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Abstract: In this paper, we propose a novel image interpolation method by using 
Gaussian-Sinc automatic interpolators with partition of unity property. A comprehensive 
comparison is made with classical image interpolation methods, such as the bicubic 
interpolation, Lanczos interpolation, cubic Schaum interpolation, cubic B-spline 
interpolation and cubic Moms interpolation. The experimental results show the 
effectiveness of the improved image interpolation method via some image quality metrics 
such as PSNR and SSIM. 
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1 Introduction 
Image interpolation is an important topic in the field of image processing and is the key 
technique for image super-resolution. Many kinds of analytic functions have been 
employed as image interpolation tools [Gao, Zhang, Zhang et al. (2008); Zhou, Pan, 
Wang et al. (2017)], including the representative approaches based on bicubic polynomial 
[Lin, Sheu, Chiang et al. (2008); Keys (2003)], Sinc function [Turkowski (1990)], and so 
on. One of the main interests is that they are interpolating, however, most of them have a 
worse approximation property compared with o-Moms [Blu, Thcvenaz and Unser (2001)] 
and B-splines [Unser, Aldroubi and Eden (1993)]. 
Recently, Sinc-function has been the holy grail of image interpolation. However, it has 
two drawbacks: firstly, it only can achieve an approximated interpolation; secondly, it 
decays slowly and ringing-associated effects may be spread out. In order to improve the 
performance of image interpolation with Sinc-function, in this paper, we propose a novel 
image interpolation technique by using the Gaussian-Sinc interpolation function. 
Gaussian-Sinc functions not only has automatic-interpolating property, but also satisfy 
partition of unity and has local support [Zhang (2012); Zhang and Ma (2011)]. Compared 
with conventional image interpolation tools (such as cubic spline interpolation, Lanczos 
interpolation, Schaum interpolation, cubic-B spline interpolation, Moms interpolation), 
the proposed image interpolation method has better performance in terms of PSNR and 
SSIM as illustrated in a large number of experimental results. 
The rest of paper is organized as follows. In Section 2, a review of related image 
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interpolation is presented. In Section 3, the definition and properties of Gaussian-Sinc 
functions will be introduced. The image interpolation framework via Gaussian-Sinc 
functions is introduced in Section 4. Section 5 presents the experimental results, and the 
comparisons with traditional interpolators are shown via several examples. Section 6 
concludes the paper with a summary and some future research topics. 

2 Related work 
Image interpolation has been widely studied for decades, in order to achieve more perfect 
interpolation effect, the image interpolation analytic functions have been employed as 
image interpolation tools. Bicubic polynomial interpolation method [Lin, Sheu, Chiang et 
al. (2008); Keys (2003)] is one of the most popular image interpolation approaches [Chen, 
Huang and Luo (2011)]. Lanczos interpolation [Turkowski (1990)] is based on sinc 
function, which is the best compromise in terms of reduction of aliasing, sharpness, and 
minimal ringing for decimation and interpolation of two-dimensional and three-
dimensional data. However, Lanczos interpolator does not have the partition of unity 
(POU) property [Turkowski (1990)]. As shown in Thévenaz et al. [Thévenaz, Blu and 
Unser (2000)], the POU property is a key issue in image processing because the spectrum 
of images is very often concentrated towards low frequencies, and it is equivalent to 
impose that its Fourier transform satisfies some sort of interpolation property in the 
Fourier domain. Cubic B-spline also is employed in image interpolation [Unser, Aldroubi 
and Eden (1993)], but it is not an interpolator, and a linear system must be solved to 
ensure the function goes through the data points exactly [Unser (1999)]. The exponential 
spline is also used in image interpolation as introduced in Kirshner et al. [Kirshner and 
Porat (2009)]. Moms (Maximal Order of Minimal Support) function [Blu, Thcvenaz and 
Unser (2001)] used for image interpolation, is the weighted sum of a B-spline and its 
derivatives. As B-splines, they also do not have interpolation property. Like the optimal-
Moms, Schaum functions [Schaum (1993)] are the pseudo-Lagrangian basis functions 
proposed by Schaum, which can be also represented as a weighted sum of B-splines and 
of their even-order derivatives [Thévenaz, Blu and Unser (2000)].  
In recent years, some state-of-the-art image interpolation approaches became popular in 
the field of image processing. An edge-directed interpolation is proposed to estimate 
local covariance coefficients from a low resolution image and adapt the interpolation at a 
higher resolution based on the geometric duality between their covariance [Li and 
Orchard (2001)]. In Li [Li (2008)], a patch-based image interpolation method is proposed 
as an alternate to the projection onto two convex sets of observation data and the other 
defined by a sparsity-based nonlocal prior. A single frame super resolution algorithm is 
proposed in Hung et al. [Hung and Siu (2015)] by using a finite impulse response. 
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Figure 1: Comparison of basic functions used in image interpolation 

