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Abstract: A mathematical model for unsteady electro- and aerodynamic processes in the 
presence of a plasma actuator has been elaborated through physical modeling of the 
dielectric barrier discharge. A specialized computational fluid dynamics package has 
been developed accordingly in order to calculate steady and unsteady laminar and 
turbulent flows. For the numerical simulation of the dielectric barrier discharge, in 
particular, two equations have been added to the Navier-Stokes equations and solved. 
They describe the distribution of the applied voltage and the charged particles density. 
The impact of the plasma actuator on air has been accounted for through the Lorentz 
force, included as a source term in the momentum balance equation. The system of 
governing equations for the considered hydrodynamics and electrodynamics has been 
written in an arbitrary curvilinear coordinate system in dimensionless form and integrated 
in the framework of a finite volume method. A TVD scheme with a third-order ISNAS 
flow limiter has been chosen for the convective terms approximation. The obtained 
block-matrix system of linear algebraic equations has been solved by the generalized 
minimal residual (GMRES) method with ILU(k) preconditioning. Using this approach, 
the occurrence of a propulsion force, emerging as a result of the action of plasma 
actuators on a cylinder in quiescent air, has been investigated. The possibility to mitigate 
the cylinder drag coefficient with the help of the plasma actuators, due to the ensuing 
suppression of the Karman vortex street, has been demonstrated. 
 
Keywords: Plasma actuator, dielectric barrier discharge, turbulent flow, Navier-Stokes 
equations, numerical simulation. 

1 Introduction 
The air flow control is of considerable interest in connection with the prospects for the 
development of land transport, aviation, wind power, the creation of new types of gas 
turbines and other mechanisms. There are many different passive and active techniques 
of flow control for both drag reduction and stall prevention [Gad-El-Hak (2007); Shkvar, 
Kryzhanovskyi and Cai (2018)]. One of the promising methods of influencing the 
laminar or turbulent air flow without the use of consumables is the use of plasma 
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actuators [Corke, Jumper, Post et al. (2002); Corke, Cavalieri and Matlis (2002); 
Durscher and Roy (2011)]. 
The plasma actuator consists of two essentially asymmetrically located electrodes, which 
are separated by a dielectric (Fig. 1). One of the electrodes is open and in contact with air, 
and the other is completely immersed in the dielectric material. The electrodes are located 
on the aerodynamic surface along the span of the considered streamlined body and, as a 
rule, are long and thin. 

 

Figure 1: Scheme of a linear plasma actuator [Durscher and Roy (2011)] 

