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Hybrid Passive/Active Vibration Control of a Loosely Connected
Spacecraft System

Xin Wang1, 2, *, Xiaokui Yue1, 2, Haowei Wen1, 2 and Jianping Yuan1, 2

Abstract: In this paper, a hybrid passive/active vibration (HPAV) controller of a loosely
connected spacecraft consisting of a servicing satellite, a target and an X-shape structure
isolator is first proposed to suppress vibrations of the system when subjected to the
impulsive external excitations during the on-orbit missions. The passive dynamic response
of the combined system can be adjusted appropriately to achieve the desired vibration
isolation performance by tuning the structural parameters of the bio-inspired X-shape
structure. Moreover, the adaptive control design through dynamic scaling technique is
selected as the active component to maintain high vibration isolation performance in the
presence of parameter uncertainties such as mass of the satellite platform, the damping
and rotation friction coefficients of the X-shape structure. Compared with the pure
passive system and the traditional spring-mass-damper (SMD) isolator, the HPAV strategy
witnesses lower transmissibility, smaller vibration amplitude and higher convergence
rate when subjected to the post-capture impact. Numerical simulations demonstrate the
feasibility and validity of the proposed hybrid control scheme in suppressing vibrations of
the free-floating spacecraft.

Keywords: Hybrid passive/active vibration control, X-shape structure, adaptive control,
on-orbit capture.

1 Introduction
Vibration control is playing an increasingly significant role in various engineering practices
including protection of precision instruments, vibration isolation in space launch and on-
orbit operations. With the rapid development of aerospace industry during the past two
decades, the structure of space vehicle has become more and more advanced and cost of
the spacecraft has been increased dramatically. Therefore, it is of great importance to
ensure that the spacecraft is working in good condition for a long duration. However,
nearly twenty percent of the newly launched spacecraft stop working in their very early
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age, leading to a huge amount of economic loss. Besides, the invalid spacecraft occupy
valuable space orbits, which is a waste of orbit resources. It is a promising strategy to
capture the invalid spacecraft and then fix or refuel it on-orbit, which is called on-orbit
maintenance or on-orbit servicing (OOS) [Stoll, Letschnik, Walter et al. (2009); Badawy
and McInnes (2008); Saleh, Lamassoure, Hastings et al. (2003)]. The OOS for the invalid
satellite is regarded as one of the most difficult space missions, due to (i) the invalid satellite
is a non-cooperative target, which cannot provide its own state information to the servicing
spacecraft and (ii) the target does not have a specialized docking mechanism, so its engine
nozzle is usually selected as a capture component. Both the above facts make the impact
between the servicing spacecraft and the target inevitable. During the past decade, more
attentions have been paid to vibration suppression of the spacecraft especially suffering
an impact after capturing the target. The post-capture vibration control of the combined
spacecraft system is highly required.
According to the differences of vibration sources, post-capture vibrations of spacecraft
can be generally classified into two types: the high frequency periodic excitation and the
impact excitation. The former arises from the moving payloads mounted on the target,
such as the reaction flywheel and the driving mechanism of solar panel. The latter comes
from collisions between the servicing satellite and the target [Xavier, Sun-Wook, Michel
et al. (1997)]. In the mission of capturing a non-cooperative target, the impact between
the servicing spacecraft and the target may be significantly strong. Unfortunately, until the
work by Dai et al. [Dai, Jing, Wang et al. (2018); Dai, Jing, Sun et al. (2018)], almost
all the existing studies use the rigidly connected system to model the combined spacecraft
system, which means that the servicing satellite and the target are considered to be rigidly
connected without relative motion. This model is oversimplified for the non-cooperative
capture mission. Neglecting the mutual impact would make the post-capture spacecraft
unstable or even tumbling. Therefore, a novel “loose-connection” pattern was proposed
by Dai et al. [Dai, Jing, Wang et al. (2018)] to describe the sudden impact between the
servicing satellite and the target at the moment of touch.
Normally, passive control as the most mature technology is widely applied for on-orbit
vibration isolation missions. Various passive systems in the present literatures can easily
achieve good vibration isolation performance, which is known for high reliability, easy
implementation and low development cost. The SMD isolator [Park (1967)] is regarded
as a typical passive control strategy for vibration isolation. However, increasing the linear
damping of the SMD system can decrease the transmissibility on the region of natural
frequency and deteriorate the vibration isolation performance at high frequency range. And
there still exists some problems in the passive control methods, including poor instability,
low loading capability and potential bifurcation effects.
To improve the vibration isolation performance, semi-active methods are always used
to suppress vibrations of system whose stiffness and damping can be modified under
different conditions. They can achieve excellent isolation performance for low frequency
vibrations with sufficient loading capacity and robustness. Many efficient semi-active
methods including using magnetorheological fluids [Oh (2004)] and some smart materials
[Clark (2000)] have been widely studied before. Actually, semi-active isolation is a passive
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control method in essence, which still has limitations of passive isoaltion. To overcome
the limitations, active vibration control mechanism including drivers, actuators and sensors
is proposed, which can achieve excellent performance for low frequency vibration with
efficient loading capacity and robustness simultaneously. For instance, an active vibration
controller based on the coupling dynamics was designed in Yuan et al. [Yuan, Liu and Qi
(2017)] and applied to the maneuvering spacecraft, which can suppress the vibrations of the
flexible structures efficiently. The active control of electric field for suppressing vibration
of the moving beam was proposed and verified to be very effective in Lin [Lin (2009)].
Optimal performance of MFC (macro fibre composites) actuators and sensors for vibration
suppression of rotating composite beams was studied in Vadiraja et al. [Vadiraja and
Sahasrabudhe (2008)] and some quasi-optimal control algorithms have also been proposed
by Abakumov et al. [Abakumov and Miatov (2006)]. To achieve higher reliability and
obtain better performance, the hybrid passive/active vibration isolation methods can be
used commonly, which has the strengths of both passive and active isolators.
Recently, a kind of passive vibration isolation structure referred to as X-shape structure
was designed to isolate vibrations by Sun et al. [Sun and Jing (2016, 2015); Liu, Jing
and Chen (2016); Liu, Jing and Li (2015)]. This kind of structure can provide nonlinear
damping and nonlinear stiffness by geometrical relations of the rods, rotation joints and
springs. It can achieve very low resonance frequency and large displacement motion, but
simultaneously maintain a good and designable loading capacity without the stability issue.
Besides, it can be easily assembled and flexibly implemented in practical applications.
Based on the above superiority, Dai et al. [Dai, Jing, Wang et al. (2018)] first combined
the X-shape structure with robotic arms tactfully to suppress vibrations of a free-floating
spacecraft subjected to periodic or impulsive excitations, which can be encountered during
performing the on-orbit servicing missions. The effects of structure parameters on the
isolation performance for the satellite platform and the capture mechanism have been
studied for the proposed bio-inspired quadrilateral shape structure system (BIQS) under
either periodic or impulsive external excitations. Compared with the traditional SMD
isolator, the proposed BIQS system can be regarded as a highly efficient passive control
method for vibration suppression of free-floating spacecraft.
Nonetheless, there still exists many problems in the aspects of reliability and stability for
pure passive X-shape structure vibration control. For example, the pure passive structure
is easily vulnerable to some uncertainties and the drifting problem illustrated in Dai et al.
[Dai, Jing, Wang et al. (2018)] makes spacecraft be in a state of instability. Therefore, that
how to achieve higher reliability and stability is crucial in complex space environment. It is
very necessary to add the active control into the X-shape structure system to achieve better
vibration isolation performance.
In this work, the bio-inspired X-shape structure between the robotic arm and the capturing
mechanism is redesigned in order to improve the stability of system by adding the sliding
tracks into both sides, which can change one-point into two-point supporting. Besides, a
hybrid passive/active vibration isolation control strategy is proposed to suppress the post-
capture vibrations of the loosely connected combined spacecraft system consisting of a
chaser, a target and an X-shape isolator. The adaptive control method through dynamic
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scaling technique introduced in Seo et al. [Seo and Akella (2008); Bustan, Sani and Pariz
(2014); Karagiannis, Sassano and Astolfi (2009); Liu, Ortega, Su et al. (2011); Wen, Yue
and Yuan (2017); Wen, Yue, Li et al. (2017)] is adopted as the active control component in
the present hybrid control method. When the end-effector of spacecraft is subjected to the
external impulsive force, the X-shape structure vibration isolation system without active
control can suppress vibrations efficiently, but the whole combined system may drift at a
certain speed. With the introduction of active control strategy, the drifting problem arose
in the X-shape structure system can be conquered. Overall, the main contributions of this
study are two-folds: (i) the hybrid passive/active vibration control strategy based on the
bio-inspired X-shape structure is first proposed to suppress the post-capture vibrations of
the free-floating spacecraft subjected to the impact excitation; (ii) the adaptive controller
through dynamic scaling technique is designed for the X-shape isolation system with
parameter uncertainties, which shows a much better performance.
The rest of this paper is organized as follows. In Section 2, the dynamical equations for
the X-shape structure isolation system are formulated. The main design procedures of the
adaptive control are presented in Section 3. In Section 4, numerical simulations based on
the dynamical model in Section 2 are presented to show the validity and feasibility of this
hybrid control strategy. Finally, a conclusion is drawn to summarize the results.

