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Abstract: Considering the fact that the initial defects, like the imperfect interfacial 
transition zones (ITZ) and the micro voids in mortar matrix, weaken the mechanical 
properties of concrete, this study develops corresponding constitutive models for ITZ and 
matrix, and simulates the concrete failure with finite element methods. Specifically, an 
elastic-damage traction-separation model for ITZ is constructed, and an anisotropic 
plastic-damage model distinguishing the strength-difference under tension and 
compression for mortar matrix is proposed as well. In this anisotropic plastic-damage 
model, the weakening effect of micro voids is reflected by introducing initial isotropic 
damage, the distinct characteristic of tension and compression which described by 
decomposing damage tensor into tensile and compressive components, and the plastic 
yield surface which established on the effective stress space. Furthermore, by tracking the 
damage evolution of concrete specimens suffering uniaxial tension and compression, the 
effects of imperfect status of ITZ and volume fraction of initial voids on the concrete 
mechanical properties are investigated. 
 
Keywords: Imperfect ITZ, initial voids, anisotropic plastic-damage constitutive, meso-
scale concrete.  

1 Introduction 
Concrete can be taken as a multi-phase composite material consisting of mortar matrix, 
aggregates, micro defects, and interfacial transition zone (ITZ) between the aggregates 
and the mortar matrix. Its macro mechanical characteristics are determined by the 
microstructural features (e.g., aggregate shape, size, gradation, and distribution, ITZ 
thickness and mechanical properties, the mortar matrix mechanical properties, voids 
fraction and distribution, etc.). So, it is important to bridge the microstructure-property 
relationship for designing better and superior fracture-resistant cementitious materials. In 
order to better grasp the concrete mechanical properties, micromechanical model 
reflecting the inelastic and damage behavior of each phase is crucial. For ITZ, its 
mechanical characteristics, like connecting status, stiffness and strength play an important 
role in the concrete fracture behavior [Ollivier, Maso and Bourdette (1995)]. For mortar 
matrix, its mechanical properties, like the distinct tensile and compressive characteristic, 
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devotes the determinate contribution to concrete mechanical properties. And for 
aggregates, its volume fraction and gradation determinate the hardening and softening 
characteristic of concrete. What’s more, the initial voids in mortar matrix reduce the 
stiffness and strength to some extent. If these voids are considered in discretization, the 
computational cost of three-dimensional modeling will be more expensive [Yin, Yang 
and Yang (2013); Al-Rub and Kim (2010)]. Therefore, homogenizing the mortar paste to 
reflect the weakening effect of initial voids is a best treatment. Due to the recent advances 
Idiart et al. [Idiart, López and Carol (2011)] in capturing the composition, porosity and 
strength of the ITZ and mortar matrix, and the developments in computational power and 
improvements of computational software [Talebi, Silani, Bordas et al. (2014)], one can 
effectively simulate the micromechanical behavior of concrete materials. Therefore, this 
study will focus on conducting a desirable numerical concrete model at the meso-scale 
and constructing reasonable constitutive model considering the reduction effect of initial 
defects for the ITZ and mortar matrix. 
The implementation process of the meso-scale modeling of concrete can be categorized 
mainly into two steps. First step is to generate aggregates taking into account the shape, 
distribution, and their volume fraction, and second step is to perform a simulation with 
numerical model, i.e., FEM, XFEM [Moës and Belytschko (2002)], XEFG [Rabczuk and 
Belytschko (2007); Rabczuk, Bordas and Zi (2010)], applying constitutive models to each 
phase. Although various generation techniques of particles Sun et al. [Sun (2005); Bažant, 
Tabbara, Kazemi et al. (1990); Fu and Dekelbab (2003); Wang, Yang and Jivkov (2015)] 
have been proposed for concrete on meso level, the corresponding mesh generation is still a 
trivial thing, which the main trouble is that it is hard to mesh all the particles with different 
sizes and shape in a several unified plannings. A more suitable method avoiding the 
difficulty of directly meshing particles is the grid mapping scheme [Fang, Zhang, Huan et 
al. (2013)] in which only judges the mapping region of each phase based on a regular mesh. 
To ensure the accuracy, the grid of mesh have to be very small to suit the irregular surface 
of aggregate, which cause to the huge computational cost. For the real micro-structure 
model reformed from the X-ray scanned pictures, Huang et al. [Huang, Yang, Ren et al. 
(2015)] adopt the grid mapping model where the size of each grid is the same as the pixel 
size to simulate the fracture-damage process of concrete. To avoid the complicated meshing 
of the particles and mortar matrix, the lattice beam model Schlangen et al. [Schlangen and 
Garboczi (1997); Van Mier (2017); Lilliu and van Mier (2003)] and Lattice discrete particle 
model Cusatis et al. [Cusatis, Pelessone and Mencarelli (2011); Cusatis, Mencarelli, 
Pelessone et al. (2011)] are proposed. Another approach of microscopic numerical 
simulation for concrete is the random mechanical model [Zhu and Tang (2002); Zhu, Teng 
and Tang (2004)] in which no aggregate needs to be generated.  
As described above, the accurate reflection of mechanical properties of ITZ is crucial. In 
lattice beam model Schlangen et al. [Schlangen and Garboczi (1997); Van Mier (2017); 
