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Abstract: Fluctuated loadings from currents, waves and sea ground motions are observed 
on offshore steel pipelines, and they will result in small cracks to propagate continuously 
and cause unexpected damage to offshore/geotechnical infrastructures. In spite of the 
availability of efficient techniques and high-power computers for solving crack problems, 
investigations on the fatigue life of offshore pipelines with 3D interacting cracks are still 
rarely found in open literature. In the current study, systematic numerical investigations 
are performed on fatigue crack growth behaviours of offshore pipelines containing 
coplanar and non-coplanar cracks. Extended finite element method (XFEM) is adopted to 
simulate the fatigue crack growth. The qualitative validations of numerical results are 
made for certain cases with available experimental results. Parametric studies are 
conducted to investigate the influences of various important parameters on fatigue crack 
growth. The results will be helpful to assess the fatigue behaviours of steel pipeline with 
3D interacting cracks. 
 
Keywords: Fatigue crack growth, steel pipeline, coplanar cracks, non-coplanar 
cracks, XFEM. 

1 Introduction 
Multiple cracks are often observed in various cases of aging engineering structures such 
as pressure vessels and pipelines. The coalescence and interaction of multiple cracks pose 
a significant challenge to the integrity of the structures, and lead to various types of 
fracture failures, such as stress corrosion cracking, fatigue and corrosion fatigue 
[Soboyejo, Knottm, Walsh et al. (1990); Wang, Atkinson, Akid et al. (1996); Fang, 
Eslami, Kania et al. (2009); Luo and Wang (2009); Luo, Li and Xiao (2014); Zhao, Zhu 
and Luo (2016)]. Based on the existing standard and codes like ASME [ASME (2013)] 
and BS7910 (BSI 2005), those multiple small cracks are treated as an equivalent single 
large one through a certain combination rules. However, when the distance between any 
two adjacent cracks decreases, the interaction between these two cracks becomes 
increasingly significant and considerably affects the cracks’ fracture behaviour. A 
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simplified procedure produces unreliable and over-conservative predictions of the 
cracked component’s fatigue life [Frise and Bell (1992); Zhang, Ariffin, Xiao et al. 
(2015)]. Therefore, a reasonable and accurate approach is deemed desirable to evaluate 
the fatigue behaviours of multiple cracks. 
For the fatigue analysis, the crack growth can be predicted by the established empirical 
relationship between the crack extension and stress intensity factor [Anderson (2005)]. 
Meanwhile, a large volume of the research work has been put on the crack growth 
modelling. For instance, the cracking particle method was proposed to simulate the crack 
growth and crack branching by dividing the crack into many particles [Rabczuk and 
Belytschko (2004, 2007); Rabczuk, Zi, Bordas et al. (2010)]. Another theoretical analysis 
of the crack growth is dual-horizon peridynamics technique [Areias, Rabczuk and Dias-
da-Costa (2013); Areias, Msekh and Rabczuk (2016); Areias, Msekh and Rabczuk (2016); 
Ren, Zhuang, Cai et al. (2016); Areias and Rabczuk (2017); Ren, Zhuang and Rabczuk 
(2017); Areias, Reinoso, Camanho et al. (2018)], which was used to analyze the crack 
pattern of random point distribution and applicable for the multiple materials issue in 
peridynamics. These two numerical models are only suitable for the small computational 
domain and simple 3D geometric structures. The phase-field model (PFM) was proposed 
recently to model the crack propagation, which could be coupled into COMSOL to be 
solved as a whole system [Zhou, Rabczuk and Zhuang (2018); Zhou, Zhuang and 
Rabczuk (2018); Zhou, Zhuang, Zhu et al. (2018)]. In addition, the extended finite 
element method (XFEM) was proposed to solve the computational difficulties in crack 
growth [Moës, Dolbow and Belytschko (1999); Dolbow, Moës and Belytschko (2000)]. 
In XFEM, a discontinuous (jump) function and the near-tip asymptotic functions are 
introduced and incorporated into the finite element approximation [Dolbow, Moës and 
Belytschko (2000); Khoei (2015)]. XFEM is adopted in this study since it is able to 
characterize crack extension freely in finite element methods without re-meshing as well 
as to simulate the fatigue process of the complicated structures. 
Recently, taking the interaction of multiple cracks into account, many researches 
presented the fatigue assessment procedures of the multiple cracks using the revised 
stress intensity factor [Kamaya (2008b); Konosu and Kasahara (2012); Surendran, Palani 
and Nagesh (2012); Kotousov and Chang (2015); Zhang, Fan and Xiao (2016); Ji, Robert, 
Zhang et al. (2017)]. With this approach, the interaction factor of multiple cracks was 
defined through the crack parameters [Moussa, Bell and Tan (1999)]. Based on the 
interaction of multiple cracks and modified stress intensity factor, a failure assessment 
diagram was proposed for multiple surface flaws subject to limited loadings [Konosu and 
Kasahara (2012); Zhang, Ariffin, Xiao et al. (2015)].  
In this paper, a systematic study is carried out to investigate the fatigue crack initiation and 
fatigue crack growth rate of steel pipeline containing interacting cracks. With respect to the 
cracks position, the coplanar and non-coplanar cracks are considered to simulate the 
practical scenarios. As the surface cracks tend to be semi-elliptical under normal loadings 
[Mahmoud (1988); Lin and Smith (1999)], the semi-elliptical surface crack and elliptical 
embedded crack are adopted for the interacting cracks. The qualitative validations of the 
numerical results are made for certain cases with available experimental results. 
Considering of the significance of the parameter sensitivity in the computational analysis 
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[Vu-Bac, Lahmer, Zhuang et al. (2016); Hamdia, Silani, Zhuang et al. (2017); Hamdia, 
Ghasemi, Zhuang et al. (2018)], parametric studies are conducted for the geometrical 
configuration of the interacting cracks. The discussion on the effects of the important 
parameters on the fatigue behaivours is given based on the parametric studies.  

