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Abstract: Recent studies of the space debris environment in Low Earth Orbit (LEO) 
have shown that the critical density of space debris has been reached in certain regions. 
The Active Debris Removal (ADR) mission, to mitigate the space debris density and 
stabilize the space debris environment, has been considered as a most effective method. 
In this paper, a novel two-level optimization strategy for multi-debris removal mission in 
LEO is proposed, which includes the low-level and high-level optimization process. To 
improve the overall performance of the multi-debris active removal mission and obtain 
multiple Pareto-optimal solutions, the ADR mission is seen as a Time-Dependant 
Traveling Salesman Problem (TDTSP) with two objective functions to minimize the total 
mission duration and the total propellant consumption. The problem includes the 
sequence optimization to determine the sequence of removal of space debris and the 
transferring optimization to define the orbital maneuvers. Two optimization models for 
the two-level optimization strategy are built in solving the multi-debris removal mission, 
and the optimal Pareto solution is successfully obtained by using the non-dominated 
sorting genetic algorithm II (NSGA-II). Two test cases are presented, which show that the 
low level optimization strategy can successfully obtain the optimal sequences and the 
initial solution of the ADR mission and the high level optimization strategy can 
efficiently and robustly find the feasible optimal solution for long duration perturbed 
rendezvous problem. 
 
Keywords: Two-level optimization strategy, active debris removal, non-dominated 
sorting genetic algorithm, bi-objective optimization, LEO. 