Among the methods of plasma control of the air flow structure, the dielectric barrier 
discharge is considered as one of the most promising for practical application, since it is 
characterized by stable operation at atmospheric pressure without coagulation of the 
discharge into a compressed arc. A dielectric barrier discharge is an electrical discharge 
in a gaseous medium that arises between two electrodes, one or both of which are 
covered with a dielectric (Fig. 1). 
Using a plasma actuator to flow control provides several advantages over mechanical 
systems. They are entirely electronic, simple in their design, have no moving parts, have 
low inertia and the ability to integrate into the surface, and can also be located on very 
thin surfaces. 
The plasma actuator has been successfully used in various flow control applications, such 
as: generation of the boundary layer instability on an sharp cone with Mach 3.5, lift force 
increase on wing components, flow separation control on low-pressure turbine blades, 
flow control on a poorly streamlined body, drag reduction, unsteady generation of 
vortices, flow separation control from the leading edge of the airfoil. 
To date, a general understanding of the interaction between the electric field, charged 
plasma particles and the air has been developed. The electromagnetic field of the plasma 
actuator is influenced on the charged particles and a mass force (Lorentz force) arises, 
which leads to the transfer of momentum to the surrounding air. 
However, there are significant disagreements about the plasma structure. Plasma structure 
is extremely important for the description of physics and the operation principle of the 
dielectric barrier discharge. The complexity of measuring the physical properties of plasma 
is due to the difference in geometric scales and the significant role of transition processes. 
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The small size of the plasma region and the transition processes in a dielectric barrier 
discharge do not allow carry out of direct measurements of the charged particles density. 
A large number of experimental [Corke, Jumper, Post et al. (2002); Corke, Cavalieri and 
Matlis (2002); Durscher and Roy (2011); Massines, Rabehi and Decomps (1998); 
Thomas, Kozlov and Corke (2006)] and theoretical [Shyy, Jayaraman and Andersson 
(2002); Hall (2004); Enloe, McLaughlin, VanDyken et al. (2004); Suzen, Huang and 
Jacob (2005)] works are devoted to the study of a low-temperature nonequilibrium 
dielectric barrier discharge plasma during operation of a plasma actuator. Researches 
were conducted in two main directions. The first direction is the study of the physics of a 
single dielectric barrier discharge. The second direction is the optimization of plasma 
actuators to increase their efficiency in air flow control. Despite the successful 
demonstration of the capabilities of a plasma actuator for flow control and the seeming 
simplicity of the device, a fundamental understanding of the physics of the processes 
taking place is incomplete. 
Theoretical studies of the dielectric barrier discharge are usually based on low-level 
mathematical models using numerous empirical constants, the values of which depend on 
the specific type of flow [Shyy, Jayaraman and Andersson (2002); Hall (2004)]. 
Despite the advantages of a dielectric barrier discharge plasma actuators, their use is 
still limited to laboratory levels without widespread introduction to modern 
technology. As a result of the performed experiments, it was established [Corke, 
Jumper, Post et al. (2002); Corke, Cavalieri and Matlis (2002); Durscher and Roy 
(2011); Massines, Rabehi and Decomps (1998)] that for effective of flow separation 
control it is necessary to take into account the geometric and operational 
characteristics of plasma actuators. These include: actuator location on the streamlined 
body surface, orientation, geometrical dimensions, relative displacement of the 
isolated and the open electrodes, applied voltage and its frequency.  
The effect of the above parameters on the operation of a plasma actuator makes the 
optimization of these devices based on experimental studies into a very laborious, 
complex and expensive task. The use of computational fluid dynamics (CFD) makes it 
possible to significantly save time and financial costs of optimizing such complex flow 
control devices. 

2 Brief description of chosen object of study and existing experimental data 
In this paper we consider a partially ionized quasi-neutral ideal low-temperature 
nonequilibrium plasma generated by a dielectric barrier discharge in air. 

2.1 Equations system of air dynamics 
The methodology, developing here, is based on the assumption of low-speed air movement 
at low Mach numbers ( 0.3M < ), under which the air flow can be considered as an 
incompressible fluid due to neglecting the of compressibility effects. The dynamics of a 
viscous incompressible fluid is described by the Reynolds-averaged Navier-Stokes 
equations with taking into account the additional mass forces, initiated by plasma actuators. 

0u∇ =


, (1) 
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where ∇ -Hamiltonian operator, t -time, u


-mean speed vector, p -pressure, ρ -density, 
ν and tν -molecular and turbulent kinematic viscosity coefficients respectively, bf



-mass 
force vector per unit volume.  
 
2.2 Turbulence simulation 
To close the system of Reynolds-averaged Navier-Stokes equations, the Spalart- 
Allmaras differential one-parameter model adapted to the strain rate tensor (Strain- 
Adaptive Linear Spalart-Allmaras Model-SALSA) [Rung, Bunge, Schatz et al. (2003)] 
has been applied, which was developed for the problems of external subsonic 
aerodynamics and is an evolution of the original model Spalart-Allmaras [Spalart and 
Allmaras (1992)]. 
 
2.3 Initial and boundary conditions  
For initial conditions determination, the parameters of the undisturbed flow were set in the 
entire computational domain. Non-reflective boundary conditions were applied on the outer 
boundary for the calculation of which the method of characteristics was used. A sticking 
condition was imposed on the surface of a solid body. In the model of turbulence, the value 
of the working variable on the body was set to zero 0tν = , at the inflow boundary 
condition it was 0.1tν = , the Neumann condition was set at the outflow boundary. 