Lilliu and Van Mier (2003)], the thickness of ITZ is wider than the actual thickness (at 
least 10 times as large as the real ITZ), and the complex mechanical behavior of ITZ is 
hard to reflect on the beam lattice. However, the embedded cohesive elements in FEM 
Wang et al. [Wang, Yang and Jivkov (2015); Su, Yang and Liu (2010); Gálvez, Planas, 
Sancho et al. (2013)] or the embedded cohesive crack in XFEM [Moës and Belytschko 
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(2002); Fang, Xia and Zhang (2018)], XEFG [Rabczuk, Zi, Bordas et al. (2008); Rabczuk, 
Bordas and Zi (2010)] and cracking-particle method [Rabczuk, Zi, Bordas et al. (2010); 
Rabczuk and Belytschko (2004)] can well reflect the real mechanical behavior of ITZ by 
setting the thickness parameter and assigning the reasonable constitutive model under the 
framework of traction-separation relation. Most of the cracking criteria in the cohesive 
model are defined at the traction space, such as the quadratic nominal stress criterion 
Wang et al. [Wang, Yang and Jivkov (2015)], the Mohr-Coulomb criterion Fang et al. 
[Fang, Xia and Zhang (2018)] and various modified Mohr-Coulomb criterion [Rabczuk, 
Zi, Bordas et al. (2008)]. There are also some cracking initialization criteria based on the 
maximal strain or the equivalent energy release rate [Rabczuk, Zi, Bordas et al. (2010)]. 
Before the interface damage occurs, the traction is linear with the separation. Once the 
damage happens in ITZ, it will develop along the gradient direction of the dissipative 
potential, and its magnitude can be determined by the consistency condition. Usually, the 
traction-separation relationship for pure tension and pure shear are given in advance, 
where the soften section of the traction-separation curves can be determined by the 
fractured and slipped energy release rate of ITZ and corresponding energy release mode, 
such as linear Wang et al. [Wang, Yang and Jivkov (2015)], bilinear Su et al. [Su, Yang 
and Liu (2010)] and exponential mode Nakamura et al. [Nakamura, Srisoros, Yashiro et 
al. (2006)]. The damage evolution curve can also be calibrated by equivalent relative 
displacement or surface energy density [Benzeggagh and Kenane (1996)]. Though the 
damage softening surface is probably not same as the dissipation potential face at the 
compression-shear area because of the dilation effect [Ferté, Massin and Moës (2016); 
Carol, Prat and Lopez (1997)], the symmetric of matrix can be still kept because of no 
Poisson’s effect. It is worth mentioning that the rigid-body-spring method [Rabczuk, Zi, 
Bordas et al. (2008); Zhuo and Zhang (2000)] can also reflect the mechanical behavior of 
ITZ, but the deformation of matrix is neglected. What’s more, if the ITZ is taken as zero 
thickness interface, the traction-separation relation presents initially rigid linear, bilinear 
or exponential softening mode [Rabczuk, Bordas and Zi (2010)].   
For the mortar matrix, its mechanical properties are similar to the concrete due to the 
sand playing a role of aggregate. So, the constitutive model of concrete can be used to 
simulate the mechanical behavior of mortar matrix by setting different parameters from 
that of concrete. One of the most important characteristics is its low tensile strength, 
particularly at low-confining pressures, which results in tensile cracking and further leads 
to the reduction of the stiffness along perpendicular direction to the crack. What’s more, 
the mortar matrix undergoes also irreversible plastic deformations dedicated by the paste 
cement phase. That is, the nonlinear material behavior of mortar matrix can be attributed 
to two distinct mechanical processes: damage (micro-cracks, micro-cavities, nucleation 
and coalescence, decohesions, grain boundary cracks) and plasticity. These two 
degradation phenomena may be best described by theories of continuum damage 
mechanics and plasticity [Cicekli, Voyiadjis and Al-Rub (2007)]. Therefore, a model that 
accounts for both plasticity and damage is necessary.  
In this manuscript, the aggregates in concrete are assumed to keep not fracture or damage 
in whole loading process. On the base of plastic-damage model proposed by Cicekli et al. 
[Cicekli, Voyiadjis and Al-Rub (2007)], the weakening effect of initial voids on overall 
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properties of mortar matrix is considered by introducing the initial isotropic damage. 
Specifically, the random distributed voids are smeared into the concrete uniformly, and 
the degradation effect on the overall stiffness of concrete material can be evaluated by the 
micro-mechanics theory [Mura (2013)]. While the reduction effect of carrying capacity 
induced by initial voids can be reflected by constructing the effective stress based plastic 
yield surface. The involving model parameters for mortar matrix refer to the literature 
[Kim and Al-Rub (2011)]. 
This paper is organized as follows: we will present the traction-separation law for ITZ 
that takes its initial imperfect status into account and the anisotropic plastic-damage 
model for mortar matrix that considers the weakening effect of initial voids in Sections 2 
and 3. In Section 4, we will establish the FEM for concrete at the meso-scale, which 
involves the cohesive element for ITZ, governing equations and its integral weak form, 
domain discretization, generation of random distributed aggregates and mesh of concrete 
specimen. In Section 5, we will verify the validity of the proposed model. And the effect 
of the volume fraction of initial void, the ITZ stiffness and strength on the overall 
mechanical properties of concrete will be investigated in the Section 6. Finally, summary 
and some conclusions of this research are presented in the Section 7. 