2 Problem statement
When the spacecraft is performing the on-orbit capturing missions, the capture mechanism
has a collision with the target inevitably, which generates the impact excitation on the end-
effector. This is especially the case for some uncooperative targets, which lack accurate
state information and result in some undesirable vibrations that can do damage to the
satellite platform. Therefore, we combine the X-shape structure in conjunction with active
control method to suppress generated vibrations to make the satellite platform become
stable as quickly as possible.
In this Section, we consider the passive vibration isolation system with an n-layer X-shape

(a) Global view (b) Local view

Figure 1: Schematic diagram of implementing capture mission of spacecraft with the X-
shape structure
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structure. The X-shape structure is installed between the robotic arm and the capture
mechanism. The schematic diagram of the n-layer X-shape structure isolation system is
depicted in Fig. 1. Different from the designed X-shape structure in Dai et al. [Dai, Jing,
Wang et al. (2018)], the X-shape structure in this paper is modified by adding two sliding
tracks in both sides, which changes the one-point into two-point support, which improves
the stability of the whole system. Here the mass m represents the capture mechanism
including the end-effector and the target, and the mass M denotes the satellite platform
with the robotic arm. Besides, each layer has two rods in combination with one joint
whose length of each rod is 2l. The angle between the rod and the vertical line is denoted
as θ. The angle displacement of each connecting joint is represented by ϕ and z is the
vertical motion of each connecting joint. The two supporting joints in the left and right
bottom layer can freely slide along with pre-designed vertical tracks. The restoring force
in the vertical spring is linear with the stiffness kl. The undeformed and deformed states of
the whole isolation system are shown in Fig. 2. The absolute displacement of the satellite
platform and the capture mechanism are denoted by x and y, respectively. All variables
of the X-shape isolation system are marked in Fig. 2. It can be seen that the n-layer
X-shape structure is a two-degree-of-freedom system because the rotational angle ϕ and
vertical motion z can be expressed by x and y. According to the geometrical relations of
the connecting rods and the relative motions, the rotating angle ϕ and the vertical motion z
are determined by