3 Gaussian-Sinc interpolators and properties 
In this section, we will present the definition and property of Gaussian-Sinc interpolators. 
Gaussian-Sinc interpolation kernel function is derived from Gaussian function and Sinc 
unction, and it is defined as follows: 
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The parameter a is a positive constant, which affects the shape and local support of the 
kernel function. This new interpolator has several interesting properties, such as 
symmetry, C∞  continuity, local support, almost partition of unity (POU), almost linear 
precision. Gaussian-Sinc basis function can achieve automatic interpolation for the given 
data points without solving linear systems. That is, given a set of data points iP  , the 
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Remark 1. The almost partition of unity (POU) means that the Gaussian-Sinc 
interpolation functions do not provide sufficiently high accuracy of POU, for example, 
when a=1/3, the maximum error of POU is about 0.0003. 
Gaussian-Sinc interpolator can be improved to achieve partition of unity as shown in the 
following formula: 

( ) ( ) ( ) 2

, , , , sin ,bxx a b x a x x eλ φ λ π −Φ = +  

where a  and b  are constants, λ  is a constant which depends on a  and b  as defined in 
the following, 
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∫                                                                              (1)  

The interpolator defined in (1) is called improved Gaussian-Sinc interpolating function. 
Fig. 1 shows the classical basis functions for image interpolation, the Gaussian-Sinc basis 
function (Fig. 1 (f)), and the improved Gaussian-Sinc interpolating function (Fig. 1 (g)). 

4 Image interpolation based on Gaussian-Sinc interpolators 
In traditional image interpolation method [Thévenaz, Blu and Unser (2000)], we can 
define the interpolation function ( )f X  at parameters X  in the following way: 
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in which  is the sampling points at integer coordinates ( )1 2, ,... q
qK k k k Z= ∈ ,the weights 

of sampling points kf  is up to ( )int X Kφ − . In order to satisfy the requirement of 
interpolation precision, the kernel function intφ  must possess the precise interpolation 
property, that is, int 0φ =  at any integer point except the origin, and int 1φ =  at the origin. 
However, the selection of interpolation kernel function is limited by this requirement. 
A general interpolation function ( )f X  can be written as follows [Thévenaz, Blu and Unser 
(2000)] to select flexible interpolating basis function and improve the interpolating precision: 
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The main difference between formula (2) and (3) is that the coefficient kc  instead of the 
sample points kf  in the interpolation formula (2), which expands the selecting range of 
the interpolation basis function. At the same time, formula (3) introduces a new 
interpolation step, thus, this interpolation method is divided into two steps: firstly, 
compute the interpolation coefficient kc  according to the sample points kf ; Secondly, 
compute the function value at unknown parameter points by using the values of kc . 
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It is obvious that the larger value of a, the smaller value of ( ),x aφ . That is, the local 

support of the kernel function is smaller. However, when a is larger, the interpolation 
precision is lower. Meanwhile, the improved interpolation basis function has the almost 
same local support. On the other hand, a kernel function has smaller local support, it has 
the better local property. Local property can guarantee the local adjustment of the 
interpolation function without affecting other data points. In this way, it ensures the 
accuracy of the interpolation and can reduce effectively the effect of artifacts. At the 
same time, it can also reduce the complexity of the calculation to improve the 
computational efficiency. In order to achieve balance between the interpolation accuracy 
and the local support of the kernel function, in this paper, we set the parameters 1

3
a = , 1

2
b =  

and the corresponding optimal λ  for image interpolation. 