 
2.4 Equations system of plasma electrodynamics 
For this class of problems, a plasma can be considered as an ionized quasi-neutral gas 
[Suzen, Huang and Jacob (2005)]. In general, it can be described by four Maxwell equations: 

cD ρ∇ ⋅ =


, (3) 
0B∇ ⋅ =



, (4) 
BE
t

∂
∇× = −

∂





, (5) 

DH j
t

∂
∇× = +

∂





, (6) 

where H


-magnetic field strength, B


-magnetic induction, E


-electric field strength, D


-
electric induction, j -total electric current density, cρ -total electric charge density. Eqs. 
(3)-(6) are the Gauss's law, the Gauss’s law for a magnetic field, the Faraday’s law of 
induction, and Ampère’s circuital law with Maxwell’s addition, respectively. 
It can be assumed [Suzen, Huang and Jacob (2005)] that the charges in the plasma have 
enough time (as compared to the hydrodynamic time) for redistribution in the region and 
the system becomes quasistationary. In this case, the electric current j , the magnetic 
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field strength H


, and the magnetic induction B


  are zero. In addition, the time 
derivatives of electrical induction /D t∂ ∂



 and magnetic induction /B t∂ ∂


 are zero. 
Taking into account the information above, from the system of Maxwell's equations there 
is only one equation cD ρ∇ ⋅ =



, which is the Gauss’s law for electrical induction. 

In this case, the Lorentz force, referred to the unit volume, has the form 

cbf Eρ=
 

 (7) 
and enters the right side of the Navier-Stokes Eq.  (2) as a mass force. The vector of 
electrical induction D



 is related to the vector of electric field strength E


 through the 
absolute dielectric constant r oε ε ε=  and is equal to D Eε=

 

, where rε -relative 
permittivity; oε -vacuum permittivity. 

By definition, for the case 0E∇× =


, the electric field strength E


 can be obtained from 
the gradient of scalar potential Φ . In this case E = −∇Φ



. Then the Gauss’s law will take 
the form 

( ) /r c oε ρ ε∇ ∇Φ = − . (8) 
The charge density at any point of the plasma is defined as the difference between the 
density of the positive and negative charges. Assuming that the plasma is in a 
quasistationary state, and the time scales are large enough for the redistribution of 
charges, and applying the Boltzmann relation ( )0 exp /n n e kT= Φ , we obtain [Suzen, 
Huang and Jacob (2005)] 

( ) ( ) ( )2
0/ / 1 / 1 /c o o i ee n kT kTρ ε ε  = − + Φ  , (9) 

where iT  и eT -temperature of ions and electrons in the plasma, respectively. 

Using the Debye length Dλ , which characterizes the distance over which the electric 
field of a separate charge extends in a neutral medium consisting of positively and 
negatively charged particles 

( )( )
1 22

0 / 1 / 1 /D o ee n kT kTλ ε
−

 = +  , (10) 

expression (9) takes the form 

( )2/ 1 /c o Dρ ε λ= − Φ . (11) 

From the moment when gas particles become weakly ionized, it can be assumed that the 
potential Φ  can consist of two parts: the potential from the external electric field φ  and 
the potential ϕ  corresponding to the charge density in the plasma [Suzen, Huang and 
Jacob (2005)] 

φ ϕΦ = + . (12) 
If we assume that the Debye length is small and the charge on the wall is small, and the 
distribution of charged particles in the region is controlled by the potential on the wall 
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caused by the electric charge on the same wall, then the influence of the very weak 
plasma electric field on the external electric field can be neglected. 
Therefore, we write two separate equations from the point of view of these two potentials, 
one for the external electric field due to the applied voltage to the electrodes [Suzen, 
Huang and Jacob (2005)], 

( ) 0rε φ∇ ∇ = , (13) 
and another equation-for the potential acting on the part of charged particles [Suzen, 
Huang and Jacob (2005)] 