ϕ = θ − arctan
( l sin θ − y−x

2n

l cos θ + z/2

)
(1)

z = 2

√
l2 −

(
l sin θ − y − x

2n

)2
− 2l cos θ (2)

y

- 

Damper 1

Damper 2

u

F
M

m

I

Figure 2: The undeformed (red) and deformed (black) states of the X-shape structure

It should be noted that the masses of the connecting rods and the joints in the X-shape 
structure system are neglected because they are far lighter than the capture mechanism and 
the satellite platform. The absolute motions x and y of the masses M and m are chosen as
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the generalized coordinates. The kinetic energy of the whole system can be written as:

T =
1

2
Mẋ2 +

1

2
mẏ2 (3)

The potential energy is the elastic energy of the spring in the X-shape structure in the
vertical direction, which can be expressed as:

V =
1

2
klz

2 (4)

where kl denotes the stiffness of spring and z is the motion along the pre-designed sliding
track.
The virtual work δW is given by:

δW = −c1(ẏ − ẋ)δ(y − x)− 6nc2ϕ̇δϕ+ uδx+ Fδy (5)

where c1 is the damping coefficient in the horizontal direction and c2 is the rotational
friction coefficient of each connecting joint. The impulsive force on y is represented by
F and the active control torque over x is denoted by u, which can be generated either by
gas jets or by reaction wheels mounted on the spacecraft. The generalized forces Qx and
Qy are defined as follows:

Qx = c1(ẏ − ẋ)− 6nc2ϕ̇
∂ϕ

∂x
+ u (6)

Qy = −c1(ẏ − ẋ)− 6nc2ϕ̇
∂ϕ

∂y
+ F (7)

Making use of the Lagrange’s principle, the governing equations of the hybrid vibration
isolation system which is subjected to the control force and the external excitation can be
determined as follows:

Mẍ+ klz
∂z

∂x
+ c1(ẋ− ẏ) + 6nc2ϕ̇

∂ϕ

∂x
= u (8)

mÿ + klz
∂z

∂y
+ c1(ẏ − ẋ) + 6nc2ϕ̇

∂ϕ

∂y
= F (9)

According to the Eqs. (1) and (2), the above dynamical equations can be transformed in
terms of x and y as:

Mẍ+
(
c1+

3c2

2n[l2 − (l sin θ − y−x
2n )2]

)
(ẋ− ẏ)+

kl
n2

(y − x) (10)

+
2kll cos θ

n

l sin θ − y−x
2n√

l2 − (l sin θ − y−x
2n )2

− 2kll sin θ

n
=u

mÿ+
(
c1+

3c2

2n[l2 − (l sin θ − y−x
2n )2]

)
(ẏ−ẋ)− kl

n2
(y − x) (11)

− 2kll cos θ

n

l sin θ − y−x
2n√

l2 − (l sin θ − y−x
2n )2

+
2kll sin θ

n
=F
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Employing the third order Taylor expansion series, the dynamical equations can be changed
into:

Mẍ− [α0 + α1(y − x)+α2(y − x)2 + α3(y − x)3](ẏ − ẋ) (12)

−[β1(y − x) + β2(y − x)2 + β3(y − x)3 + β4(y − x)4] = u

mÿ + [α0 + α1(y − x)+α2(y − x)2 + α3(y − x)3](ẏ − ẋ)

+[β1(y − x) + β2(y − x)2 + β3(y − x)3 + β4(y − x)4] = F

where

α0 = c1 +
3c2
2nl2

sec2 θ, (13)

α1 = − 3c2
2n2l3

tan θ sec3 θ, (14)

α2 =
3c2

8n3l4
sec4 θ(4 sec2 θ − 3), (15)

α3 = − 3c2
4n4l5

tan θ sec5 θ(2 sec2 θ + 1) (16)

and

β1 =
kl
n2

(sec2 θ − 1), (17)

β2 = − 3kl
4n3l

tan θ sec3 θ, (18)

β3 =
kl

8n4l2
sec6 θ(4 sin2 θ + 1), (19)

β4 = − 5kl
64n5l3

sin θ sec8 θ(4 sin2 θ + 3) (20)

In this study, parameters of the hybrid vibration isolation systems except c1, c2 and M are
all known. The aim is to control the velocity and displacement of the satellite platform M
to keep it stable when the end-effector is subjected to the impulsive excitation. To achieve
this goal, considering the parameter uncertainties of system, an adaptive controller through
dynamic scaling design is selected as an active control component, which is explained in
detail in the next Section.

3 Adaptive control through dynamic scaling design
To illustrate this control strategy more clearly, the above case is extended to a general one.
The dynamical model of an n-degree-of-freedom Euler-Lagrange system can be expressed
as follows:

ẋ1 = x2 (21)
M (x1, θ) ẋ2 + C (x1, x2, θ)x2 +G (x1, θ) = u (22)

where x1 = [x11, x12, . . . , x1n]T ∈ Rn and x2 = [x21, x22, . . . , x2n]T ∈ Rn are
the generalized position and velocity vectors, respectively. θ = [p1, p2, . . . , pm]T ∈
Rm represents the unknown system parameters, which means that both M (x1, θ) and
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C (x1, x2, θ) are unknown. u ∈ Rn is the vector of the control torques. The following
properties [Seo and Akella (2009)] of the system defined in Eqs. (21) and (22) are satisfied:

(1) Both M (x1, θ) and C (x1, x2, θ) are linear in terms of θ, which can be stated as:

