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Abstract: Friction systems are a kind of typical non-linear dynamical systems in the actual 
engineering and often generate abundant dynamics phenomena. Because of non-smooth 
characteristics, it is difficult to handle these systems by conventional analysis methods 
directly. At the same time, random perturbation often affects friction systems and makes 
these systems more complicated. In this context, we investigate the steady-state stochastic 
responses and stochastic P-bifurcation of friction systems under random excitations in this 
paper. And in order to retain the non-smooth of friction system, the generalized cell 
mapping (GCM) method is first used to the original stochastic friction systems without any 
approximate transformation. To verify the accuracy and validate the applicability of the 
suggested approach, we present two classical nonlinear friction systems, i.e., Coulomb 
force model and Dahl force model as examples. Meanwhile, this method is in good 
agreement with the Monte Carlo simulation method and the computation time is greatly 
reduced. In addition, further discussion finds that the adjustable parameters can induce the 
stochastic P-bifurcation in the two examples, respectively. The stochastic P-bifurcation 
phenomena indicate that the stability of the friction system changes very sensitively with 
the parameters. Research of responses analysis and stochastic P-bifurcation has certain 
significances for the reliability and stability analysis of practical engineering. 
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1 Introduction 
Spacecraft are complex mechanical systems which contain a wealth of nonlinear dynamic 
behavior with each component. Among them, the instability of systems that may result 
from the non-smooth features requires designers to develop the most stringent solution to 
ensure the overall system security. As a typical non-smooth factor, friction is a very 
complicated phenomenon arising at contact surfaces in the space manipulator 
[Awrejcewicz and Olenjnik (2005)]. And many researchers have paid attention to the 
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problems of friction systems in the actual production. Some interesting results have been 
proposed [Xu, Wang, Feng et al. (2018)]. And dynamic friction models, such as Dahl, 
Bliman-Sorine, LuGre, Coulomb as well as atomic scale and fractal models, have been 
developed to reasonably describe some special phenomena [Bowden and Tabor (1973); 
Berger (2002); Astrom and Wit (2008)]. On the other hand, the uncertainty caused by 
random forces increases the complexity of studying such systems. Stochastic response 
analysis is an important research content of nonlinear stochastic dynamics. And stochastic 
bifurcation refer to the sudden qualitative change in the dynamic behavior of stochastic 
system when some parameters change slightly continuously, especially the stochastic P-
bifurcation [Arnold (1995); Xu, Gu, Zhang et al. (2011); Yang, Sanjuan, Liu et al. (2016)]. 
In response analysis of nonlinear stochastic dynamical systems, the study of random 
bifurcation is of great significance. 
Some researchers used the various analysis methods to obtain the stochastic responses of 
friction systems [Baule, Touchette and Cohen (2010); Kumar, Narayanan and Gupta (2016); 
Guerine, Hami, Walha et al. (2016); Fang, Liang and Zuo (2018); Sun, Xu and Lin (2018); 
Jin, Wang and Huang (2018)]. Among these methods, the generalized cell mapping (GCM) 
method has been demonstrated to be a very efficient tool due to its ability of global analysis 
of the strongly nonlinear systems, especially for the stochastic systems. Recently, 
researchers do many research based on the cell mapping method which was first proposed 
by Hsu based on the Markov theory [Hsu (1987)]. Various improvements were applied to 
analyze the dynamical phenomena. For example, Tongue et al. [Tongue and Gu (1988)] 
had proposed the interpolated cell mapping (ICM) method, in which an orbital is generated 
by numerical integration. The first-passage problem of a non-linear system with dry friction 
damping was studied by Sun [Sun (1995)]. And based on the concepts of set theory and 
graph theory, the generalized cell mapping digraph (GCMD) method was proposed by 
Hong et al. to study the crises and chaotic transients [Hong and Xu (1999)]. In addition, 
the various improved cell mapping method can also obtain the stochastic response and 
global analysis of strongly non-linear systems [Yue, Xu, Jia et al. (2013); Wang, Xue, Xu 
et al. (2017); Wang, Ma, Sun et al. (2018); Yue, Xu, Xu et al. (2019)]. And we can see that 
the cell mapping method is a fast and effective numerical method. 
However, for friction systems, existing methods would be hard to approximate 
discontinuities to smooth functions. In this paper, we research the nonlinear dynamics of 
friction systems by using stochastic generalized cell mapping (SGCM) method. The 
purpose is to preserve the non-smooth properties of the friction systems. And this paper is 
arranged as follows. In Section 2, we introduce the friction system model and the SGCM 
method. In Section 3, we present the responses analysis of two different friction force 
models by this method. And Monte Carlo (MC) simulation method is used to verify the 
effectiveness. Finally, conclusions are drawn in Section 4. 

