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Abstract: This paper is devoted to the microstructure geometric modeling and mechanical 
properties computation of cancellous bone. The microstructure of the cancellous bone 
determines its mechanical properties and a precise geometric modeling of this structure is 
important to predict the material properties. Based on the microscopic observation, a new 
microstructural unit cell model is established by introducing the Schwarz surface in this 
paper. And this model is very close to the real microstructure and satisfies the main 
biological characteristics of cancellous bone. By using the unit cell model, the multiscale 
analysis method is newly applied to predict the mechanical properties of cancellous bone. 
The effective stiffness parameters are calculated by the up-scaling multi-scale analysis. 
And the distribution of microscopic stress in cancellous bone is determined through the 
down-scaling procedure. In addition, the effect of porosity on the stiffness parameters is 
also investigated. The predictive mechanical properties are in good agreement with the 
available experimental results, which verifies the applicability of the proposed unit cell 
model and the validness of the multiscale analysis method to predict the mechanical 
properties of cancellous bone.  
 
Keywords: Cancellous bone, microstructural modeling, multiscale analysis, stiffness 
parameters, stress distribution. 

1 Introduction 
Bone is a natural multifunctional biological material that presents a well-defined 
hierarchical structure. One of its important functions is to serve as a structural support for 
other tissues in the body [Hamed, Lee and Jasiuk (2010)]. As a connective tissue, bone is 
made of compact cortical bone, forming a hard outer layer, and porous cancellous bone, 
filling the interior spaces and ends of long bones [Arabnejad, Khanoki and Pasini (2013)]. 
In recent years, the investigation of the effective properties of cancellous bone is an 
important topic in biomechanics, and it is especially intensive as the requirement for 
clinical practice. For example, it was used to assess the effect on mechanical properties of 
bone diseases [Basaruddin, Takano and Nakano (2015)] and design the synthetic bone 
substitutes, especially is of importance in orthopedics for analyzing implants [Jaziri, 
Rahmoun, Naceur et al. (2012)].  
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To understand the mechanical and biological functions of the cancellous bone, it is 
essential to clarify the relationships between the mechanical properties and the structural 
changes at the microstructural level. This knowledge is important to analyze implants and 
manufacturing synthetic bone substitutes. In addition, it provides a guide in designs of 
novel artificial biomimetic materials for biomedical engineers [Hamed, Lee and Jasiuk 
(2010)]. For investigation of the cancellous bone properties, two kinds of approach have 
been developed, one is experimental methods, among which the dual X-ray absorptiometry 
and the quantitative ultrasonic technique are mostly used [Ilic, Hackl and Gilbert (2009)], 
and the other one concentrate upon developing a convenient mathematical model.  
Last two decades, the geometry structure of the unit cell in cancellous bone has advanced a 
lot. Due to complicated geometry structure of cancellous bone, different models of the unit 
cell were proposed, most of them were proposed by describing the cancellous bone using 
the terms “rod-like” or “plate-like” for a subjective classification of cancellous bone. The 
unit cell was described as a cubic form [Mcelhaney (1970)], and the relationship between 
bone density and Young's modulus of cancellous bone was predicted. The unit cell was 
assumed as a domain with spherical cavity [Beaupre and Hayes (1985)].The unit cell also 
have described as a cubic form with fixed side length [Ilic, Hackl and Gilbert (2009)], 
where the solid frame was modeled as a system of thin walls with variable thickness and 
width. A parameterized microstructural unit cell model was presented based on the 
Schwarz surface [Huang, Nie, Yang et al. (2017)]. The other kinds of unit cells were also 
used, such as Bar-Net model, Plate-Frame-Hole model, Honeybomb model, Plate-bar 
model, etc. 
In the aspect of numerical simulation, the rush development of computer technology gives 
a new chance to the bone research, the delicacy analysis and quantitative analysis can be 
easily implemented. Various analytical and computational models have been proposed to 
predict mechanical properties of bone at different structural scales. In fact, at the 
nanostructural level, bone is predominantly considered as a composite material composed 
of collagen matrix and reinforcing hydroxyapatite inclusions. Hosokawa [Hosokawa 
(2006)] used the finite-difference time-domain method to simulate biphasic materials using 
the purely viscoelastic theory and Biot’s theory. Ilic et al. [Ilic, Hackl and Gilbert (2009)] 
has established the application of multiscale finite element method to model cancellous 