2 Elastic-damage model for imperfect ITZ 
Due to the fact that the thickness h of ITZ is very smaller and less than a tenth of 
aggregate, it is unfitted to mesh the ITZ by using solid element, which results in a huge 
mesh scale. In this study, the cohesive element is used to discretize the ITZ. Therefore, 
the original three-phase configuration of concrete with ITZ should be simplified two-
phase configuration, as presented in Fig. 1. So the ITZ constitutive law should be 
established on the framework of traction-separation relation.   
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(a) three-phase configuration (b) two-phase configuration  
Figure 1: Modelling of an ITZ in a three-phase configuration as an imperfect ITZ in a 
two-phase configuration 

The traction { }T
tsn ττσ=coht in the ITZ can be defined as the function of open 

displacement { }T
tsn uuu ][][][][ =u' or the strain at the ITZ { }T

tsn εεε=cohε , 
such that  
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where cohD is the elastic-damage matrix, 000 ,, tsn ddd  are the initial damages of normal and 
two shear direction respectively, which reflect the initial connect status of ITZ. tsn ddd ,, are 

the damages of normal and two shear direction at the ITZ respectively, 000 ,, tsn KKK   are the 
initial interfacial stiffness along normal and two tangential direction respectively, 

][],[],[ tsn uuu are the relative displacement of normal and two tangential direction at the ITZ 
respectively. In this study, the effect of initial damage is considered and the bilinear curves 
are adopted to describe the traction-separation relation along the normal and shear direction as 
shown in Fig. 2 and Fig. 3. Assuming the ITZ is of the same behavior for two tangential 
direction, the damage evolution equation can be derived from formula (1) as follows 
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where ]'[],'[ 00
tn uu are the relative displacements along normal and shear direction 

corresponding to the maximum traction respectively considering the initial damage of 
ITZ, such that 
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where ][ 0
nu , ][ 0

tu are the relative displacements along normal and shear direction 

corresponding to the maximum traction respectively, and ][ s
nu , ][ s

tu  are the open and 
slide displacement corresponding to traction free status respectively.   
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Figure 2: The relationship between the normal traction and normal separation 
considering the initial damage 
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Figure 3: The relationship between the shear traction and shear separation considering 
the initial damage 

The quadratic stress criterion as following formula is used to judge whether the initial 
damage does occur.   
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where '0
nσ , '0

sτ , '0
tτ are the critical stress of normal and two shear direction corresponding 

to initial damage status separately. ‘< >’ is the operator defined as follows 

 




≤=><
>=><

00
0

xwhenx
xwhenxx

                            
(5)  