2 Numerical model 
2.1 Multiple crack configuration in steel pipeline 
3D FE simulations are conducted for circumferentially flawed pipeline with multiple cracks. 
The outer diameter D and the wall thickness t are taken to be 400 mm and 18 mm, 
respectively. Since the fatigue tension loading is applied on the pipeline and the interacting 
cracks are located in the center section of the pipeline, the length of the pipeline L used in all 
simulations is two times of the outer diameter. It is a compromise value that will promote the 
simulation and not induce a significant discrepancy on the computational results.  
Two 3D interacting cracks are considered in this study: one is a semi-elliptical external 
surface crack and the other one is an elliptical embedded crack in the section profile of 
pipeline, illustrated in Fig. 1(a). For the ease of discussion, the cracks configuration along 
the wall thickness is presented in Fig. 1(b). As shown, the separation distance in the 
radial direction is denoted by X, and the vertical distance is denoted by Y. According to 
the studies made by Konosu et al. [Konosu and Kasahara (2012)], the maximum value of 
normalized separation distance for  𝑋𝑋

2𝑎𝑎
  and  𝑌𝑌

2𝑎𝑎
  is 0.2, which accounts for a considerable 

cracks interaction.  
Considering that, a crack size of 𝑎𝑎=3.5 mm and a separation distance of 𝑋𝑋=2 mm Y=1 
mm is used as the nominal values. Two variations of X are 1 mm and 3 mm due to the 
limited wall thickness, while the other values of Y are taken as 0 and 2 mm. It should be 
noted that if Y is equal to 0 mm, it becomes the coplanar cracks problem.  

          
(a)                                                             (b) 

 
(c) 

Figure 1: (a) Side view of the two interacting cracks, (b) Non-coplanar cracks 
configuration along the wall thickness t and (c) Notations of the crack tips 
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Fig. 1(c) shows the notations of crack tips involved in the simulation. Crack tip A is 
denoted for the semi-elliptical surface crack tip, while the crack tip B and C are the left 
and right crack tips of the elliptical embedded crack, respectively. These three crack tips 
are of the key interest since the previous studies [Raju and Newman Jr (1979); Zhang, 
Fan, Xiao et al. (2016)] showed that these positions had high SIF along the crack front. 
The primary concern of this study is to investigate the interaction between the coplanar 
and no-coplanar cracks, therefore, for simplicity, the parameter a represents the crack 
depth of the semi-elliptical surface crack as well as the half crack height of the elliptical 
embedded crack. In the meanwhile, the value of the aspect ratio is considered as 3 for 
both surface and embedded cracks.  