bone as an alternative to Biot’s model. Podshivalov et al. [Podshivalov, Fischer and 
Bar-Yoseph (2011)] presented the 3D multiscale finite element analysis of trabecular bone, 
which can provide physicians a digital magnifying glass to facilitate continuous transition 
between macro- and micro-scales. Hamed [Hamed (2010)] predicted analytically the 
effective elastic constants of cortical bone by modeling its elastic response at different 
scales. Jaziri et al. [Jaziri, Rahmoun, Naceur et al. (2012)] proposed an elastoplastic 
damage coupled model for modelling of trabecular bone behavior, where the damage was 
carried out by limit analysis based on the MCK criterion. The effects of deteriorated 
trabecular bone structure on bone stiffness and strength were demonstrated by using 3D 
printing model [Barak and Black (2018)]. Mechanical properties of periodic 
interpenetrating phase composites were investigated to novel architected microstructures 
[Al-Ketan, Assad, Rashid et al. (2017)]. Sansalone et al. [Sansalone, Naili and Desceliers 
(2014)] developed a methodology which couple modeling and micromechanical 
homogenization to estimate the material properties of bone while taking into account the 
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uncertainties of the micro- and nanostructure of bone. Research on model parameters, 
sensitivity analysis has been applied to identify the key input parameters influencing the 
model output [Vu-Bac, Silani, Lahmer et al. (2015); Khader, Hamid, Zhuang et al. (2018)].  
The cancellous bone is a bio-composite material owning several levels of hierarchical 
organization, and the multiscale FE approach is a promising methodology for geometric 
modeling and mechanical analysis of cancellous bone. The homogenization of heterogeneous 
materials with the use of multi-scale technique is a common method, and multi-scale finite 
element analysis is essential for efficient and reliable mechanical analysis of bone structure. 
Many previous multi-scale methods utilize multi-step homogenization for analysis of bone 
micro-structure [Fritsch (2009); Nikolov and Raabe (2008)], but they only considered the 
first-order asymptotic expansions. The second-order two-scale (SOTS) analysis method was 
introduced [Cui, Shin and Wang (1999)] to predict the physical and mechanical properties of 
periodic composites [Cui and Yu (2006); Yang, Cui, Nie et al. (2012)]. Microstructural 
modeling and mechanical properties computation of three-dimensional 4-directional braided 
composites was studied [Yang, Cui, Nie et al. (2013)]. The numerical accuracy of asymptotic 
homogenization method and multiscale finite element method for periodic composite 
materials were discussed [Dong, Nie, Yang et al. (2016)]. With the second-order correctors, 
the microscopic fluctuation of physical and mechanical behaviors inside the materials can be 
captured more accurately [Yang, Cui and Nie (2013)]. Besides, other multi-scale methods 
[Budarapu, Gracie, Yang et al. (2014)] have also developed to study the mechanical 
properties and behaviors of different materials and structures. And these methods can be used 
in the cases of analyzing fracture of the bone in our coming work. 
However, the above mentioned unit cell models of cancellous bone are based on the 
assumption that all trabecular bones in the different position are either in the form of plates 
or rods. The microstructures in above models are simplified seriously and thus affect the 
accuracy of modeling results. Due to the actual structure of cancellous bone, the unit cell 
model structure of cancellous bone should have appropriate porosity and pore-structure. To 
this purpose, a periodic embedded Schwarz G surface (see Fig. 2) was introduced to 
describe the unit cell in this paper, since Schwarz G surface is more permeable, and it has a 
smooth surface to open the portion of the tissue which would facilitate the inflow of 
nutrients and the disposal of metabolic waste [Shin, Kim, Jeong et al. (2012)]. Thus, a new 
kind of unit cells, named as SG, meets the biological and mechanical requirements of 
cancellous bone, which is much better than other unit cell. 
In this paper, a new parameterized microstructural unit cell model is established, and 
Schwarz G surface truly simulates the microstructure of cancellous bone. The 
parameterized design for the unit cell model is implemented by employing the TETGEN 
software. Then based on the established model, the mechanical parameters are predicted by 
the multiscale asymptotic method. In addition, the effect of the porosity of cancellous bone 
on the elastic constants is also investigated. 
The remainder of this paper is outlined as follows. In Section 2, the parametric modeling 
process of the unit cell of cancellous bone is given. Section 3 present the formulation of 
the mechanical problem of cancellous bone by using multiscale asymptotic method, and 
the procedure of multiscale asymptotic method is also stated. Some numerical results about 
the mechanical properties of cancellous bone are given in Section 4. And Section 5 
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concludes this paper. 