3 The coupled anisotropic plastic-damage constitutive model considering initial 
damage for mortar matrix 
3.1 Modeling the initial damage and anisotropic damage in mortar matrix  
Generally, mortar matrix contains some micro holes which are difficult to simulate in real 
geometric configuration due to the very small size of them. Therefore, adopting the 
framework of continuum mechanics and taking these micro holes as initial damage is the 
best choice to model the mechanical behavior of mortar matrix with micro holes. Assume 
the shapes of these micro holes in it are all sphere and the mortar matrix are isotropic. 
The overall bulk modulus K and shear modulusG can be derived respectively as follows 
by utilizing sparse estimation method [Kim and Al-Rub (2011)]: 
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where c is the volume content of micro-hole defects, K and G are the bulk and shear 
modulus respectively of undamaged mortar matrix with no any micro hole, 
and Eα , Eβ are the Eshelby isotropic parameters for sphere cavity inclusion, which are 
gained as follows [Kim amd Al-Rub (2011)]: 
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 It can be seen from expression (6) that the initial damage effect of micro holes on the 
overall mechanics of mortar matrix is isotropic. Therefore, the overall evaluation formula 
(6) can be rewritten as the damage form   
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where +d and −d are the initial damage varies gained as follows 
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According the static equivalent principle, the normal stress ijσ  can be expressed by 

effective stress ijσ  as follows 

klijklklmnklijmnklijklij MMMM σσσσ === 0'' ~                  (10) 

where ijσ~ is the initial effective stress, 0
ijklM is the fourth-order initial damage effect 

tensor which can be taken as isotropic tensor by the formula (8)   
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and '
ijklM is the fourth-order damage effect tensor defined as follows [Al-Rub and 

Voyiadjis (2003); Voyiadjis and Park (1997)]: 
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where ijϕ  is the damage tensor and ijδ  is the Kronecker delta. When no damage occurs, 

that is 0=ijϕ , the damage effect tensor '
ijklM  become back to the fourth-order identity 

tensor 
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2
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'
jkiljlikijklijkl IM

ij
δδδδϕ +===

 
(13) 

The transformation from the effective (undamaged) configuration to the damaged one can 
be done by utilizing the strain equivalence hypotheses [Voyiadjis (2012)], which states 
that the strains in the damaged configuration and the strains in the undamaged (effective) 
configuration are equal. Therefore, the damaged elasticity tensor ijklE can be expressed by 

the corresponding undamaged elasticity tensor ijklE as follows:              

mnklijmnijkl EME =  (14) 

where the undamaged elastic tensor ijklE can be expressed by effective shear 

modulusG and buck modulus K as follows: 
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Mortar matrix has distinct behavior in tension and compression. Therefore, in order to 
adequately characterize the damage in mortar matrix due to tensile and compressive 
loading, the Cauchy stress tensor (normal and effective) is decomposed into a positive 
and negative parts using the decomposition technique [Simo and Ju (1987)]. Hereafter, 
the superscripts “+” and “-” designate, respectively, tensile and compressive entities. 
Therefor, ijσ and ijσ can be decomposed as follows: 

−+ += ijijij σσσ , −+ += ijijij σσσ  (16) 

where +
ijσ is the tensile part and −

ijσ is the compressive part of the stress state. The stress 

tensors +
ijσ and −

ijσ  can be related to ijσ by 
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where ）)(ˆ( lR σ denotes the Heaviside step function computed at lth principle stress )(ˆ lσ of 

ijσ and )(l
in is the lth corresponding unit principal direction. In the subsequently 

development, the superscript hat designates a principal value. 
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Based on the decomposition in Eq. (16), one can assume that the expression in Eq. (10) to 
be valid for both tension and compression, however, with decoupled damage evolution in 
tension and compression such that 

+++ = klijklij M σσ , −−− = klijklij M σσ  (19)   

where +
ijklM is the tensile damage effect tensor and −

ijklM is the compressive damage effect 
tensor which can be expressed using Eq. (12) in a decoupled form as a function of tensile 
and compressive damage variables, +

ijϕ and −
ijϕ , respectively, as follows 
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Now, by substituting Eq. (19) into Eq. (16), one can express the effective stress tensor as 
the decomposition of the fourth-order damage effect tensor for tension and compression 
such that 

−−++ += klijklklijklij MM σσσ  (21) 

3.2 Plasticity yield criterion and flow rule 
The initial defects not only make the stiffness degradation, but also reduces the strength 
of material. Therefore, the yield surface should be constructed on the effective (real) 
stress space. The yield criterion of Lubliner et al. [Lubliner, Oliver, Oller et al. (1989)] 
that accounts for both tension and compression plasticity is used to describe the plasticity 
yield surfaces of mortar matrix. 
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where −c and +c are the uniaxial compression and tensile subsequent strength depended on 
the accumulate equivalent plastic positive strain +

eqε and the accumulate equivalent plastic 



 
 