M (x1, θ)x+ C (x1, x2, θ) y +G (x1, θ) = W (x1, x2) θ, ∀x, y ∈ Rn (23)

(2) M (x1, θ) is a real positive-definite symmetric matrix such that

λmin‖x‖2 ≤ xTM (x1, θ)x ≤ ‖M (x1, θ) ‖‖x‖2, ∀x ∈ Rn (24)

where λmin > 0 is a constant which denotes the minimum eigenvalue of M(x1, θ). ‖ • ‖
represents the 2-norm here and hereafter. Considering a smooth and bounded reference
trajectory xd ∈ Rn whose first to third-order derivatives are also smooth and bounded, the
tracking errors xe = [x1e, x2e]

T ∈ R2n can be defined as x1e = x1−xd and x2e = x2− ẋd,
respectively. As a consequence, the overall tracking error dynamics are obtained as:

ẋ1e = x2e (25)
M (x1, θ) ẋ2e = −M (x1, θ) ẍd − C (x1, x2, θ)x2 −G (x1, θ) + u (26)

Assuming that the relative displacement and the relative velocity measurements are all
available, the aim in this study is to design a tracking controller that will ensure the
asymptotic convergence of the tracking errors, which can be stated as lim

t→∞
xe = 0.

Next, an adaptive control method through the dynamic scaling technique is designed. The
main procedures are presented in the following parts.

3.1 The generalized velocity observer

For the system given in Eqs. (25) and (26), the parameter estimation error is defined as:

zf = ε+ β − θ (27)

where ε, β ∈ Rm are the functions to be specified. A generalized velocity observer
is constructed to modify the traditional Immersion & Invariance parameter estimation
procedure, which is designed as:
˙̂x2 = ẍd − αx1e − (ke + δx)x2e − ψx̂ (x̂2 − x2) (28)

where x̂2 = [x̂21, x̂22, . . . , x̂2n] ∈ Rn denotes the estimated values of x2. ke ∈ R and
ψx̂ ∈ R are the gains to be determined. Both δx and α are positive constants. Regarding

a regression matrix W (x2, x1, xd, ẋd, ẍd, ke) ∈ Rn×m as an “ideal” solution of
(
∂β

∂x2

)T
,

we can obtain:

Wθ = −Mẍd − Cx2 −G+ αMx1e + (ke + δx)Mx2e (29)

By utilizing x̂2 and the elements of W , we can generate an “approximate” solution β =
β (x2, x̂2, x1, xd, ẋd, ẍd, ke) as follow:

β = γ

n∑
i=1

Wi (x̂2, x1, xd, ẋd, ẍd, ke)x2i (30)
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where γ > 0 is a constant. W T =
[
W1,W2, . . . ,Wn

]
, where W1,W2, . . . ,Wn ∈ Rm×1

are the column vectors of W T ∈ Rm×n. On the assumption that ke is independent of x2,
the dynamics of zf can be obtained by substituting Eqs. (21), (22) and (30) into the time
derivative of Eq. (27):

żf = ε̇+
∂β

∂x̂2
˙̂x2 +

∂β

∂x1
x2 +

∂β

∂xd
ẋd +

∂β

∂ẋd
ẍd +

∂β

∂ẍd
x
(3)
d +

∂β

∂ke
k̇e

+
∂β

∂x2
M−1 (−Cx2 −G+ u) (31)

From Eq. (30),
∂β

∂x2
is obtained as

∂β

∂x2
= γW T + γ

[
W (x̂2, x1, xd, ẋd, ẍd, ke)−W

]T
(32)

Considering that all functions in Eq. (32) are smooth and
∂β

∂x2
= γW T holds when x̂2 =

x2, there exists a smooth mapping ∆x (x̂2 − x2, x1, x2, x̂2, xd, ẋd, ẍd, ke) that satisfies:
∂β

∂x2
= γ

[
W + ∆x (x̂2 − x2, x1, x2, x̂2, xd, ẋd, ẍd, ke)

]T
(33)

such that
∆x (0, x1, x2, x̂2, xd, ẋd, ẍd, ke) = 0 (34)
holds for all x1, x2, x̂2, xd, ẋd, ẍd ∈ Rn and ke ∈ R. Furthermore, Eq. (34) ensures the
existence of the mapping ∆̄x (x1, x2, x̂2, xd, ẋd, ẍd, ke) such that
‖∆x‖2 ≤ ‖∆̄x (x1, x2, x̂2, xd, ẋd, ẍd, ke) ‖‖x̂2 − x2‖2 (35)
The detailed proof for the existence of ∆x and ∆̄x is included in the simulation section
with respect to the above system. In view of Eqs. (29), (31) and (33), żf is turned into

żf = ε̇+
∂β

∂x̂2
˙̂x2 +

∂β

∂x1
x2 +

∂β

∂xd
ẋd +

∂β

∂ẋd
ẍd +

∂β

∂ẍd
x
(3)
d +

∂β

∂ke
k̇e

+ γ (W + ∆x)T
[
ẍd − αx1e − (ke + δx)x2e

]
+ γ (W + ∆x)T M−1 (Wθ + u) (36)

Let the estimation law ε̇ and the control law u be assigned as:

ε̇ = − ∂β

∂x̂2
˙̂x2 −

∂β

∂x1
x2 −

∂β

∂xd
ẋd −

∂β

∂ẋd
ẍd −

∂β

∂ẍd
x
(3)
d −

∂β

∂ke
k̇e

− γ (W + ∆x)T
[
ẍd − αx1e − (ke + δx)x2e

]
(37)

u = −W (ε+ β) (38)
Then the Eq. (36) is reduced to
żf = −γW TM−1Wzf − γ∆T

xM
−1Wzf

= −γW TM−1Wzf − φ (∆x) (39)
From the structure of Eq. (39), it can be concluded that φ (∆x) acts as a “disturbance” to
the convergence of zf , so we will focus on the elimination of this “disturbance” in the next
part.
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3.2 Dynamic scaling