2 Microstructure analysis and geometric modeling of cancellous bone 
2.1 Geometric modeling based on Schwarz surface  
Cancellous bone is considered as the two-phase composite material, as shown in Fig. 1. At 
the mesoscale, the size of cancellous bone is from hundred micrometres to several 
millimetres, or larger, depending on the bone size, consists of a porous network of 
trabeculae. The mechanical property of cancellous bone depends on its morphology, which 
has been found to vary for different skeletal sites. In the young, the trabecular network is 
plexiform and dense. During ageing, as the osteoblasts are continuously compressed, 
trabeculae become thinner, the shape of the trabecular bone gradually changes from a plate 
to a rod [Hamed (2012)]. In the simulation, we assume that the cancellous bone is a 
symmetrical pore structure, the surface of the structure is smooth, and the two parts of the 
material have dual connectivity, thus ensure convenient supply and delivery of nutrients. 
Hyperbolic surfaces have been considered because they commonly exist in natural 
structures, and have sufficient porosity, high pore interconnectivity and suitable pore size, 
thus they are very suitable to simulate the cancellous bone as a unit cell. Amongst various 
hyperbolic surfaces, minimal surfaces are researched mostly. If a minimal surface has 
space symmetry, it is periodic in three independent directions, these surfaces are known as 
Triply Periodic Minimal Surfaces (TPMS).  

 
Figure 1: Specimens of trabecular bone obtained from vertebrae [Schwen (2010)] 

It has been received much attentions in the recent biomaterial literatures and provide good 
analytic description of highly porous structures, however, there were few reports about the 
research on property of the cancellous bone used these TPMS.  
Generally, a periodic surface can be defined as [Yoo (2013)]:  
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K

k k k k
k

A pr h rφ π λ
=

= + =∑ 
                                       (1) 

Where r is the location vector in the Euclidean space, kh is the thk lattice vector in the 
reciprocal space, kA is the magnitude factor, kλ is the wavelength of periods, kp is the phase 
shift, and C  is a constant. Thus specific periodic structures can be constructed based on 
this implicit form. 
An important sub-class of TPMS is that partition space into two disjoint but intertwining 
regions, and these are bi-continuous. A variety of TPMS can be described, to the first order 
of approximation, by the following nodal equations [Yoo (2011)] the so-called Schwarz G 
surface can be defined as 

(x, y,z) sin 2 xcos2 sin 2 cos2 sin 2 cos2 =φ π π π π π π= + +y y z z x C                     (2) 

By the Schwarz G surface, the domain is taken to be a unit cell of the periodically repeated 
structure. As described in formula (1), TPMS is a surface for which the mean curvature Γ 
is zero at every point on the surface. And then Γ divides the unit cell into the two distinct 
spaces, which can be represented by the zero level set of φ .  
When (x, y,z) 0φ ≤ , we denote the region to be space 1, as shown in Fig. 2, and 

(x, y,z) 0φ ≥ , we denote the region to be space 2, respectively. 