 
422                                                                              CMC, vol.62, no.1, pp.413-442, 2020 

negative strains −
eqε respectively, which its expression is as follows [Cicekli, Voyiadjis 

and Al-Rub (2007); Mura (2013)]: 
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For isotropic linear-elastic material, the fourth-order elasticity tensor ijklE for undamaged 
material is given by 
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The plastic potential PF can be expressed in terms of the Drucker-Prager function as 
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The evolution of plastic strain tensor can be gained as follows in terms of the above 

defined plastic potential function 
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where Pdλ is the plastic multiplier, which can be obtained using the standard plasticity 
consistency condition, 0=df , such that 
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3.3 The elastic-plastic tangent stiffness in the effective configuration 

In order to accelerate convergence, the elasto-plastic tangent stiffness is needed. From 

Eqs. (22) and (31), one can express the plasticity consistency condition in the effective 

configuration as follows: 
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From the Eq. (32), pdλ can be solves as 

H
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whereQ and H are given as  
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where +∂
∂

eq

f
ε

, −∂
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ε

and 
ij

PF
σ∂
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can be derived from expression (22) (29) as  
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Then, by substituting expression (37) into )(
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where tE is the elasto-plastic tangent stiffness for undamaged mortar phase. 

3.4 Tensile and compressive damage surfaces 
The following damage growth function which is proposed by Chow et al. [Chow and 
Wang (1987)] and used by many others [Al-Rub and Voyiadjis (2006); Voyiadjis, Al-
Rub and Palazotto (2003); Voyiadjis, Al-Rub and Palazotto (2004); Mazars and 
Pijaudier-Cabot (1989)] is adopted in this study. However, this function is generalized in 
Cicekli et al. [Cicekli, Voyiadjis and Al-Rub (2007)] in order to incorporate both tensile 
and compressive damage separately, such that 
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where ±
ijY  is the damage driving force which can be explained as the energy release rate, 

±K is the tensile or compressive damage isotropic softening function such that ±± = 0KK  

when there is no damage, where ±
0K is the tensile or compressive initial damage 

parameter(i.e. damage threshold), and ±
ijklL is a fourth-order symmetric tensor and is 
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where ±µ is a material constant satisfying 12/1- ≤≤ ±µ . The damage driving force can 
be derived by the thermodynamic laws and the expression of elastic free energy as 
follows [Cicekli, Voyiadjis and Al-Rub (2007)]: 
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in which ijpqrsJ is a sixth-order tensor and is given by Lubliner et al. [Lubliner, Oliver, 
Oller et al. (1989)] 
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And ±
eqϕ is the accumulate equivalent damage which can be defined as follows: 

dt
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eqeq ∫ ±± =
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where the evolution equation for damage tensor ijϕ is defined as follows: 
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where ±
ddλ  is the damage multiplier which can be obtained from the following damage 

consistency conditions 

0,0,0,0 ==≥≤ ±±±±±± dgdgddg ddd λλλ  (50) 

The following tensile and compressive damage evolution laws proposed by Kim [Mura 
(2013)] are used to model the damage development of mortar due to its better predictions 
than the exponential damage laws [Mazars and Pijaudier-Cabot (1989)], such that 
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(51) 

where ±B and ±q are material constants. Furthermore, the damage isotropic softening 
functions can be obtained as follows by taking the time derivative of the above Eq. (51) 
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Therefore, the partial derivation of the damage softening function ±K to the accumulate 
equivalent damage ±

ijϕ can be written as follows: 
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According to the damage consistency conditions (50) and the tensile-compressive 
damage surfaces (43) , the increment of the damage function can be written as follows: 
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However, since the damage driving force ±
ijY is a function of stress ±
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And ±
kldσ can be obtained from Eqs.  (10) and (12) as follows: 
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By substituting Eqs. (49), (55) and (56) into Eq. (54), one can obtain the following 
relation 
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(57) 

And the damage multiplier ±
ddλ can be solved as follows:  
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4 The FEM for concrete specimen on meso scale  
4.1 Cohesive element for ITZ 
The cohesive element with three pairs of nodes as presented in Fig. 4 is used to model the 
mechanical response of ITZ contained in concrete. For any point P in cohesive element, 
its relative displacement ][ Pu' can be given as  

e
cohαcohP uTNu' =][  (59) 

where αT is the coordinate transformation matrix, { }T
3'2'1'321

e
coh uuuuuuu =  

is the displacement vector of cohesive element, 
{ }T

3'2'1'321coh NNNNNNN =  is the shape function matrix of cohesive 
element, iN is the shape function matrix at i node of tetrahedron element, which for i’ node 
corresponding to i node, its shape function can be defined as ii' NN −= .   