Assuming that there exists a scalar function r (t) satisfying r (t) ≥ 1 for ∀t ≥ 0, a scaled
parameter estimation error is considered as follows:

z =
zf

e
√

ln r+1

λmin

· e
1

2

(
1

λ2
min

+1

)
√
λmin

(40)

where λmin is defined in Eq. (24).
The derivative of z with respect to time is obtained as:

ż =
żf

e
√

ln r+1

λmin

· e
1

2

(
1

λ2
min

+1

)
√
λmin

− ṙ

2λminr
√

ln r + 1
· z (41)

Substituting Eqs. (39) and (40) into (41) yields

ż = −γW TM−1Wz − γ∆T
xM

−1Wz − ṙ

2λminr
√

ln r + 1
· z (42)

Consider a positive semi-definite Lyapunov function as:

Vz =
1

2γ
zT z (43)

then V̇z can be obtained:

V̇z = −zTW TM−1Wz − zT∆T
xM

−1Wz − ṙ

2γλminr
√

ln r + 1
zT z

≤ −λmin

2
‖M−1Wz‖2 +

‖z‖2

λmin

(
‖∆x‖2

2
− ṙ

2γr
√

ln r + 1

)
(44)

Let

ṙ = γr
√

ln r + 1‖∆x‖2 (45)

From Eq. (45), it can be concluded that r is a monotone increasing function. So r(0) ≥ 1
must be satisfied to ensure r(t) ≥ r(0) ≥ 1. Substituting Eq. (45) into Eq. (44) yields

V̇z ≤ −
λmin

2
‖M−1Wz‖2 (46)

From Eq. (46), we have M−1Wz ∈ L2 and z ∈ L∞. It is worth noting that z ∈ L∞
does not imply zf ∈ L∞ because of zf = e

√
ln r+1

λmin ·
√
λmin

e
1
2

(
1

λ2
min

+1

) · z. Therefore, we will

concentrate on the boundedness of r, x̂2 − x2, x1e and x2e in the following step.
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3.3 Domination of the closed-loop errors

From Eqs. (25), (26), (28) and (45), we consider the following Lyapunov functions

Ve =
1

2
xT2ex2e +

α

2
xT1ex1e (47)

Vx̂ =
1

2
(x̂2 − x2)T (x̂2 − x2) (48)

Vr =
kx̂
γ

√
ln r + 1 (49)

where kx̂ > 0 is a constant. Note that we have selected r (0) ≥ 1, which ensures that Vr is
positive definite. In combination with Eqs. (22), (25), (26), (38), (40) and (48), V̇x̂ can be
expressed as:

V̇x̂ = (x̂2 − x2)T M−1Wzf − ψx̂ (x̂2 − x2)T (x̂2 − x2) (50)

Due to r(0) ≥ 1, the following inequality exists according to Eq. (45):

e
√

ln r+1

λmin ≤ e
1

2λ2
min

+ ln r+1

2 ≤ e
1

2

(
1

λ2
min

+1

)
√
r (51)

Substituting Eq. (40) into Eq. (50) and making use of Eq. (51) yields

V̇x̂ = e
√

ln r+1

λmin ·
√
λmin

e
1

2

(
1

λ2
min

+1

) (x̂2 − x2)T M−1Wz − ψx̂‖x̂2 − x2‖2

≤ 1

2

 e
√

ln r+1

λmin

e
1

2

(
1

λ2
min

+1

)
2

‖x̂2 − x2‖2 +
λmin

2
‖M−1Wz‖2 − ψx̂‖x̂2 − x2‖2

≤
(

1

2
r − ψx̂

)
‖x̂2 − x2‖2 +

λmin

2
‖M−1Wz‖2 (52)

Let V1 = Vz +Vx̂ +Vr, then employing Eqs. (35), (46) and (52), V̇1 is obtained as follows:

V̇1 = V̇z + V̇x̂ + V̇r ≤
(

1

2
r − ψx̂ +

kx̂
2
‖∆̄x‖

)
‖x̂2 − x2‖2 (53)

Select the gain ψx̂ as

ψx̂ =
1

2
r +

kx̂
2
‖∆̄x‖ (54)

then we have

V̇1 ≤ 0 (55)

From Eq. (55), we can obtain x̂2 − x2, r ∈ L∞, which indicates that zf ∈ L∞ and

M−1Wzf ∈ L2 because of the facts zf = e
√

ln r+1

λmin ·
√
λmin

e
1
2

(
1

λ2
min

+1

) z, z ∈ L∞ and M−1Wz ∈

L2. Furthermore, from Eqs. (22) and (28), lim
t→∞

x̂2 − x2 = 0 can be acquired by utilizing
Barbalat’s lemma. In a word, the proposed controller ensures the asymptotic convergence
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of the observation error and the boundedness of r, and the asymptotic convergence of the
tracking error x1e and x2e can also be proved in a similar way. According to Eq. (47), V̇e
can be obtained as:

V̇e = xT2eM
−1 [−Wzf − (ke + δx)Mx2e − αMx1e] + αxT1ex2e

= −xT2eM−1Wzf − ke‖x2e‖2 − δx‖x2e‖2 (56)

Substituting Eq. (40) into Eq. (56) yields

V̇e = −e
√

ln r+1

λmin ·
√
λmin

e
1

2

(
1

λ2
min

+1

)xT2eM−1Wz − ke‖x2e‖2

≤
(

1

2
r − ke

)
‖x2e‖2 +

λmin

2
‖M−1Wz‖2 − δx‖x2e‖2 (57)