2.2 XFEM and fatigue model 
In XFEM, which is different from the conventional FEM, the revision of the 
displacement formulation is done by introducing two additional enrichment functions. In 
order to describe the crack model, two parameters are used in the XFEM domain. They 
are ϕ  and ψ  which represent the crack face function and crack front function, 
respectively. It is noted that the initial crack surface is denoted by 0ϕ = . The crack front 
is prescribed by the intersection of these two perpendicular planes -ϕ  and ψ .  
The Paris law as one of classic fatigue assessment models is employed in ABAQUS for 
the fatigue crack growth. The fatigue crack growth rate /da dN is written as a function 
of the relative fracture energy release rate G∆ . More details can be referred to ABAQUS 
[ABAQUS (2014); Zhang, Xiao and Luo (2017)].  

2.3 Material properties 
The steel material selected is API 5L Grade X65. The value of Young’s modulus E is 209 
GPa and the value of Poisson’s ratio is 0.3 in this study. For the damage model, the value 
of the maximum principal stress (MPS) is taken as 667 MPa. Moreover, as stated in our 
previous study [Zhang, Xiao and Luo (2017)], four material-property parameters are 
involved in the fatigue model. These material constants 1c , 2c , 3c and 4c are given as 0.5, 
-0.1, 1.1421e-7 and 3.034, respectively.  
Due to cyclic loadings, multiple cracks propagate towards each other, and coalesce into 
one for coplanar case or overlap for non-coplanar case. And hence, a finer mesh is 
required for the cracked region in order to capture the fracture response ahead of the 
crack tips. Since the separation distance X is limited for the coplanar cracks, the smallest 
element size of 30.25 0.25 0.25mm× × is adopted. Fig. 2 shows the meshing for the two 
interacting cracks, the finer mesh grids are observed for the crack front. The similar 
meshing pattern is used for all coplanar and non-coplanar cases.  
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Figure 2: Typical meshing for the two interacting cracks with smallest element size 

Since the high cyclic fatigue analysis is performed in this study, only the elastic stress 
range is considered for the cyclic loadings. Consequently, the maximum tension load is 
taken as 250 MPa. To distinguish the different cyclic loading ranges, two values of the 
stress ratio min max/R σ σ=  are 0.1 and 0.5 used in our investigation, where σmin and 
σmax are the minimum and the maximum tension applied, respectively. The setup of 
boundary conditions and loading can be referred to our previous work [Zhang, Xiao and 
Luo (2017)]. 

3 Results and discussion  
3.1 Validations with available experimental studies 
3.1.1 Fatigue crack growth of two coplanar cracks 
Fig. 3 shows the scenarios of the crack front progress in PSILSM mode at the 
corresponding loading cycles after the two coplanar cracks coalesced. The level set 
contour plot of PSILSM represents the crack front. The crack growth is denoted by the 
red colour.  

   
2.4 × 105 cycles 2.6 × 105 cycles 2.8 × 105 cycles 

Figure 3: Crack propagations of two coplanar cracks in the re-entrant region for X=2 mm 
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It is observed in this figure that the two coplanar cracks coalesce at 52.4 10×  cycles. The 
cyclic loading is still applied on the steel pipeline. When it is at 52.8 10×  cycles, the crack 
growth length in the re-entrant region reaches up to 6 mm, around 3 times the separation 
distance X (X=2 mm). It illustrates that a relatively fast crack growth rate is observed 
after the two cracks’ coalescence. This similar trend is found in the other simulation runs 
for the two coplanar cracks. The observation in crack growth rate is consistent with the 
experimental result [Kamaya (2008a)] where it stated that there was an expedited crack 
growth rate in the re-entrant section.  

3.1.2 Fatigue crack growth of two non-coplanar cracks 
The two non-coplanar cracks exhibit a different fatigue behavior, compared with the 
coplanar cracks. Due to the cracks interaction, the inner crack tips propagate towards 
each other and the outer crack tips propagate outwards straightly.  