5 Experimental results and comparison 
In this section, some experimental results and comparison with traditional methods will 
be presented to show the effectiveness of the proposed methods. 
Peak-signal-to-noise ratio (PSNR for short) is an important and objective measurement to 
evaluate image quality [Wang, Bovik, Sheikh et al. (2004)], and its definition can be 
written as follows: 

2

10
25510 log ,PSNR
MSE

=  ×                                                                                                      (4) 

( )'

1 1

1 ,
N M

ij ij
i j

MSE f f
M N = =

= −
× ∑∑                                                                                                (5) 

in which M and N are length and width of an image respectively, ijf  and '
ijf are the pixel 

values of the original image and the pixel values of the reconstructed image. On the other 
hand, the structural-similarity-index-measure (SSIM for short) is used as another 
evaluation measurement for image interpolation [Wang, Bovik, Sheikh et al. (2004)]. Big 
value of SSIM (the maximum is 1) illustrates that the structure of the two images is more 
similar and the image interpolation method is better. 
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(a) boat                                (b) fingerprint                            (c)  flinstones 

        
(d) house                   (e) lena                        (f) peppers                   (g)  barbara 

Figure 2: The original images 

In this paper, seven classical pictures used in image processing are tested as experimental 
examples, and the original images are shown in Fig. 2. Firstly, sample the original images 
as low resolution ones, then use the kernel function mentioned in this paper as the image 
interpolation basic function to reconstruct the images from low resolution images. Finally, 
the value of PSNR and SSIM between the original images and reconstruction images are 
computed to compare the various different image interpolation methods as shown in Tab. 
1, in which GS I and GS II denotes the Gaussian-Sinc interpolation method and the 
improved Gaussian-Sinc interpolation method respectively. We can find that the 
improved Gaussian-Sinc function has the best performance in terms of PSNR and SSIM. 
Fig. 3 and Fig. 4 show the zoom-in interpolation results for two regions of interest in 
Peppers image with different interpolation method. 
Experiment II In this experiment, the original high resolution image is sampled by 9:1 
(length and width by scaling 3 times respectively) to obtain the corresponding low-
resolution images. Then the Lanczos function, cubic B-spline, cubic Moms function, 
Gaussian-Sinc function and the improved Gaussian-Sinc function are used as the 
interpolating kernel function in the image interpolation experiment. Finally, we evaluate 
the value of PSNR and SSIM between the original images and reconstruction images, 
which are listed in Tab. 2, in which GS I and GS II denotes the Gaussian-Sinc 
interpolation method and the improved Gaussian-Sinc interpolation method respectively. 
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Table 1: PSNR and SSIM of different image interpolation with scale factor S=2 

 PSNR (dB) 
Bicubic  Lanczos  Schaum3  GS I  GS II 

boat  30.1023  30.1307  29.8884  30.7862  31.2974 
fingerprint  30.6631  30.7825  30.3850  31.8272  32.2830 
flinstones  26.7949  26.8804  26.5283  27.9077  28.3472 

house  32.8947  32.9244  32.6601  33.6582  34.0724 
lena  34.2893  34.3372  34.0389  35.9235  35.6486 

peppers  27.3056 27.3567  27.2603  28.5387  28.5571 
barbara  25.4902  25.4870  25.2794  26.3090  26.4213 

 SSIM 
Bicubic  Lanczos  Schaum3  GS I  GS II 

boat  0.8600  0.8603  0.8535  0.8738  0.8840 
fingerprint  0.9536  0.9546  0.9501  0.9689  0.9793 
flinstones  0.8725  0.8729  0.8660  0.8884  0.8987 

house  0.8969  0.8965  0.8916  0.9075  0.9146 
lena  0.9225  0.9227  0.9185  0.9311  0.9356 

peppers  0.9197  0.9196  0.9158  0.9286  0.9317 
barbara  0.8092  0.8096  0.7964  0.8179  0.8220 

 

                                
(a)                                             (b)                                         (c) 

          
(d)                                (e)                           (f)                                (g) 

Figure 3: Image interpolation for “Peppers”: (a) original image, (b) the low-resolution 
Peppers image, (c) Bicubic interpolation, (d) Lanczos interpolation, (e) Cubic Schaum 
interpolation, (f) Gaussian-Sinc interpolation, (g) improved Gaussian-Sinc interpolation 
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(a)                                             (b)                                            (c)   

         
(d)                             (e)                             (f)                                (g)   

Figure 4: Image interpolation for a region of interest on image “Peppers”: (a) the original 
Peppers image, (b) the low-resolution Peppers image, (c) Bicubic interpolation, (d) 
Lanczos interpolation, (e) Cubic Schaum interpolation, (f) Gaussian-Sinc interpolation, (g) 
improved Gaussian-Sinc interpolation 