Select the gain ke as:

ke =
1

2
r (58)

Let V2 = Vz+Ve, then employing Eqs. (46), (57) and (58), the derivative of V2 with respect
to time is given as:

V̇2 = V̇z + V̇e ≤ −δx‖x2e‖2 (59)

which demonstrates that x1e ∈ L∞ and x2e ∈ L2
⋂
L∞. From Eqs. (25), (26), (29) and

(38), ẋ2e can be further written as:

ẋ2e = −M−1Wzf − (ke + δx)x2e − αx1e (60)

Considering that M−1Wzf ∈ L2, we can obtain that lim
t→∞

x2e = 0 by utilizing Barbalat’s

lemma. From Eqs. (26), (29) and (39), we can prove that ẍ2e is bounded because żf , Ẇ
and M (x1, θ) are bounded, which also implies that lim

t→∞
ẋ2e = 0 and lim

t→∞
M−1Wzf = 0.

Therefore, we have lim
t→∞

x1e = 0 from Eq. (60). All in all, this designed controller ensures
the asymptotic convergence of the tracking errors.

4 Numerical simulation
In this Section, an adaptive method as active control component is employed in the
vibration isolation system introduced in Section 2 and numerical simulations are used
to demonstrate the validity and feasibility of this hybrid control strategy. Here we pay
more attentions to the vibration responses of the satellite platform which consists of many
precision instruments. Therefore, we only apply the adaptive controller into vibration
suppression of the satellite platform.

4.1 Comparison with SMD isolator under no control

Before exerting control force into the system, we first observe that how responses of the
X-shape structure system change without control. The SMD isolator is widely used for
vibration isolation in practice. Therefore, we make a comparison between the uncontrolled
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X-shape structure system and the uncontrolled SMD isolator in details. The dynamical
model of the SMD isolator with the same technique represented in Section 2 is given as
follows.

Mẍ− c(ẏ − ẋ)− k(y − x) = 0 (61)
mÿ + c(ẏ − ẋ) + k(y − x) = F (62)

It should be noted that we must select the system parameters of the SMD isolator
legitimately in order to ensure a fair comparison between the X-shape structure isolation
system and the traditional SMD isolator, so the linearized damping α0 and the linearized
stiffness β1 in Eq. (12) are regarded as the damping coefficient c and stiffness of spring
k, respectively. The displacement transmissibility represented by Td is thought as a
reliable measure of vibration control system and defined as the ratio between the vibration
amplitude of the mass M and that of the mass m, i.e., Td = AM/Am. Here M=100 kg,
m=2 kg, kl=1200 N/m, θ = π/6, l=0.2 m, n=3. In order to compare the X-shape system
with the SMD isolator better, the force F is selected as the periodic external excitation,
i.e., F = A cos(ωt), where A = 2, ω ∈ [0, 10]. The parameters given above are fixed
as reference unless otherwise specified. The displacement transmissibility versus forcing
frequency curves for X-shape structure and SMD isolators are depicted in Fig. 3. As we
can see from this figure, the two curves coincide basically except in the resonant frequency
region. The magnified part denotes that the maximum displacement transmissibility of
the X-shape structure and the SMD isolators are 6.914 dB and 9.634 dB, respectively.
Besides, the resonant frequency of the X-shape structure system is smaller than that of the
SMD isolator. A conclusion can be drawn that the X-shape structure system has better
vibration isolation performance than SMD isolator around the natural frequency. In the
higher frequency region, there exists the lower displacement transmissibility for the X-
shape structure system, which is less obvious than around natural frequency region.
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Figure 3: Displacement transmissibility versus forcing frequency between the X-shape 
structure and SMD isolators without control

Next, the vibration responses are investigated for two vibration isolation systems when 
subjected to an impulsive force. To simulate the post-capture responses better, the
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impulsive force F is replaced by imposing an impulse I to the end-effector where the
impulse I is selected as I = 0.8 kg ·m/s. It means that the capture mechanism is provided
a initial velocity with influence of the impulsive force F , because the acting time of the
impulsive force is infinitesimal. Figs. 4 and 6 show the absolute displacement of the
satellite platform M and the capture mechanism m, respectively. It can be seen that the
curves of X-shape structure system are in agreement with that of SMD isolator basically.
With time going by, the displacement x as well as y is still increasing and approaches
to a oblique line, which implies that the motion consists of simultaneous vibrational and
translational components. Due to the existence of damping, vibration response stops after
a short period of time. Shown in Figs. 5 and 7 are the velocities of them, two curves
jump up and down in the first few seconds and keep constant afterwards, which indicates
that the two masses do not keep stable and drift at a speed vd = 0.78 cm/s ultimately.
The accelerations of the masses m and M for the X-shape structure and SMD isolator are
plotted in Figs. 8 and 9, respectively. It can be seen that the maximum accelerations of ÿ for
the X-shape and SMD isolator are 1.50 m/s2 and 1.57 m/s2, and that of ẍ are 0.0300 m/s2

and 0.0315 m/s2. |ÿ|max and |ẍ|max of the SMD isolator are 4.7% and 5.1% larger than that
of the X-shape structure system. It indicates that the X-shape structure system has a better
vibration isolation performance than the SMD isolator. The two pure passive isolators have
a relative good vibration isolation performance for the satellite platform, but problem of
drifting motion still exists and they cannot make the satellite platform stay stable, which
affects the performance of the precision instruments. Thus it is very indispensable to
draw the active control strategy into the X-shape isolation system to obtain better vibration
isolation performance.
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Figure 4: Absolute displacement of mass M for the X-shape structure and SMD isolators
without control
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Figure 5: Velocity of mass M for the X-shape structure and SMD isolators without control
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Figure 6: Absolute displacement of mass m for the X-shape structure and SMD isolators 
without control