 
(a) 

   
(b) 

Figure 4: Crack propagation profiles of the two non-coplanar cracks at (a) Y=1 mm and  
(b) Y=2 mm 
The similar fatigue crack growth trend is observed in all the non-coplanar simulations. 
Fig. 4 shows two typical crack propagation profiles at Y=1 mm and Y=2 mm, respectively. 
The initial crack size is denoted by the bold black line. The curved black lines represent 
the crack propagation path during simulation. It is obvious that crack tip A propagates 
slightly upwards and crack tip B propagates downwards close to crack tip A. Moreover, 
due to the strong crack interaction, the crack propagation rate at crack tip A and B is 
faster than that at crack tip C.   
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(a)                                                          (b)  

Figure 5: Crack profiles of the embedded crack by the plot of PSILSM: (a) At 6 × 105  
cycles for Y=1 mm and (b) At 5× 105 cycles for Y=2 mm 

Furthermore, it is found that the crack front of the semi-elliptical crack is distorted during 
the crack propagation, due to the cracks interaction. Two examples from the non-coplanar 
cases are presented in Fig. 5 which shows the crack profiles of the embedded crack for 
Y=1 mm and Y=2 mm, respectively. First of all, a large amount of crack extension is 
observed along the crack height direction, while little crack extension takes place along 
the crack length direction. Second observation is that the crack tip B propagates faster 
than crack tip C, as expected. Lastly, it is noticed that at crack tip B, the propagation 
appears to stop around the midsection between the surface and the embedded crack. As 
for crack tip C, it is propagating normally. All the observations are in good agreement 
with Kamaya’s experimental results [Kamaya (2008a)]. It demonstrates that our 
numerical simulation results are logic and reasonable, and our investigation can produce 
reliable results in predicting the fatigue propagations of interacting cracks. 

3.2 Parametric studies on fatigue crack growth behaviours 
Many research studies on the stress intensity factor along the crack front of two 
interacting cracks show that there is a strong dependency on the relative crack positions 
[Soboyejo, Knottm, Walsh et al. (1990); Saxena (2011); Konosu and Kasahara (2012); 
Singh, Mishra and Bhattacharya (2012)]. In our current study, three sets of simulation 
runs are conducted to investigate the fatigue behaviours by varying the two cracks’ 
relative positions in the thickness X and vertical Y direction and the stress ratio R. They 
are listed in Tab. 1.  

Table 1: Values of each parameters used in parametric study 

Parameter Value 

X (mm) 1, 2, 3 

Y (mm) 0, 1, 2 

R 0.1, 0.5 
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3.2.1 Varying crack positions 
The variations of crack extension with the number of cycles at three crack tips are given in 
Fig. 6 and Fig. 7 for Y=0 mm and Y=2 mm, respectively. In the both figures, all plots show 
that the closer the two cracks in X direction, the faster the crack initiation and propagation. 

 
(a)                                                             (b) 

 
(c) 

Figure 6: Crack extensions for different X values at (a) crack tip A, (b) crack tip B and (c)  
crack tip C, when Y=0 mm is considered 

Both crack tip A and crack tip B in Fig. 6 display a similar trend in propagation rate for 
X=2 mm and X=3 mm, indicating that they have close interaction factor values. At X=1 
mm, i.e., the two cracks are very near each other, the interaction factor is considerably 
higher than the others, resulting in much faster crack propagation. As for crack tip C, the 
results from X=2 mm and X=3 mm show almost the same propagation curves. It is noted 
that there is no result for X=1 mm due to the fast coalescence of crack tip A and B. It 
indicates that the variation of X separation distance has little influence on the crack 
behaviors of crack tip C when the coplanar cracks are considered.  
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(a)                                                             (b) 

 

 
(c) 

Figure 7: Crack extensions for different X values at (a) crack tip A, (b) crack tip B and (c)  
crack tip C, when Y=2 mm is considered 

The crack propagations at crack tip A and B increase gradually with the decreasing X 
separation distance, for the case of non-coplanar cracks with Y=2 mm as shown in Fig. 7. 
The curves for X=1 mm and X=2 mm are closer compared with the curve of X=3 mm 
which has a smaller crack propagation rate. However, at crack tip C, the number of cycles 
for crack initiation are nearly the same for the three different X values. For the crack 
propagation at crack tip C, the curve of X=1 mm has a relatively higher propagation rate 
than the other two.  