 
Figure 2: Schematic diagram illustrating a TPMS that divides the unit cell into two 
sub-spaces 

There are many potential benefits of Schwarz G surface based pore architectures, so we 
take advantage of these newly proposed pore geometries as unit cell to simulate the 
cancellous bone. The following will describe beneficial properties provided by Schwarz G 
surface when to simulate the cancellous bone as an attractive candidate model. From the 
viewpoint of morphology, the unit cell generated by Schwarz G surface is very vividly to 
simulate the micro-structure of cancellous bone, as shown in Fig. 3. 
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(a)                         (b) 

Figure 3: Real cancellous bone and corresponding unit cell. (a) 3D rendering of a bone 
cube from the L4 vertebral body of 66 years old male with [Parkinson and Fazzalari 
(2013)], (b) SG unit cell of cancellous bone 

Remark 1. As a structural tissue, bone has an ideal combination of properties for its 
application: high stiffness, strength, fracture toughness, and light weight. Bone’s excellent 
mechanical properties are attributed to its composite hierarchical structure. We should 
consider these mechanical property and biological requirements for simulating the 
cancellous bone. From the viewpoint of mechanical requirements, some researched results 
imply that the Schwarz G surface is more stable structures [Shin (2012)], and the unit cell 
should consider sufficient mechanical strength and stiffness for the cancellous bone to 
support the growing tissue.  
Remark 2. From the viewpoint of biological requirements, the permeability of the unit cell 
should be high enough to provide superior diffusion which would facilitate the inflow of 
nutrients and the disposal of metabolic waste. The surface of the unit cell based on 
Schwarz G surface was sufficiently smooth which would be very beneficial to inflow and 
outflow of nutrients and metabolic waste. Micro-structure of the unit cell with a high 
porosity provides more space for cells to move into and begin to thrive, the unit cell based 
on Schwarz G surface has a large surface area which enables much more cell attachment 
and growth, and subsequently sufficient for tissue repair.  
The aforementioned advantages help to realize self-optimizing of bone tissue and the 
simply form of the imply equation which saves computing time. So it is an ideal choice to 
generate the unit cell of cancellous bone by Schwarz G surface. Here we named this kind 
of unit cell as SG unit cell. 

2.2 The porosity of cancellous bone 
An idealized microstructural model of cancellous bone should have appropriate porosity 
and the pore structure, and it can easily adjust pore size and porosity of the unit cell. Now, 
we describe the geometry model for constructing the Schwarz G surface with a given 
volume fraction, the adjusting porosity is simulated by changing parameter C  in formula 
(2). The relational between C  and porosity is shown in Fig. 4.  
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Figure 4: Funcion fittiong of the relationship between parameter C  and porosity 

We use the following fitting result of P against C  
=0.3495 +0.500P C                                                     (3)       

where C  is a parameter for adjusting porosity of unit cell based on the Schwarz G, P is 
porosity of the unit cell. Thus the porosity can be adjusted easily by changing parameter C
in formula (3). 
It is important that model parameters were determined expediently at numerical simulation. 
In this paper, model parameters are less and easy to determine, as an advantage due to 
extension and utilization of new geometry model. These structures will be useful to 
simulate bones with different ages and physiques. The different porous structures SG unit 
cells are shown in Fig. 5. The results corresponding to the unit cell with parameter C  in 
the interval -0.6-0.84 are considered. 

In Fig. 5, above row figures are three CT images of one health person and two patients. We 
can find thick cortices and dense trabecular network in the bone of young and healthy person 
(Fig. 5(a)). In contrast with it, the porosities of two diseased bones became larger and larger 
and the trabecular networks are getting looser and looser. In order to evaluate their mechanical 
properties, three SG unit cells are constructed by adjusting parameter C, which are arrayed 
below corresponding CT image. From Figs. 5(d) to 5(f), the porosities are decreasing 
gradually. These cells are very close to the microstructure of three kinds of cancellous bones, 
so they will be used for further calculation. From the viewpoint of morphology, SG unit cell is 
a promising structure to modelling the cancellous bone microstructure. 
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               (a)                   (b)                  (c) 

      
          (d)                    (e)                     (f)                     

Figure 5: Micro-CT images of iliac bone and SG unit cell (a) in a young and healthy bone, 
(b) in a postmenopausal osteoporosis, (c) in an idiopathic osteoporosis bone [Chappard 
(2008)]. (d-f) the microstructure of SG unit cell with different porosity, the value of 
parameterC is -0.3, 0.1, and 0.79 respectively 

3 Multiscale modeling of cancellous bones 
In this section, the numerical modeling of cancellous bones is performed by introducing 
the multiscale analysis method, and its related formulation and algorithm are presented for 
calculating the mechanical properties of cancellous bones.  
From the solid mechanics and previous microstructural modeling in Section 2, the 
elasticity problem of cancellous bone can be expressed as follows 