2 Friction system model and the SGCM method 
Consider a mechanical model of a single-degree-of-freedom Duffing friction oscillator 
subjected to Gaussian white noise excitation (Fig. 1) 

3x x x x F x x tα κ µ ξ+ + + + =( , ) ( )                                              (1) 
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where x x x, ,   mean displacement, velocity and acceleration, respectively. The dot ⋅
represents the differentiation with respect to the time t . α  is the damping coefficient, κ  
is the linear stiffness coefficient and µ  is the nonlinear stiffness coefficient representing the 
intensity of stiffness nonlinearity, and F x x( , )  is the discontinuous friction model. ( )tξ  is 
the Gaussian white noise excitation which satisfies the following condition [Zhu and Cai 
(2017)]: 

0[ ( )] ,E tξ =  2E t tξ ξ τ σ δ τ+ =[ ( ) ( )] ( )                                        (2)                    

And the 2σ represents the intensity of Gaussian white noise, ( )δ ⋅  is the Dirac delta function. 

 
Figure 1: Schematic of friction system with random excitation 

For the friction system described above, we will introduce the stochastic generalized cell 
mapping method. Suppose that Ω  is the selected domain of the system and then divide  
Ω  evenly into cN  intervals with l wN N× , each interval is named a cell. And these cells 
are labeled with integers { }1 2, , ..., cN N= . Then, we establish a one-step transition 
probability matrix. Each cell generates s random sample trajectories for these cN cells. And 
if the cell i  1( )ci N≤ ≤  has 1( )i is s s≤ ≤  sample points falling from the cell j  

1( )cj N≤ ≤ , then the one step transition probability from cell j  to i is assigned to be
/ij ip s s=  with ii

s s=∑  and 1
iji

p =∑ . Here, P  represents the one-step transition 
probability matrix with the element ijp . Finally, according to the C-K equation [Yue, Xu, 
Jia et al. (2013)].  

0 0 00 1p m t p t p m t d∆ = − ∆∫(x, ) (x, | x , ) (x ,( ) ) x                                     (3)            

We can obtain the probability distribution vector p( )m after m cycles with the initial vector
0p( ) . Among, 

1p( ) p( )m P m+ = ⋅ or 0mm P= ⋅p( ) p( )                                          (4)     

3 Dynamic responses analysis of the friction systems 
In this section, we directly utilize the SGCM method to obtain the stochastic responses 
by the marginal and joint probability densities. Two classical nonlinear Duffing systems 
with different non-smooth friction force models are presented as examples. One is the 
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Coulomb friction force, and the other one is the Dahl friction force. And we compare the 
results obtained by SGCM methods with those from MC simulation method and evaluate 
the effectiveness and the applicability of the proposed procedure for different friction 
force models. 
In addition, we also find the stochastic P-bifurcation with variable stiffness. The stochastic 
P-bifurcation, which is a complex nonlinear dynamic phenomenon, mainly illustrates the 
change of topological shape of the steady-state PDFs induced by parameters. The stochastic 
P-bifurcation usually refers to a change of shapes or a change in the number of peaks in 
the PDFs. 