( ) /r c oε ϕ ρ ε∇ ∇ = − . (14) 
Considering expressions (11)-(13), Eq. (14) takes the form 

( ) 2/r c c Dε ρ ρ λ∇ ∇ = . (15) 
Then, the distribution of potential and charge density is obtaining in the region as a result 
of solving Eqs. (13) and (15), respectively, the Lorentz force (7) takes the following form 

( )c cBf Eρ ρ φ= = −∇
 

. (16) 

2.5 Initial and boundary conditions for equations system of plasma electrodynamics 
As the initial conditions, the zero distribution of the electric potential and the charge 
density in the region were set. 
Eq. (13) is solved for the electric potential using the applied voltage to the electrodes as the 
boundary condition, as well as the corresponding values of the relative permittivity for air 
and dielectric. The alternating voltage applied to the open (top) electrode is given as 

( ) ( )maxt f tφ φ= . (17) 
The waveform function ( )f t  can be a sine wave 

( ) ( )sin 2f t tπω=  (18) 
or rectangular 

( ) ( )
( ) ( )

1 sin 2 0,

1 sin 2 0,

f t для t

f t для t

πω

πω

 = ≥


= − <
 (19) 

where ω -frequency and maxφ -amplitude of oscillations. A zero potential is applied to the 
insulated electrode. At the outer boundaries, the Neumann condition is set 

/ 0nφ∂ ∂ =  [Suzen, Huang and Jacob (2005)]. 
Eq. (15) is solving for the charge density only in the air domain. The normal gradient for 
the charge density on the surface of a solid body was assumed to be zero, except for the 
region above the insulated electrode. At the outer boundary, the charge density was zero. 
In the area above the insulated electrode, the charge density is described in such a way as 
to synchronize with the change in time the voltage ( )tφ  applied to the open electrode 

( ) ( ) ( )max
, ,c w cx t G x f tρ ρ= , (20) 
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where max
cρ -maximum value of the charge density in the region. The change in the 

charge density ,c wρ  on the wall in the insulated electrode direction is described by the 

function ( )G x . Experimental studies [Durscher and Roy (2011)] indicate that the 
distribution of charge density obeys half of the Gaussian distribution 

( ) ( ) ( )2 2exp / 2 , 0G x x for xµ σ = − − ≥
 

, (21) 

where µ -local parameter indicating the position of the maximum, σ -scale factor 
determining the decay rate. In the calculations, the local parameter µ  is chosen in such a 
way that the peak of the function ( )G x  corresponds to the left side of the isolated 
electrode. The value of the scale factor 0.3σ =  provides a gradual decrease in the 
distribution of the charge density from the left side of the electrode to the right. The 
values of frequency and amplitude applied to the voltage electrodes are taken from 
experiments. It has been established [Corke, Jumper, Post et al. (2002)], that the Debye 
length Dλ  is equal to 0.0075 m, and the maximum charge density max

cρ  in the region is 
assumed to be 0.0075 C/m3. 