1
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 = ∈∂Ω
  ∂ ∂ + = ∈∂Ω  ∂ ∂ 

                          (4) 

where Ω  denotes the macroscopic domain cancellous bones, which is composed of ε
-size unit cells Y , as shown in Fig. 6; ( )xεu denotes the displacement vector and

( )( 1,2,3)ijhkC x i, j,h,kε = the elastic coefficients.  
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(a) (b) 

Figure 6: The cancellous bone structures (a) macrostructureΩ ; (b) unit cell Y  

According to the microstructure characterization of cancellous bone in Section 2, the 
cancellous bone is a complex porous structure with multi-scale character. Thus, the 
displacement field for elasticity problem of cancellous bone depends not only on its global 
behaviors, but also on microscopic configurations. It hence can be expressed as

( ) ( , )x x yε =u u , where y x Yε= ∈ denotes the local coordinate on the unit cell of cancellous 
bone and x  denotes the macroscopic coordinate, then ( ) ( )ijhk ijhkC x C yε = .  

From Yang et al. [Yang, Cui and Nie (2013)], the multiscale asymptotic expansion of the 
displacement can be expressed as  

( ) ( )
1 1 2

1 1 2

2
20 0

0
( ) ( )( ) ( ) x xx x y y

x x x
u uu u N Nε

α α α
α α α

ε ε∂ ∂
= + + +

∂ ∂ ∂


                            (5) 

where 0 ( )xu is the macroscopic homogenized displacement defined on Ω , 
1
( )yNα and

1 2
( )yNα α are matrix-valued local cell functions defined on the unit cell Y .  

Respecting the chain rule as 
1

i i ix x yε
∂ ∂ ∂

→ +
∂ ∂ ∂

                                                        (6) 

and substituting (5) into (4) and matching terms of the same order of ε , we obtain that  
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And a series of equations can be obtained by equating the coefficients of the same order of
ε  for the above equations. And based on the theory of partial differential equations, the 
control equations for

1
( )yαN ,

1 2
( )yα αN  and 0 ( )xu  can be determined successively. 

3.1 Effective material properties model 

1 1( ) ( , 1,2,3)m y mα α =N  satisfies the following elliptic equation 
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where  
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From
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following model 

1

1

1

( )( )1( )
2

1ˆ ( ) h khmk
ijhk ijhk ijmY

m

yyC C y C dy y
Y y y

α
α

α

  ∂∂
 = + +   ∂ ∂  

∫
NN                         (9) 

And then the homogenized problem for the macroscopic effective displacement can be 
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defined as follows 
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3.2 Microscopic stress computational model 
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In actual engineering calculation, the multiscale asymptotic expansion of the displacement 
can be taken as 
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Then, the strains inside the structureΩ can be calculated by the following formula  
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And from Hooke’s law, the stresses insideΩ are calculated by 
( , ) ( ) ( , )ij ijhk hkx y C y x yσ ε=   (14)                                                   

Remark 3. Substituting ,2( ) ( )x xε ε−u u into the original problem (4) and considering the 
chain rule (6), it yields  
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− + − =   ∂ ∂ ∂  
             (15) 

It can be concluded from (15) that the multiscale solution (12) are equivalent to exact 
solutions of problem (4) with order ( )O ε  in nearly pointwise sense. In fact, the solution 

,2 ( )xεu  satisfies the stress equilibrium equation nearly anywhere inside the structures in 
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pointwise sense and thus it can offer satisfactory local stress state, which is very important 
in the practical engineering computation. 