3.1 Example 1: coulomb friction force 
Now, we consider this Duffing system with Coulomb friction excited by Gaussian white 
noise in which 

3

c
x x x x f x tα κ µ ξ+ + + + =sgn( ) ( )                                                (5)    

Or can write it as 

3
c

x y

y y x x f y tα κ µ ξ

=

= − − − − +



 sgn( ) ( )





                                        (6)  

which cf is the amplitude of friction and sgn (.) represents the signum function. The 
parameter values of the system are initially chosen as 1 0 01 0 01, . , .α κ µ= = = . And in this 
case, the intensity of Gaussian white noise 2σ  is chosen as 0.01.  
In order to compute the one-step transition probability matrix, the interesting domain is 
chosen as { }3 3 3 3x xΩ = − ≤ ≤ − ≤ ≤,  . And the selected domain is divided into 50×50 cells, 
2000 random sample trajectories are generated from each cell. Therefore, 5000000 random 
sample trajectories in total are used to construct the one-step transition probability matrix 
for the selected domain. MC simulation method takes the same number of samples. Hence, 
using the method illustrated in Section 2, the steady-state probability density functions 
(PDFs) of displacement x and velocity y y x=( )  are shown in Figs. 2 and 3 with the 
adjustable friction force coefficient cf . 

In Fig. 2(a), we can see that the marginal PDF of displacement x presents a bimodal state 
(red solid line) with 0 02.cf = − . As cf  increases, the topological structure of marginal 
PDFs of x  changes from bimodal state to unimodal state. And when 0 01.cf = , the 
topological structure of marginal PDF is a unimodal state (brown solid line) obviously. The 
marginal PDFs of velocity x  have similar trends with the friction coefficient cf
increasing, which are shown in Fig. 2(b). In Fig. 3, the joint PDFs of displacement x  and 
velocity x  are displayed with the adjustable coefficient cf . Among them, the results of 
the SGCM method is in the left side of Figs. 3(a)-3(d) when 0 02 0 01 0 0 01. , . , , .cf = − − , 
respectively. The corresponding results of MC simulation are on the right side. With the 
increasing of cf , the steady-state joint PDFs vary from a “crater” into one “peak”. By 
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combining Figs. 2 and 3, we can find that the value of the friction coefficient cf  will 
induce changes in the topological structure of the stochastic system, thus affecting the 
stability of the system. This phenomenon is called stochastic P-bifurcation [Yang, Sanjuan, 
Liu et al. (2016)]. In addition, it can be seen that the results of the SGCM method are in 
good agreement with the results of the MC simulation method. And Tab. 1 is the time 
comparison of the SGCM method and MC method, which shows the high efficiency of 
SGCM obviously. As we can see, this method is an efficient approach to analyze the 
responses of a friction system with noise fluctuation. 

Table 1: The calculation time comparison of two methods for the system (6) 

      Values (fc) 
Methods 

-0.02 -0.01 0 0.01 

SGCM 249.7 s 252.4 s 248.2 s 260.9 s 
MC 54208.2 s 54036.7 s 54912.7 s 55610.5 s 

 

 

Figure 2: The steady-state marginal PDFs of system (6) with 0 02 0 01 0 0 01. , . , , .cf = − − . (a) 
The steady-state marginal PDFs of x ; (b) The steady-state marginal PDFs of y . Solid lines: 
the SGCM method results; symbols: MC simulation method results 
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Figure 3: The steady-state joint PDFs of system (6) for x and y with 0 02 0 01 0 0 01. , . , , .cf = − − . 
Left sides: the SGCM method results; right sides: MC simulation method results. (a)

0 02.cf = − ; (b) 0 01.cf = − ; (c) 0cf = ; (d) 0 01.cf =  

3.2 Example 2: Dahl friction force 
The second example considers the following Duffing system with Dahl friction subjected 
to Gaussian white noise. The equations of motion of the system are written as: 

3

D
x x x x f tκ α µ λ ξ+ + + + = ( )                                                  (7) 

D
C

x
f x x

f
λ

= −




                                                           (8) 

where Dfλ is the Dahl friction force, suppose that Dz f= . Rewrite the system as 



Dynamic Analysis of Stochastic Friction Systems Using                                 55 

 3 ( )
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c

x y

y y x x z t

y
z y x

f

κ α µ λ ξ

λ

=

= − − − − +

= −



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









                                            (9)      