 
Figure 4: Cohesive element with three pairs of nodes 

4.2 Governing equations 
The governing equations for concrete specimen at the meso-scale are given as               
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where b is the body force. Ω denotes the computational domain. τ
uΓ denotes the 

displacement boundary atτ time. τ
TΓ  denotes the force boundary atτ time， τ

cohΓ  denotes 
the boundary of material at τ time, ∇ is the gradient operator, fn  is the normal of the 

force boundary τ
fΓ , cohn is the normal of ITZ surface τ

cohΓ . All of the boundary condition 

is presented in Fig. 5. 

cohΓ

 

Figure 5: Concrete domain with inclusion  

4.3 The weak form of governing equations 
The weak form of the equilibrium equation can be given as 

0int =++= WWWW cohext δδδδ  (61) 
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(64) 

where s∇ is the symmetric gradient operator, u  and uδ are the trial and test function 
which should lie in the following spaces 
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And ][u' is the relative displacement of ITZ in local coordination, which can be obtain as 
formula (59). tE is the elasto-plastic-damage matrix. 
The rates of the virtual works in Eqs. (62)-(64) can be given as 
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∫Γ Γ= τ δδ
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(69) 

4.4 The domain discretization 
According to the rates equation of the virtual works 0=Wδ , the domain of concrete with 
inclusions can be discretized as follows 
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where eN is the number of solid element. 'eN is the number of cohesive element. Substitute 
the formula (59) into the Eq. (69), the discretization equation can be rewritten as 
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Let ∫Ω Ω= e dBEBK tTe
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where U is the node displacement increment in whole domain. So, the Eq. (71) is 
rewritten as 
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Therefore, the weak form (73) of discretization equation can be further rewritten as 
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Since Uδ is arbitrary, the global stiffness equation for increment format is obtained as 
follows from Eq. (74) 
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4.5 The generation of the meso-mesh based on the FEM for concrete specimen  
Assuming the aggregates’ shape are all sphere or ellipsoid, given the aggregate volume 
fraction with different gradations, the number of them can be obtained by the gradation 
theory of concrete. Then, one can random throw particles from bigger to smaller into the 
domain of specimen by Monte Carlo method under the condition of no overlap each other. 
Based on the random particles geometric model, the particle groups are discretized from 
big to small gradation by tetrahedron gradually mesh generation method in which the grid 
is density at the edges of particles while sparse far away from the edges as shown in Fig. 
6(b), and then the mortar matrix is meshed with the same density grid at the edge of 
particle. Finally, the cohesive elements are embedded into the interfaces between 
aggregates and mortar matrix as shown in Fig. 6(c). 

     
(a) random particles model        (b) mesh of aggregates                (c) mesh of ITZ 

Figure 6: Concrete cube sample 

5 Verification of modeling 
In order to verify the effectiveness of the proposed FEM model for concrete in meso 
scale. The uniaxial tension and compression numerical experiments of concrete sample 
with size of 150 mm×150 mm×150 mm is implemented. The modulus and Poisson’s ratio 
of aggregate are 52,000 MPa and 0.18 respectively. And the modulus and Poisson’s ratio 
of mortar matrix are 26,000 MPa and 0.2 respectively. For the other two material 
components, their material parameters involved are presented in Tab. 1 and Tab. 2. And 
the aggregate volume fractions are 29.3% with grain size of 30 mm and 20.7% with grain 
size of 15 mm respectively. The whole failure process for uniaxial tension and 
compression of concrete sample under the displacement loading control are shown in Fig. 
7 and Fig. 8 respectively. From the two figures, the failures are taken on in the tearing 
mode of interlaminar during tension, while in the shear fracturing mode of ‘X’ type with 
striping on sample edge during compression, which are good agree with that of 
experiment as shown in Fig. 9 [Yan (2006)]. Their ultimate interface damage status are 
presented in Fig. 10 and Fig. 11.   
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Table 1: Material properties of mortar matrix used in the analysis 

 

Tensile material constants Yield 
criteria Compressive material constants 

+

0f
 

(MPa) 

+

0K  

(MPa) 

+
h  

(MPa) 
+

B  
+

q  α  p
α  

−

0f  

(MPa) 

−
Q  

(MPa) 
−

b  
−

0K  

(MPa) 
−

B  
−

q  

Mortar 3.0 3.0 10,000 1.3 1.1 0.12 0.2 15 80 820 20 0.15 1.4 

Table 2: Material properties of ITZ used in the analysis 

 0

nK (MPa/mm) 0

sK (MPa/mm) 0

nσ (MPa) 0

sτ (MPa) 0

tτ (MPa) I

fG (N/mm) II

fG (N/mm) 