4.2 Adaptive controller design

In this Section, the mass M and two structural parameters c1, c2 are all unknown, so that 
θ = (M , α0, α1, α2, α3) is also unspecified. According to the aforementioned introduction 
in Section 3, the parameter estimation error is defined as:

zf = ε+ β − θ (63)
Some related equations are given as below:
ẋ1 = x2 (64)

ẋ2 = M−1
(

[α0 + α1(y − x1) + α2(y − x1)2 + α3(y − x1)3](ẏ − x2) (65)

+ β1(y − x1) + β2(y − x1)2 + β3(y − x1)3 + β4(y − x1)4 + u
)
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Figure 7: Velocity of mass M for the X-shape structure and SMD isolators without control
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Figure 8: Acceleration of mass m for the X-shape structure and SMD isolators without
control

Mẍ− [α0 + α1(y − x) + α2(y − x)2 + α3(y − x)3](ẏ − ẋ) (66)

− [β1(y − x) + β2(y − x)2 + β3(y − x)3 + β4(y − x)4] = u

Wθ = −Mẍd + [α0 + α1(y − x) + α2(y − x)2 + α3(y − x)3](ẏ − x2) (67)
+ αMx1e + (ke + δx)Mx2e

β = γW (x̂2, x1, xd, ẋd, ẍd, ke)
Tx2 (68)

∂β

∂x2
= γ

[
W + ∆x (x̂2 − x2, x1, x2, x̂2, xd, ẋd, ẍd, ke)

]T
(69)
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Figure 9: Acceleration of mass M for the X-shape structure and SMD isolators without
control

żf = ε̇+
∂β

∂x̂2
˙̂x2 +

∂β

∂x1
x2 +

∂β

∂xd
ẋd +

∂β

∂ẋd
ẍd +

∂β

∂ẍd
x
(3)
d +

∂β

∂ke
k̇e (70)

+
∂β

∂x2
M−1

(
[α0 + α1(y − x) + α2(y − x)2 + α3(y − x)3](ẏ − ẋ)

+ [β1(y − x) + β2(y − x)2 + β3(y − x)3 + β4(y − x)4] + u
)

Next, the estimation law ε̇ and the control law u can be designed as:

ε̇ = − ∂β

∂x̂2
˙̂x2 −

∂β

∂x1
x2 −

∂β

∂xd
ẋd −

∂β

∂ẋd
ẍd −

∂β

∂ẍd
x
(3)
d −

∂β

∂ke
k̇e

− γ (W + ∆x)T
[
ẍd − αx1e − (ke + δx)x2e

]
(71)

u = −W (ε+ β)− [β1(y − x) + β2(y − x)2 + β3(y − x)3 + β4(y − x)4] (72)

From Eqs. (67)-(69), ∆x can be obtained as:

∆x =


(ke + δx) (x̂2 − x2)
− (x̂2 − x2)

−(y − x1) (x̂2 − x2)
−(y − x1)2 (x̂2 − x2)
−(y − x1)3 (x̂2 − x2)


T

(73)

From Eq. (73), it can be obtained that

∆x∆T
x = (x̂2 − x2)T ∆̄x(x̂2 − x2) (74)

Select the ∆̄x as:

∆̄x = (ke + δx)2 + 1 + (y − x1)2 + (y − x1)4 + (y − x1)6 (75)

Utilizing the definition of 2-norm, the following inequality from Eq. (74) can be further
obtained as:

‖∆x∆T
x ‖ ≤ ‖∆x‖2 ≤ ‖∆̄x‖‖x̂2 − x2‖2



78 CMES, vol.122, no.1, pp.61-87, 2020

∆which proves the existence of ∆x and ¯ 
x. The initial x1, x2, and x̂2 are set to zero. The 

reference trajectory is chosen as xr = 0. The adaptive control method is included in Eqs.
(28), (29), (30), (37), (38), (45), (54), (58), (73) and (75). In this numerical experiment, we 
employ the impulse I = 0.8 kg ·m/s instead of the impulsive force F to simulate the post-
capture dynamical response.

4.2.1 Effects of active control on the vibration isolation performance of the X-shape

structure system

In this part, effects of active control strategy in combination with the X-shape structure
system on the vibration isolation performance are studied in details. The dynamical
equation is shown in Eq. (10). The corresponding unknown parameters are given by
θX =

[
100, 0.3, 0.4

]T . The initial parameter estimate is chosen as:

θ̂X(0) + βX(0) =
[
120, 0.1, 0.3

]T
The control gains are selected as follows:

γ = 10; α = 3.5; ke = 2.0; δx = 2.0; r (0) = 1.01; kx̂ = 2.0.