For Eq. (9), the effects of different values ofα are considered under the fixed parameters 
0 02 1 0 05. , , .cfκ µ= = =  and the Dahl friction force parameter 0 06.λ = . The intensity of 

Gaussian white noise 2σ  is chosen as 0.02. The interested domain of the SGCM method 
is chosen as { }2 2 2 2,x yΩ = − ≤ ≤ − ≤ ≤  with a cell structure of 50×50. And 2000 
random sample trajectories are also generalized from each cell. Hence, out of cells, there 
are a total of 5000000 sample trajectories to construct the one-step transition probability 
matrix. For comparison, the MC simulation method is used. In Figs. 4 and 5, the steady-
state PDFs of displacement x  and velocity y  of system 9( ) are respectively plotted with 
the adjustable damping coefficient α .  
In Fig. 4, blue line, green line, pink line and orange line represent the steady-state responses 
with 0 5 0 0 5 1. , , . ,α = − − , respectively. As shown in Fig. 4(a), the topological structure of 
marginal PDF of displacement x  is unimodal shape when 0 5.α = . But as α  decreases, 
the peaks of the marginal PDFs start to go down and it can be seen that the shape of the 
marginal PDFs of x  changes from one peak to two peaks. However, there is no significant 
change in the topological structure velocity y with the α  decreasing in Fig. 4(b). The 
marginal PDFs of velocity always maintain the shape of single peak no matter how α  
changes. Fig. 5 shows the joint PDFs of displacement and velocity when α  changes. 
Among them, the results of the SGCM method is in the left side of Figs. 5 (a)-(d) when

0 5 0 0 5 1. , , . ,α = − − , respectively. The corresponding results of the MC simulation method are 
on the right side. The joint PDFs of x  and y  display the change from one peak to two 
peaks. These figures demonstrate the occurrence of the stochastic P-bifurcation when the 
damping coefficientα decreases from 0.5 to -1. Of course, the results of the SGCM method 
are well coincident with the MC simulations, which verify the effectiveness of the method. 
The calculate time comparison of the SGCM method and MC simulation method are shown 
in Tab. 2, it can be seen that the SGCM method has the advantage of time obviously. 

Table 2: The calculation time comparison of two methods for the system (9) 

Values (α) 
Methods 

0.5 0 -0.5 -1 

SGCM 248.4 s 246.0 s 240.5 s 243.2 s 
MC 80670.1 s 78120.2 s 77960.4 s 77420.8 s 
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Figure 4: The steady-state marginal PDFs of system (9) with 0 5 0 0 5 1. , , . ,α = − − . (a) The 
steady-state marginal PDFs of x ; (b) The steady-state marginal PDFs of y . Solid lines: 
the SGCM method results; symbols: MC simulation method results 
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Figure 5: The steady-state joint PDFs of system (9) with 0 5 0 0 5 1. , , . ,α = − − . Left sides: the 
SGCM method results; right sides: MC simulation method results. (a) 0 5.α = ; (b) 0α = ; (c)

0 5.α = − ; (d) 1α = −  

4 Conclusions 
In this paper, we investigate the stochastic responses of the nonlinear friction systems with 
the adjustable coefficient property under Gaussian white noise excitation. Using the SGCM 
method, we can obtain the steady-state probability density functions of systems 
displacement and velocity with different friction force model. 
To verify the accuracy and validate the applicability of the suggested approach, we present 
two classical nonlinear friction systems with the adjustable coefficient, i.e., Coulomb force 
model and Dahl force model as examples. By comparing with the Monte Carlo simulation 
method, it is proved that the high efficiency of the SGCM method under two examples. In 
addition, adjustable coefficients cf andα can induce stochastic P-bifurcation in the two 
examples, respectively. It is showed that this phenomena can affect the stability of the 
systems with the adjustable coefficient. 
Without any approximation transformation to the original systems, the non-smooth of the 
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friction systems still retain, we conclude that the proposed method is more advanced than 
the common analytic method. We are currently working in addressing for engineering 
interests, the dynamic analysis of stochastic response and bifurcation is of great 
significance to practical engineering, we will report results of more complicated problems 
in future publications. 
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