ITZ 5×108 5×108 2.0 4.0 4.0 0.02 0.04 

 

 
Figure 7: The equivalent tensile damage distribution for uniaxial tension 

 
Figure 8: The equivalent damage evolution for uniaxial compression (a1, b1and c1 for 
equivalent tensile damage; a2, b2and c2 for equivalent compressive damage)  
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Figure 9: The failure mode under uniaxial compression for concrete sample 

 
Figure 10: Interface damage distribution for tension 

 
Figure 11: Interface damage distribution for compression 

Through averaging of the axial stress on these element integration points, the uniaxial 
stress-strain curve is obtained as shown in Fig. 12, which keeps a good trend to that of 
experiment [Wischers (1978)] except on the residual stage. What causes the difference at 
the residual stage is that the present model does not consider the complicated aggregate 
shape. When the irregular aggregates take on some sharper corners, the local stress 
concentrate effect will be more remarkable so that the residual strength at ITZ become 
weaker. Therefore, the effectiveness of the proposed concrete micro FEM embedded a 
large number of cohesive elements in ITZ has been verified.  
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Figure 12: The stress-strain curve of uniaxial compression for concrete material 

6 The effect of initial defects on the overall properties of concrete 
6.1 The effect of initial micro holes 
In order to investigate the effect of initial micro voids on the overall properties of 
concrete material, the concrete samples with different porosity (0.2%, 0.5%, 1.0%, 1.5%, 
2.0%) are employed, and their failure process under the action of uniaxial tension and 
uniaxial compression are simulated by the proposed model. From the calculated stress 
field and the applied displacement loading, the uniaxial stress-strain curves have been 
extracted, as shown in Fig. 13 and Fig. 14. From the obtained stress-strain relationship, it 
can be obtained that both the peak value and the energy release rate decrease with the 
increase of porosity. That is to say, the more initial micro voids in concrete, the lower its 
strength and the more brittle the material is, whether under tension or compression. It is 
emphasized that the compression characteristic is different from that of air-entrained 
concrete due to the resisting effect of the internal air press in voids.  

 
Figure 13: The tensile stress-strain curve with different porosity 
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Figure 14: The compressive stress-strain curve with different porosity 

6.2 The effect of ITZ characteristics 
To better capture the failure mode and fracturing path, the 2-D model in meso scale is 
employed with the proposed constitutive laws of ITZ and mortar matrix. To explore the 
effect of ITZ characteristics on the overall properties of concrete, the concrete specimens 
with different ITZ stiffness and strength are chosen. Specifically, under the condition of 
same porosity 0.5%, same aggregate volume fraction and same fracture energy 0.03 
N/mm, two case of ITZ stiffness are chosen as in Tab. 3, and other two case of ITZ 
strength are chosen as in Tab. 4. The other parameters refer to the Tab. 1 and Tab. 2.  

Table 3:  ITZ stiffness of two case 

 Grain type 
Normal stiffness 

0
nK (MPa/mm) 

Shear stiffness 
0
sK (MPa/mm) 

Case I 
ITZ for big grain 2.8×105 2.0×105 

ITZ for small grain 1.4×105 1.0×105 

Case II 
ITZ for big grain 1.4×105 1.0×105 

ITZ for small grain 1.4×105 1.0×105 

The obtained damage distribution and evolution for different ITZ stiffness are 
presented as Fig. 15 and Fig. 16, which show that the stiffness of ITZ can directly 
influence the strength and the damage distribution of concrete sample. When the 
stiffness of ITZ for big aggregate group is larger than that of small one, the stress 
concentration effect at big grain boundary is less than that at small one. The main 
reason is that the ITZ attached on small aggregate bears more deformation due to the 
larger stiffness of the ITZ attached on large aggregate under the same displacement 
load. When the specimen is in tensile stress status, the large particles takes on an 
inhibitory effects on the small one which causes the different damage development path 
shown in Fig. 15. When the specimen is in compressive-shear stress status, the large 
aggregate takes on a shield effect on small one as shown in Fig. 16.  
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                        step=4                         step=20                            step=80 

