applications, the key 
problems to be solved urgently are the location analysis of gear faults and the influence of 
gear fault size and load on the fault characteristics.  
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