3.3 Computational implement of multiscale method 
3.3.1 Finite element computation of effective material parameters 

The FE solutions of cell functions 
1 1( )( 1,2,3)N yα α =  can be obtained by solving the 

following FE virtual work equation on unit cell Y  which is equivalent to (8) 
1 1

1 1 1

1

( ) ( )1( ) ( ) , ( )
2

h h
km hm h

ijhk ijmY Y
h k j j

y y
C y dy C y dy V Y

y y y y
α α

α
υ υ υ

 ∂ ∂ ∂ ∂
+ = − ∀ ∈  ∂ ∂ ∂ ∂ 

∫ ∫
N N             (16) 

where 1 1
0( ) ( )hV Y H Y⊆  denotes the FE space of 1-square Y , Y  is partitioned into FE set 

1 ( )hV Y  of finite elements, 1h  is the mesh size. Then, the FE approximation 1ˆ ( )h
ijhkC y  of 

homogenized elastic coefficients can be evaluated as follows 

1

1

11
1

1

( )(1 1ˆ ( ) ( ) ( )
2

) hh
h khmh

ijhk ijhk
k

ijm
m

Y
C y C y y dz

Y
yyC

y y
α

α
α

 ∂∂
+  

 
 = +
 
 ∂ ∂

∫
NN                     (17) 

Similar to (16), local cell problems (11) can be solved to obtain 1

1 2
( )hN yα α .  

3.3.2 Finite element computation of micro and macro stresses 
The FE solution of the homogenized problem (10) is the solution of following FE virtual 
work equations associated with homogenized coefficient (9) onΩ  

0 0
01

2

0 0( ) ( )1ˆ ( ) ( ) , ( )
2

h h
hh h k

ijhk i i
k h j

u x u x wC dx f x wdx p x wdS w V
x x xΩ Ω Γ

 ∂ ∂ ∂
+ = + ∀ ∈ Ω ∂ ∂ ∂ 

∫ ∫ ∫            (18) 

where 0hV denotes the FE space with mesh size 0h on homogenized domainΩ . 

Finally, according to (13) and applying the FE solutions of microscale and macroscale 
problems, the multiscale FE approximation solutions of stresses on the macroscale and 
microscale can be obtained as follows 

0 0
1

0 0
0 ( ) ( )1ˆ( , ) ( )

2

h h
h h k

ij ijhk
k h

u x u xx y C y
x x

σ
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3.3.3 The flowchart of the multiscale method  
The flow chart of the algorithm for the multiscale method for prediction of the mechanical 
properties of cancellous bone is given in Tab. 1. 

Table 1: Flowchart for computing the mechanical properties of cancellous bone 

Input ijhkC , Porosity, elastic properties of cancellous bone 

① Generate the geometrical structure of the microscopic cell Y , and then 
partition it into finite element meshes (Fig. 7). 

② Compute the FE solutions of 
1
( )N yα  according to the problem (8) with 

given material properties based on the FE meshes of unit cellY . And then 
evaluate the effective homogenized coefficient ˆ

ijhkC by the formula (9). 

③ According to the homogenized parameters obtained in step ② , the 
homogenized solution 0 ( )xu is obtained by solving (10) on homogenized 
domain Ω . 

④ Using the same meshes as in Step 1, we evaluate
1 2

( )N yα α by solving the cell 

problems (11) on unit cellY . 
⑤ Compute the high-order partial derivatives of 0 ( )xu by the average technique 

on relative elements. 
⑥ From (12), the multiscale solution of displacement field is evaluated. Further, 

the distributions of strain and stress fields in the microscale can be obtained 
from (13) and (14), respectively.  

Output ˆ
ijhkC and the stresses 

 

 
(a)                            (b) 

Figure 7: FE meshes of the unit cell of cancellous bone. The meshes of (a) Solid phase and 
(b) the entire unit cell 
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Remark 4. Due to the complexity of the geometry model of cancellous bone, the precision 
of the multiscale analysis method is greatly influenced by the quality of the FE meshes. In 
this paper, the TETGEN software package is used to generate the FE meshes of the unit 
cell. The geometry model of the unit cell generated by the MATLAB code is imported into 
the TETGEN software, and then the unit cell with the porosity of 21% was meshed by 
112413 tetrahedral elements as shown in Fig. 7. 

4 Numerical examples  
In this section, some numerical examples are given to show the effectiveness of the 
numerical method for predicting the mechanical propertied of cancellous bone. 
Mechanical properties and volume fractions of cancellous bone components play an 
important role in its overall behavior. Cancellous bone can be seen as a composite of 
trabecular bone and bone marrow, and their material properties used in this section are 
summarized in Tab. 2. Moreover, all components are assumed to have linear elastic and 
isotropic behavior. We consider the porosity within the scope of 0.3~0.8 and it can be 
controlled by only one parameter, as showed in many literature, it needs more parameters 
or different unit cells model in order to investigate the extensive porosity scope, this is one 
of the obvious advantages of the newly used unit cell. 