(a) Case I 

 
                         step=4                         step=20                            step=80 

(b) Case II 

Figure 15: The equivalent positive damage distribution for uniaxial tension (different stiffness) 

 
                 step=3                               step=30                            step=75 

(a) Case I 

 
                    step=3                             step=30                            step=200 

(b) Case II 
Figure 16: The equivalent positive damage distribution for uniaxial compression 
(different stiffness) 
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The same process as the above, the obtained damage distribution and evolution for 
different ITZ strength are presented in Fig. 17 and Fig. 18. When the normal strength of 
ITZ is less than the tension strength of mortar matrix, the damages firstly produce in ITZ, 
and develop to the mortar area from the grain boundary as shown in Fig. 17(a). However, 
when the normal strength of ITZ is selected to the same of tension strength of mortar 
matrix, the damages in mortar matrix always develop prior to ITZ due to its compared 
softer stiffness as presented in Fig. 17(b). What’s more, the damage strip is more 
concentrate in mortar matrix for the case of higher ITZ strength. For the compressive-
shear stress status, the damage evolution path is almost same as presented in Fig. 18 for 
the two case due to both of the shear strength of ITZ not reaching that of mortar matrix. 

Table 4: ITZ strength of two case 

 Normal strength 0
nσ (MPa) Shear strength 0

sτ (MPa) 

Case I 2.0 2.0 

Case II 3.0 3.0 

 

 
step=4                           step=20                          step=80 

(a) Case I ( 0
nσ =2.0, 0

sτ =2.0) 

 
step=4                           step=20                           step=80 

(b) Case II ( 0
nσ =3.0, 0

sτ =3.0) 

Figure 17: The equivalent positive damage distribution for uniaxial tension (different strength) 
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step=3                                 step=30 

(a) Case I ( 0
nσ =2.0, 0

sτ =2.0) 

 

step=3                                 step=30 

(b) Case II ( 0
nσ =3.0, 0

sτ =3.0) 

Figure 18: The equivalent positive damage distribution for uniaxial compression 
(different strength) 

7 Conclusions 
The initial defects in concrete, like the ITZ and the micro voids in mortar matrix, weaken 
the mechanical properties of concrete. To explore the weakening effect of the initial 
defects on the overall properties of concrete, the study carried out the research work of 
the constitutive law of material with defects and the numerical modeling on meso scale. 
Specifically, an elastic-damage traction-separation model for ITZ is developed and an 
anisotropic plastic-damage model for mortar matrix is modified by introducing the initial 
isotropic damage reflecting the weakening effect of defects. The FEM for concrete on 
meso scale is established by embedding the cohesive elements into the ITZ, and applied 
the proposed constitutive laws into corresponding components. The effectiveness of the 
proposed model has been verified by uniaxial tension and compression of concrete 
specimen. Finally, the effect of porosity, ITZ stiffness and strength on the mechanical 
properties of concrete are investigated, and some conclusions are drawn as follows 
1) The peak stress and the energy release rate of concrete specimen decrease with the 
increase of porosity. That is to say, the more initial micro voids in concrete, the lower its 
strength and the more brittle the material is, whether under tension or compression., 
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which is different from that of air-entrained concrete due to the resisting effect of the 
internal air press in voids. 
2) The mechanical characteristics of ITZ reduce the overall properties of concrete 
material greatly when the ITZ strength is less than that of mortar matrix. What’s more, 
the stiffness of ITZ can directly influence the strength and the damage distribution of 
concrete material. The large particles take on an inhibitory effect on the small one which 
causes the different damage development path for tension stress status. And the large 
aggregate takes on a shield effect on small one for compressive-shear stress status. So, 
the better mechanical properties of concrete would be obtained by only improving the 
mechanical behavior of ITZ on large aggregates.  
3) Whether the ITZ strength is stronger or weaker than that of mortar matrix, the damage 
evolution path and failure mode of concrete material are influenced. When the normal 
strength of ITZ is less than the tension strength of mortar matrix, the damages firstly 
produce in ITZ, and develop to the mortar area from the particle boundary. However, the 
damages in mortar matrix always develop prior to ITZ once the normal strength of ITZ is 
improved to the same of tension strength of mortar matrix. It is worth noting that the 
damage strip is more concentrate in mortar matrix for the case of higher ITZ strength 
which results in failure of whole structure easily. 
In this study, although the stochastic mechanical properties of concrete are reflected by the 
random distributed aggregates reforming to gradation rule of concrete, the stochastic features 
from the mortar matrix, the shape of aggregates and the ITZ have not been embodied. 
Further work in this area will be carried out in the framework of probabilistic sensitivity 
analysis [Vu-Bac, Lahmer, Zhuang et al. (2016); Hamdia, Silani, Zhuang et al. (2017)]. In 
addition, the multiscale mechanical characteristic of concrete has not been simulated 
completely, which can refer to the work of Hossein Talebi et al. [Talebi, Silani and Rabczuk 
(2015)] and Pattabhi R. Budarapu et al. [Budarapu, Gracie, Yang et al. (2014)]. 
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