3 Numerical method 
A specialized computational fluid dynamics (CFD) package, based on the Navier-Stokes 
equations for calculating steady and unsteady laminar and turbulent flows, has been 
developed by Redchyts [Redchyts (2009)]. For numerical simulation of the dielectric 
barrier discharge, two equations have been additionally solved. They described the 
distributions of the applied voltage and density of charged particles. These equations 
were integrated into the developed CFD package. The impact of the plasma actuator on 
air was carried out through the Lorentz force (16), which is included as a source term in 
the Navier-Stokes Eqs. (1), (2). 
The system of governing equations of hydrodynamics (1), (2) and electrodynamics (13), 
(15) was written in an arbitrary curvilinear coordinate system in a dimensionless form. 
The integration of the system of governing equations was carried out numerically using 
the finite volume method. For convective terms, the upwind Rogers-Kwak [Rogers, 
Kwak (1991)] approximation was used on the basis of the third-order Roe scheme. In 
turbulence models, the TVD scheme with a third-order ISNAS flow limiter was used to 
approximate convective terms. The derivatives in Eqs. (13), (15) and in viscous terms of 
Eq. (2) were approximated by a second-order central difference scheme. For equations 
solving the algorithm, based on a three-layer implicit scheme with subiterations in 
pseudo-time of the second order of accuracy in physical time, was used. The obtained 
block-matrix system of linear algebraic equations was solved by the generalized minimal 
residual (GMRES) method with ILU(k) preconditioning.  
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4 Results and discussion 
4.1 Plasma actuators on the cylinder 
Plasma actuators were applied to air flow control on the cylinder. All the initial data for 
this work are taken from Massines et al. [Massines, Rabehi and Decomps (1998)]. The 
model is a cylinder made of quartz (D=100 mm), with four plasma actuators arranged as 
shown in Fig. 2. An alternating voltage of 11.5φ =  kV with a frequency of 10 kHz is 
applied to the plasma actuators. The walls of the cylinder were 2.5 mm thick. The open 
electrode is made of copper foil 5.6 mm wide and 0.04 mm thick. The width of the 
insulated electrode is 25.4 mm, and the thickness is 0.04 mm. The internal dielectric is 5 
layers of Kapton 0.125 mm thick. In the present work, numerical simulation of the 
dielectric barrier discharge during the plasma actuator operation was carried out in a 
dimensionless form. As characteristic values, 0.1L =  m, 1U = m/s, 1.225ρ∞ = kg/m3, 

max 0.0075cρ = C/m3, max 11500ϕ =  V, 51.47 10ν −
∞ = ⋅ m2/s were used. 

As a result of the carried out numerical experiment, the distribution of the electric 
potential and the density of charged particles near the electrodes and in the region was 
obtained (Fig. 3). The maximum of the charge density is observed in areas with a 
maximum electric field strength. 

 
Figure 2: Cylinder model with four plasma actuators [Massines, Rabehi and Decomps 
(1998)] (1-cylinder, 2-exposed electrode, 3-insulated (grounded) electrode, 4-internal 
dielectric, 5-plasma areas) 

 
A jet is formed on the back side of the cylinder as a result of the action of four plasma 
actuators on the quiescent air (Fig. 4). The movement of air leads to a drop in pressure in 
this area, and the jet is pressed against the surface of the cylinder. The movement of air 
leads to a pressure decrease in this area, and the jet is pressed to the cylinder surface. 
Something similar to the Coanda effect arises. In the wake, a jet stream is formed, which 
leads to the emergence of a propulsion force. The change in the time of propulsion force 
coefficient of the cylinder is obtained (Fig. 5). The time-averaged propulsion force 
coefficient is -0.04. 
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(а)      (b) 

Figure 3: The distribution of the electric potential (a) and the charged particles density (b)  

 
     (а)                                    (b) 

 
      (c)                         (d) 

 
    (e)        (f) 

Figure 4: Induced by a plasma actuator air flow on the cylinder a) t=0; b) t=5; c) t=10; 
d) t=15; e) t=20; f) t=25 
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Figure 5: The change in time of the propulsion force coefficient of the cylinder 