Table 2: Properties of bone components selected [Hamed, Lee and Jasiuk (2010)] 

Material     Elastic modulus (GPa)     Poission’s ratio     Volume fraction (%) 
Trabecular bone   22                     0.32          30~80 
Bone marrow     2.3                     0.45 

4.1 Effective stiffness parameters  
Our analysis has shown significant linear correlation between volume fraction ratio and the 
Young’s modulus, as shown in Fig. 8. Dependence of Young’s modulus and shear modulus 
on porosity is a smooth, monotonically decreasing function, while Poisson’s ratio shows 
opposite behavior and it increases with increasing porosity. Young’s modulus takes the 
values in the interval 0.753-3.029 Gpa, the shear modulus 384.38-1381.32 Gpa and Poisson’s 
ratio 0.256-0.274 for the porosity from 0.290-0.795. The results mentioned above show that 
the effective mechanical properties of the cancellous are within the range of macroscopic 
reported in literature [Ilic, Hackl and Gilbert (2009); Hayes (1985)]. Compared previous 
studies to idealized cancellous bone models, these results are reasonable.  
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(a)                                  (b) 

 
 (c)                                 (d) 

Figure 8: Change of effcetive material parameters versus porosity for the biphasic material. 
(a) Young’s modulus(b) Poisson’s ratio (c) shear modulus (d) bulk modulus  

Besides, results of SG unit cell are compared with those obtained by different analytical 
methods, including Voight-Reuss bounds (VR) and Hashin-Shtrikman bounds (HS), 
Young’s modulus, shear modulus, Poisson’s ratio and bulk modulus are evaluated 
respectively, and their variation curves are shown in Fig. 8. It is found that mechanical 
properties are located between the upper bound and the lower bound of the HS and the VR 
at entire interval. All the results show that SG unit cell is valid to predict the effective 
mechanical properties of cancellous bone. 
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Table 3: Comparison of modelling results for effective material properties of cancellous 
bone obtained by SG unit cell (SGM) and document [Podshivalov, Fischer and Yoseph 
(2011)] (DOC 1) [Helgason, Schileo, Taddei et al. (2008)] (DOC 2) 

Model  Porosity      11E     22E    33E      12ν     31ν     23ν       23G    31G    

12G  

SGM   0.273      10.977  10.967  11.008    0.277   0.276    0.276      4.458  4.462   
4.459 
DOC1  0.273       13.1   13.2   12.6       0.289   0.275    0.273      5.0     5.1     
5.1 
SGM   0.453       6.788  6.786  6.833      0.259   0.257    0.257      2.918  2.921   
2.919 
DOC1   0.453      7.8     7.4    7.8       0.266   0.245    0.218      2.9     2.9     
2.9 
SGM    0.571      4.688  4.679  4.716      0.256   0.254    0.254      2.104  2.106   
2.106 
DOC1   0.571      5.0     4.4    3.9       0.263   0.229    0.200      1.7     1.8     
1.8 
SGM    0.630      3.524  3.519  3.555      0.257   0.255    0.255      1.636  1.638   
1.638 
DOC2   0.630      3.739   -----   -----        -----   -----   -----          -----   -----   
----- 
DOC1   0.630      3.8     3.3    2.8       0.267   0.222    0.200      1.3     1.3     
1.3 
SGM    0.658      3.009  3.004  3.028      0.258   0.257    0.256      1.417   
1.479   1.418 
DOC2   0.658      3.325   -----   -----        -----   -----   -----          -----   -----   
----- 
DOC1   0.658      3.2     2.8    2.2       0.269   0.222    0.196      1.1     1.1     
1.1 
SGM    0.709      2.503  2.500  2.523      0.262   0.259    0.259      1.203   
1.202   1.203 
DOC2   0.709      2.614   -----   -----        -----   -----   -----          -----   -----   
----- 
SGM    0.745      2.043  2.037  2.063      0.247   0.243    0.243      1.013   
1.015   1.015 
DOC2   0.745      2.147  -----   -----         -----   -----   -----          -----   -----   
----- 
SGM    0.799      1.425  1.419  1.436      0.274   0.271    0.271      0.717   
0.717   0.715 
DOC2   0.799      1.506   -----   -----        -----   -----    -----          -----   
-----   ----- 