3.2.2 Varying crack positions 
To further study the effect of the vertical separation distance Y values on the fatigue crack 
growth behaviours, the crack tip separation distance X (the horizontal distance between 
crack tip A and B) with the number of cycles are plotted for three different Y values in 
Fig. 8. The result with the initial value X=2 mm is presented in Fig. 8(a). It should be 
noted that for Y=0 mm, i.e., for the two coplanar cracks case, the curve stops at X=0 mm 
when the two cracks coalesced. For Y=1 and 2 mm, the X value can be negative as the 
two non-coplanar cracks are not merging together (but overlapping for top view). At the 
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beginning stage, the crack propagation of the two coplanar cracks is slower than the non-
coplanar cases. Only when the cracks are going to coalesce, the propagation rate becomes 
higher than the other two cases. Nevertheless, the two curves of the non-coplanar cases 
are close to each other before the crack extension reaches 1.5 mm, indicating that they 
have a similar propagation rate at this stage for Y=1 mm and Y=2 mm. After that, the case 
of Y=1 mm has a higher propagation rate, compared with the case of Y=2 mm.  
Fig. 8(b) shows the results of the initial value X=3 mm for different Y values. Before the 
two cracks overlap, i.e., X>0, the case of Y=2 mm has the highest propagation rate, while 
the smallest propagation rate is observed for the case of Y=0 mm (coplanar cracks case). 
However, for X<0, two non-coplanar cracks in the case of Y=2 mm propagate slower than 
that in the case of Y=1 mm.  

 
(a)                                                              (b) 

Figure 8: Variation of the X value with the number of cycles for different Y values at (a)  
The initial value X=2 mm and (b) The initial value X=3 mm 

From the results of the current subsection, it is observed that at various Y values, when the 
two cracks are getting closer, it does not necessarily result in faster crack propagation. One 
study [Konosu and Kasahara (2012)] on the multiple cracks interaction factor found that the 
peak of interaction factor does not locate at the Y=0 mm when plotted with varying Y value. 
The further the cracks in separation distance-X, the peak interaction factor is located at a 
higher separation distance Y. Moreover, it was also observed from [ Surendran, Palani and 
Nagesh (2012)] that the peak position of the interaction factor shifted further away from 
Y=0 mm as the X value increases. All these studies could explain why the case of Y=2 mm 
has a slightly higher propagation rate before the two non-coplanar cracks’ overlapping from 
our current results shown. Overall, the fatigue crack growth results obtained in this study 
are in good agreement with other research works on multiple cracks.   

3.2.3 Effect of stress ratio 
Two values of the stress ratios R=0.1 and R=0.5 are considered for comparisons. Fig. 9 
presents the crack extensions of the interacting crack tips under these two stress ratio 
conditions. As for the two coplanar cracks shown in Fig. 9(a), it is observed that by 
increasing the stress ratio from 0.1 to 0.5, the number of cycles required is nearly doubled 
for the same amount of propagation at both crack tip A and B. The similar trend is also 
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found for the two non-coplanar cracks given in Fig. 9(b). Also, the two curves of R=0.1 
and R=0.5 have the same pattern in the propagation rate. The observation from Fig. 9 
implies that the smaller stress ratio will induce a faster fatigue crack growth. If the stress 
ratio is decreased from 0.5 to 0.1, the number of cycles required to extend a certain value 
of crack size will be significantly reduced by 50%.  

         
(a)                                                                   (b) 

Figure 9: Crack extension with the number of cycles for different stress ratios at (a) Y=0  
mm and (b) Y=2 mm 

4 Conclusions 
In this study, the fatigue investigations have been carried out for steel pipeline with 3D 
interacting cracks under cyclic tensile loadings. Considering that generally the positions 
of interacting cracks are arbitrary, both the coplanar and non-coplanar cracks cases are 
analyzed. For comparisons and validations, the number of loading cycles is recorded to 
study the fatigue crack growth trend. The following significant conclusions are drawn. 
1) The fatigue crack growth results for both coplanar and non-coplanar cracks are 

qualitatively validated by the available experimental results found in open literature. 
The good agreement indicates that our numerical simulations performed by the 
XFEM are reasonable and highly reliable.  

2) Due to the cracks interaction, the growth rates at the crack tips close to each other are 
accelerated. As for the two coplanar cracks (one semi-elliptical surface crack and one 
elliptical embedded crack), they propagate towards each other and finally coalesce 
into one. However, in the non-coplanar cracks case, one unique observation, that 
differs from varying the X value, is that in varying the Y values, the closer the two 
cracks’ distance does not necessarily result in faster crack propagation.  

3) The smaller stress ratio (higher fluctuation of the tensile loadings) induces a much more 
rapid fatigue crack growth. If the stress ratio R is decreased from 0.5 to 0.1, the number of 
cycles required for the cracks to extend a certain size will be significantly reduced by 50%. 
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