Next, the adaptive control is applied to the X-shape structure system. Shown in the 
following figures, the red l ine and the blue l ine represent the responses before and after 
the active control algorithm is applied, respectively. From Figs. 10 and 11, we can find 
that mass m can not stay stable and drift at a speed of vd =0.78 cm/s before control, 
which increases the displacement of mass m. However, the drifting motion disappears 
and mass m tends to be stable after control. According to Figs. 12 and 13, we can see 
that the mass M can not keep stable after a short period of time and also drift at a speed of 
vd =0.78 cm/s, which leads to increase of the displacement for mass M without control. 
But mass M vibrates at a very small speed initially and becomes stable in a short time 
under control, which protects the precision sensitive payloads from damage. The vibration 
isolation performance employing the active control shows advantage over the pure passive 
control. Therefore, it is very needful to add the adaptive control into the X-shape structure 
system, which can make the displacement and the velocity of the satellite platform get close 
to zero quickly in order to guarantee the stability.
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Figure 10: Displacement of mass M for the X-shape structure system with control and
without control
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control
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Figure 12: Displacement of mass m for the X-shape structure system with control and
without control
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Figure 13: Velocity of mass m for the X-shape structure system with control and without
control
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Figure 15: Displacement error of massm for the X-shape structure and SMD isolators with
control

4.2.2 Comparison with SMD isolator under control

Next, we compare the vibration isolation performance for the X-shape structure system
and SMD isolator with same control scheme. The SMD dynamical equations are shown
in Eqs. (61) and (62), where the corresponding unknown parameters are given by
θS =

[
100, 0.3

]T similarly. In order to achieve a relative fair environment, the damping
parameter c and the stiffness parameter k are chosen as the linearized damping α0 in Eq.
(13) and the linearized stiffness β1 in Eq. (17), respectively. The initial parameter estimate
for this control method is selected as:

θ̂S(0) + βS(0) =
[
120, 0.1

]T
The control gains in this control are chosen as same as before. Affected by the impulsive
force, the vibration responses of X-shape structure system and SMD isolator under this
adaptive control will be investigated in the following part. The displacement and velocity
histories of the capture mechanism subjected to an impulse are shown in Figs. 15 and 14,
respectively. No matter whether it is the X-shape structure system or the SMD isolator,
mass m jumps up and down around the equilibrium point and stops after a period of time
due to the existence of damping. The maximum displacements of mass m are 0.036 m and
0.035 m, which have same maximum velocity v = 0.101 m/s. It is seen that the curve of
the X-shape structure system versus time histories is in agreement with that of the SMD
isolator on the whole, which provides a good condition to do some comparison on the
isolation performance of two vibration isolation systems.
After exerting the adaptive control into two systems, we can find these two vibration
isolation systems are both effective when subjected to the external impulsive excitation
according to Figs. 16 and 18. The maximums of xX and xS are 1.3 × 10−3 m and
2.0× 10−4 m, respectively, which are relative small in comparison with the maximum one
ymax. In addition, the X-shape isolation system has smaller vibration amplitude and needs
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less time than the traditional SMD isolator to make the satellite platform keep stable. As
depicted in Figs. 17 and 19, it means that the adaptive controller can ensure the asymptotic
convergence of the tracking errors.
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Figure 16: Displacement error of mass M for the X-shape structure and SMD isolators
with control
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Figure 17: Displacement error norm of mass M for the X-shape structure and SMD 
isolators with control

Compared with the SMD isolator, the X-shape structure system has faster convergence rate 
and better vibration isolation performance. Fig. 20 shows that the observer error decays 
to zero approximately, which demonstrates that the velocity estimation x̂2 coincides with 
the practical velocity x2. The control torque demands of the adaptive controller for two 
isolation systems are shown in Fig. 21. It is noted that the demands remain time-varying
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Figure 18: Velocity error of mass M for the X-shape structure and SMD isolators with 
control

and are close to zero ultimately. From Fig. 21, it is seen that the X-shape structure system 
acquires more initial control torque than SMD isolator. Fig. 22 provides the dynamic 
scaling factor r and indicates that it reaches a stable value at last and stops increasing when 
the observation error x̂2 − x2 gets close to zero.
According to the results above, the X-shape structure system has a much better vibration 
isolation performance than the classical SMD isolator under the effect of an additional 
adaptive control when the structural parameters are unknown. Besides, the hybrid control 
strategy can make drifting motion disappear and provide a stable environment for the on-
orbit spacecraft, which is vital to carry out the space missions successfully.
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Figure 19: Velocity error norm of mass M for the X-shape structure and SMD isolators
with control
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Figure 20: Velocity estimate error for the X-shape structure and SMD isolators with control
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Figure 21: Control torque for the X-shape structure and SMD isolators with control
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5 Conclusion
In this paper, a hybrid passive/active controller of a loosely connected combined spacecraft
system is proposed to suppress the post-capture vibrations of the combined system
subjected to the impulsive external excitation. The X-shape structure is redesigned to
achieve better stabilty of the whole system. A set of nonlinear ordinary differential
equations that model the present combined system are established by Lagrange’s principle
and then solved directly by numerical integration method. In order to achieve better
vibration isolation performance, an adaptive control method through dynamic scaling
design is introduced to assist the X-shape vibration isolation system, considering that
parameters M , c1 and c2 are all unknown. Besides, the asymptotic stability of the closed-
loop system is verified in details. In numerical simulations, three cases are considered for
comparison. Firstly, we compare the pure X-shape isolation system with uncontrolled SMD
isolator and results demonstrate that the former one is better than the latter one by about five
percent in terms of acceleration amplitude. The pure X-shape structure system has a better
vibration isolation performance than the SMD isolator without active control. Secondly,
influences of the active control method on isolation performance of the X-shape structure
system are investigated. Numerical experiments show that it takes a short period of time to
achieve stability for the X-shape structure system. Besides, the drifting problem emerged in
the X-shape structure system is conquered, which ensures the whole spacecraft system stay
stable quickly. Thirdly, compared with the typical SMD isolator with same control scheme,
the X-shape structure system in conjunction with active control method obtains a much
better isolation performance in all aspects, such as convergence rate, vibration amplitude,
etc. In a word, the presently proposed hybrid passive/active control of the loosely connected
combined system is very promising in the post-capture vibration suppression task in future
space missions.
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