 



 
 
 
Microstructural Modeling and Multiscale Mechanical Properties Analysis           261 

According to the proposed algorithm, the effective material properties are calculated for 
geometric models and it presented as a function of porosity (0.273-0.799) in Tab. 3. 
Comparing the SGM results with the experimental data [Podshivalov, Fischer and Yoseph. 
(2011)], the results (porosity from 0.3 to 0.6) agree with the results obtained by 
[Podshivalov, Fischer and Bar-Yoseph (2011)]. In addition, Young’ modulus are compared 
with the experimental data [Helgason, Schileo, Taddei et al. (2008)], there is a good 
agreement between experimental data and SGM results. Compared previous studies to 
idealized cancellous bone models, to achieve the same calculation results, the method used 
in this paper is simple to model and more computationally efficient. The results 
demonstrate that the present model is applicable and the multiscale asymptotic method is 
effective to predict the mechanical properties of the cancellous bone. 
The effective material parameters were mostly investigated as pure skeleton structure 
[Zysset (2003); Hoffler, Kozloff, Zysset et al. (2000); Zysset, Guo, Hoffler et al. (1999)]. 
For the purpose of comparison, the calculations are repeated for the unit cell without bone 
marrow. As shown in Fig. 9, the maximum relative error is less than about 0.025%. The 
results show that the bone marrow does not significantly influence to the values of 
mechanical properties of cancellous bone, thus, the bone marrow can be neglected during 
modeling and computing, but it may affect mechanical property through bone remodeling.  

  
Figure 9: Relative error of material parameters over porosity between biphasic material 
and the dry skeleton 

4.2 Microscopic stress distributions 
In order to calculate the stress in the microstructure, a cancellous bone, which is cubic 
structure with side length of 3 cm, is investigated. The material properties are listed in Tab. 
2 and the porosity of cancellous bone is 53%. The cubic structure is clamped on its bottom 
surface and exposed to a compressive force which is 75N on the top surface, as shown in 
Fig. 10. Fig. 11 shows the maximum shear stress distributions in the cells at z=0.8 cm and 
2.2cm, respectively. It can be found that the stresses in cells have a marked fluctuation. As 
for the second-order correctors of the multiscale asymptotic method, the microscopic 
fluctuation of physical and mechanical behaviors inside the bone can be captured more 
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accurately, this method can be used in the cases of analyzing fracture of the bone in the 
coming work. The other significant relationships between density and the elastic properties 
can be computed by SG unit cell, it is important to bone remodeling. 

 
Figure 10: Compression test simulation for the cancellous bone structure 

       
(a) unit cell 1                                (b) unit cell 2 

Figure 11: Maximum shear stress in local unit cell of cancellous bone 

5 Conclusions 
In this paper, a new microstructural unit cell model is established and the multiscale 
analysis method is used to predict the mechanical properties of cancellous bone, including 
the stiffness parameters and stress distributions. The geometric model of unit cell is 
established by introducing Schwarz surface and implemented by the MATLAB code. And 
this unit model truly simulates the microstructure of cancellous bone. The pores in the unit 
cell are connected and the porosity can range from 30% to 80%, which satisfies the main 
biological characteristics of cancellous bone. Based on the unit cell model, Poisson’s ratio, 
shear modulus and elastic modulus, as well as the microscopic stress distribution of 
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cancellous bone are predicted by the multiscale analysis method. The good agreement 
between the calculated results and experimental data demonstrates that the established unit 
cell model is applicable and the multiscale analysis method is valid to predict the 
mechanical properties of cancellous bone. The results also show that the multiscale method 
can accurately capture the microscopic characteristics of cancellous bone. Moreover, the 
relation between the porosity and elastic constants is studied, and the results show that it is 
an important factor affecting the mechanical properties. 
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