 

                   
(a)                                (b)                                 (c)                               (d)   

                   
(e)                                (f)                                  (g)                                 (h)   

Figure 5: Image interpolation for image “Lena”: (a) the original image, (b) the original 
region of interest, (c) the low-resolution region of interest, (d) Lanczos interpolation, (e) 
Cubic B-spline interpolation, (f) Cubic Moms-interpolation, (g) Gaussian-Sinc 
interpolation, (h) improved Gaussian-Sinc interpolation 
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Table 2: PSNR and SSIM of different interpolation methods with scale factor S=3 

 PSNR (dB) 
Lanczos  Bspline3 O-Moms3  GS I  GS II 

boat  27.7993  27.8710  27.7386  28.4707  28.9584 
fingerprint  27.6932  27.7474  27.6426  28.7345  28.9480 
flinstones  23.8141  23.8518  23.7757  24.8643  25.8654 

house  28.9583  29.0108  28.9023  29.1923  29.5847 
lena  31.8183  31.8848  31.7570  32.3493  32.9459 

peppers  22.3891  22.4290  22.3619  23.4542  23.6751 
barbara  24.5509  24.6505  24.4864  25.3771  25.8532 

 SSIM 
Lanczos  Bspline3 O-Moms3  GS I  GS II 

boat  0.8232  0.8249  0.8195  0.8393  0.8428 
fingerprint  0.9122  0.9118  0.9109  0.9213  0.9235 
flinstones  0.8157  0.8174  0.8082  0.8240  0.8355 

house  0.8317  0.8334  0.8277  0.8482  0.8498 
lena  0.8994  0.9007  0.8974  0.9129  0.9177 

peppers  0.8477  0.8500  0.8433  0.8575  0.8645 
barbara  0.7413  0.7435  0.7389  0.7443  0.7574 

The improved Gaussian-Sinc interpolator also can obtain the best interpolation results. 
Fig. 5 and Fig. 6 present the zoom-in interpolation results for the two regions of interest 
image “Lena” with different interpolation methods. 
We have performed the above evaluation for a complicated database, and similar results 
are obtained. In terms of computing complexity, Tab. 3 shows the computing costs of 
each method. From Tab. 3, we can find that the proposed method has a comparable and 
similar computing complexity with the previous approaches. 

6 Conclusion 
In this paper, we propose a new image interpolation method based on Gaussian Sinc 
interpolating functions. By comparing with the classical image interpolation methods, 
including Bi-cubic spline interpolation, Lanczos interpolation, cubic Schaum interpolation, 
cubic B-spline interpolation and cubic Moms interpolation, we can find that the proposed 
image interpolation method can achieve better performance on the PSNR and SSIM metrics. 
In the future, we will extend the present work to video interpolation problems. 
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(a)                                (b)                                 (c)                               (d)   

                   
(e)                                (f)                                  (g)                                 (h)   

Figure 6: Image interpolation for image “Lena”: (a) the original image, (b) the original 
region of interest, (c) the low-resolution region of interest, (d) Lanczos interpolation, (e) 
Cubic B-spline interpolation, (f) Cubic Moms-interpolation, (g) Gaussian-Sinc 
interpolation, (h) improved Gaussian-Sinc interpolation 

Table 3: Computing costs of different interpolation methods (in seconds) 
 Experiment I  Experiment II 

 Bicubic  Lanczos  Schum3  GSinc  ImpSinc  Lanczos  Bspline3  O-
Moms3   GSinc ImpSinc 

boat  0.047  0.047  0.047  0.062  0.062  0.047  0.047  0.046  0.061  0.063 
fingerprint  0.047  0.047  0.046  0.061  0.063  0.047  0.048  0.047  0.063  0.062 
flinstones  0.046  0.047  0.047  0.062  0.063  0.047  0.047  0.047  0.062  0.062 

house  0.016  0.016  0.015  0.016  0.016  0.016  0.015  0.016  0.016  0.015 
lena  0.047  0.047  0.047  0.062  0.062  0.047  0.047  0.047  0.062  0.062 

peppers  0.015  0.016  0.016  0.016  0.016  0.016  0.016 0.015  0.016  0.016 
barbara  0.048  0.047  0.047  0.062  0.063  0.047  0.047  0.048  0.062  0.063 
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