 
4.2 Flow separation control on the cylinder using four plasma actuators 
In this paper, numerical simulation of effects of four plasma actuators on the air flow 
around cylinder for the Reynolds number Re 30000=  performed. In order to visualize 
the flow structure, smoke flow visualization was used in the experiment, and the vorticity 
module isolines were used in this work. 
Turbulent flow around a cylinder is characterized by the presence of a Karman vortex 
street in the wake (Figs. 6-9). Due to the action of viscous forces near the cylinder surface, 
the fluid particles lose some of the kinetic energy, which is no longer enough to 
overcome the pressure increase in the bottom part of the cylinder. A reverse flow is 
formed near the separation point from which a large vortex develops. After some time, 
this vortex separates from the cylinder and demolished downstream. In the swirling zone 
behind the bottom part of the cylinder, the pressure is greatly reduced compared to the 
pressure in the undisturbed flow. At some distance behind the cylinder, a sequence of 
vortices rotating alternately in different directions is formed. 
The turn-on of four plasma actuators ( 11.5φ =  kV), located on the surface of the cylinder, 
leads to the suppression of the Karman vortex street and the flow around the cylinder is 
attached (Fig. 10). 
The pressure coefficient for various flow regimes around a circular cylinder shows in Fig. 
11. The solid line corresponds to a potential non-circulatory flow 21 4sinPC ϕ= − . Here, 
complete restoration of the bottom pressure take place, which, in the absence of friction 
forces, leads to the d’Alembert paradox (zero drag force). In viscous flows, friction 
makes a relatively small contribution to to drag force. However, the presence of friction 
leads to flow separation and a significant redistribution of pressure on the surface of the 
cylinder. For a developed Karman vortex street, the pressure coefficient values are in the 
zone indicated by dashed lines in Fig. 11. The suppression of the Karman vortex street 
with the help of plasma actuators leads to the restoration of bottom pressure and 
reduction of drag (●●● line in Fig. 11).  
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(a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Figure 6: Turbulent flow around cylinder with turned off plasma actuators for 
dimensionless time moments t=39.5 (a, b), t=39.6 (c, d), t=39.7 (e, f), (a, c, e-experiment 
[Massines, Rabehi and Decomps (1998)], b, d, f-present work) 
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(a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Figure 7: Turbulent flow around cylinder with turned off plasma actuators for 
dimensionless time moments t=39.8 (a, b), t=39.9 (c, d), t=40.0 (e, f), (a, c, e-experiment 
[Massines, Rabehi and Decomps (1998)], b, d, f-present work) 
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(a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Figure 8: Turbulent flow around cylinder with turned on plasma actuators for 
dimensionless time moments t=40.1 (a, b), t=40.2 (c, d), t=40.3 (e, f), (a, c, e-experiment 
[Massines, Rabehi and Decomps (1998)], b, d, f-present work) 
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(a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Figure 9: Turbulent flow around cylinder with turned on plasma actuators for 
dimensionless time moments t=40.4 (a, b), t=40.5 (c, d), t=41.0 (e, f), (a, c, e-experiment 
[Massines, Rabehi and Decomps (1998)], b, d, f-present work) 
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(a)      (b) 

  

(c)      (d) 

  

(e)      (f) 

Figure 10: Turbulent flow around cylinder with turned on plasma actuators for 
dimensionless time moments t=42.0 (a, b), t=43.0 (c, d), t=44.0 (e, f), (a, c, e-experiment 
[Massines, Rabehi and Decomps (1998)], b, d, f-present work) 
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Figure 11: The distribution of the pressure coefficient for different flow regimes of a 
circular cylinder 

Depending on the Reynolds number, the flow regime of the cylinder (laminar, transient, 
turbulent), the intensity of the plasma actuators, the value of the drag coefficient can 
decrease from 2 to 10 times. The results obtained for the flow around a cylinder for a case 
with plasma actuators turned off and turned on satisfactorily coincide with experimental 
data [Massines, Rabehi and Decomps (1998)] (Figs. 6-10). 
 
5 Conclusion 
On the basis of the physical model of the dielectric barrier discharge, the mathematical 
model describing unsteady electro- and aerodynamic processes during the plasma 
actuator operation was constructed. The numerical algorithm was developed for solving 
plasma electrodynamics equations with the equations of viscous incompressible fluid 
dynamics including turbulence in a curvilinear coordinate system on moving grids to 
simulate a dielectric barrier discharge. On the basis of the developed approach, the 
numerical simulation of the occurrence of a propulsion force as a result of the action of 
plasma actuators on a cylinder in the quiescent air was performed. The possibility of 
reducing the cylinder drag coefficient with the help of the plasma actuators due to the 
suppression of the Karman vortex street is shown. The proposed method takes into 
account the physical features of the considered class of problems and has a high 
computational efficiency. This approach is applicable to numerical simulation the 
dynamics of liquid and gas flows in the presence of an electrostatic field. 
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