1 Introduction 
The space debris is turning into one of the critical problems which strongly affect the 
design and the operation of current and future space missions. As the number of 
uncontrolled fragments increases, such as the rocket upper stage, the non-functional 
satellites, etc., the mission operations of currently in-orbit satellites are forced to perform 
collision avoidance maneuver regularly [Schaub, Jasper, Anderson et al. (2015); Felicetti 
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and Emami (2016)]. If the maneuver of the in-orbit satellite is not timely, the collision will 
lead to serious results, such as failure and disintegration of the satellite. In 2009, the 
unintentional collision between the non-functional Russian satellite Kosmos 2251 and the 
operational US satellite Iridium 33 which occurred at an altitude of 789 km [Jankovic, Paul 
and Kirchner (2016)]. The collision has led to the production of a huge amount of new 
cataloged fragments in space. In fact, the fragments of collision event among the objects 
already in space have driven the evolution of the environment over several decades and 
result in an exponential increase of the cataloged fragments. A self-sustaining, cascading 
process is known as the Kessler syndrome [Lion and Johnson (2008, 2009); Lion (2011)]. 
The Kessler syndrome is first predicted by Kessler et al. in 1978 [Kessler and Cour-Palais 
(1978)], and this phenomenon eventually become the most important long-term source of 
the space debris. To mitigate this phenomenon, space debris mitigation guidelines (SDMG) 
have been proposed by the IADC. Nevertheless, recent studies have shown that the space 
debris mitigation measures alone are not sufficient to guarantee the long-term utilization of 
some important orbital regions and to stabilize the current space debris environment [Lion, 
Johnson and Hill (2010)]. The ADR mission, to mitigate the space debris density and 
stabilize the space debris environment, has been considered as a most effective method. 
According to the recent studies [Lion and Johnson (2008, 2009); Lion, Johnson and Hill 
(2010)], the 5-10 space debris in the crowded altitudes and the inclination bands are 
removed per year to stabilize the debris population. 
In the ADR mission, the Orbital Transfer Spacecraft (OTS) must execute several major 
mission phases, such as launch, phasing, far range rendezvous, close range rendezvous, 
capturing and de-orbiting. The orbital rendezvous between the space debris and the OTS 
is a necessary process for realizing the ADR mission, and the design of a phasing strategy 
is very important for a rendezvous mission. A good phasing strategy can save propellant 
and improve the safety of rendezvous missions [Fehse (2003)]. For reasons of launch 
cost, the number of debris removed in the same ADR mission should be set as high as 
possible, while the propellant of the OTS is limited. The OTS repeatedly rendezvous with 
the debris, service it and then drag into the graveyard orbit to release it until all debris are 
removed. The design of phasing strategy for a limited-time, multi-debris ADR mission 
leads to a hybrid optimization problem, which includes the sequence optimization to 
determine the removal sequence of the space debris and the transferring optimization to 
define the phasing maneuvers. 
The optimization of multi-debris ADR mission in LEO has been the subject of extensive 
research. Zuiani et al. [Zuiani and Vasile (2012)] have solved a 5 debris ADR mission for 
an OTS using electric propulsion for both orbital transfer and debris processing. Bonnal 
et al. [Bonnal, Ruault and Desjean (2013)] developed four strategies disposing the debris 
in the sun-synchronous orbit (SSO). Chemical and electric propulsion systems were 
analyzed and evaluated while mission planning was not a focus of their research. Missel 
et al. [Missel and Mortari (2013)] provided a path optimization strategy for ADR mission, 
focusing on the proposed Space Sweeper with Sling-Sat (4S) mission. Madakat et al. 
[Madakat, Morio and Vanderpooten (2013)] proposed a bi-objective time dependent 
travelling salesman problem model for the problem of optimally removing debris and use 
a branch and bound approach to deal with the ADR mission. Cerf employed branch and 
bound algorithm to optimize the debris selection and the trajectories of space debris 
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collecting mission with the impulsive maneuver [Cerf (2013)] and the low thrust 
maneuver [Cerf (2015)]. The selection of debris for removal in SSO region and guidance 
to the selected debris using low-thrust propulsion is studied by Olympio et al. [Olympio 
and Frouvelle (2014)]. The mission planning of LEO active debris removal problem 
considering some complex constraints (communication time window constraint, terminal 
state constraint and the time distribution constraint) is studied by Yu et al. [Yu, Chen and 
Chen (2015)]. A bi-objective Debris Active Removal mission was optimized using a 
Branch & Bound method with a dedicated algorithm by Berend et al. [Berend and Olive 
(2016)]. The mission is seen as a Time-Dependant Traveling Salesman Problem (TDTSP) 
with two objective functions to minimize the total mission duration and the total 
propellant consumption. Yang et al. [Yang, Tang and Jiang (2018)] uses the “Branch & 
Bound” method for solving the complex GTOC8 problem. 
As can be seen from the above discussions, the existing studies have two obvious 
deficiencies. First, the sequence optimization problem to determine the removal sequence 
of the space debris is generally used by the enumeration algorithm, either explicit or 
implicit. The explicit enumeration algorithm (brute force approach) is used by Zuiani et 
al. [Zuiani and Vasile (2012); Bonnal, Ruault and Desjean (2013); Yu, Chen and Chen 
(2015)]. The implicit enumeration algorithm (the branch and bound method, the branch 
and prune algorithm) is used by Madakat et al. [Madakat, Morio and Vanderpooten 
(2013); Cerf (2013); Olympio and Frouvelle (2014); Berend and Olive (2016)]. For the 
long duration of one year in the ADR mission, the search spaces of the maneuver 
impulses and burn times are very large, so the sequence optimal strategy consumes a 
large amount of the computing time. The total number of possible debris sequence is n!, 
if the search domain around good solutions is considered as the focus, the Branch & 
Bound algorithm becomes less efficient [Berend and Olive (2016)]. Yang et al. [Yang, Li 
and Baoyin (2015)] introduces a method for gravity-assisted low-thrust asteroid mission 
planning in a two-level approach. When the simplified optimization model is used, the 
terminal conditions for the rendezvous cannot be satisfied. Second, the transfer strategy 
adopted obscures the relationships between the two optimization objectives, and the 
characteristics of the multi-debris active removal problem are not clearly shown either. 
Therefore, an appropriate optimization strategy and effective optimization algorithm are 
eagerly sought to successfully solve this complex problem. 
In this paper, a two-level optimization strategy for multi-debris removal mission in LEO 
is proposed, which includes the low-level and high-level optimization process. To 
improve the overall performance of the multi-debris active removal mission and obtain 
multiple Pareto-optimal solutions, the ADR mission is seen as a Time-Dependant 
Traveling Salesman Problem (TDTSP) with two objective functions to minimize the total 
mission duration and the total propellant consumption. The ADR missions in the different 
regions of LEO are analyzed, in which the orbital inclination is approximately 99° in one 
region and 82° in the other region. The remainder of this paper is organized as follows. In 
Section 2, the multi-debris removal mission scenario and the space debris of interest are 
given. Section 3 introduced the dynamics modeling of the space debris and the OTS and 
then the multi-objective multi-debris rendezvous two-level optimization strategy is built 
in Section 4. After that, the model is solved by a multi-objective genetic algorithm 
(MOGA). The optimal Pareto solution is successfully obtained by using the 
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non-dominated sorting genetic algorithm II (NSGA-II) for the selected removal sequence. 
Two representative numerical problems are used to validate the proposed method, to 
analyze the characteristics of the multi-debris rendezvous missions in Section 5. Finally, 
the conclusions are given in Section 6. 

2 Problem description 
2.1 Space debris of interest 
According to the studied results of Bastida et al. [Bastida and Krag (2009); Castronuovo 
(2011)], there are three most catastrophic collision orbit regions in LEO, which have been 
identified as most critical because of the large concentration of mass. In these regions, the 
Kessler syndrome is most likely to be triggered [Lion and Johnson (2008, 2009); Lion 
(2011)]. Therefore, an efficient ADR mission is critical to remove the debris in these 
regions. 
The semi-major axis and inclination ranges of the debris in these regions have the 
characteristics as following: (1) a=7378±100 km, i=82±1°. In this region, the highest 
number of catastrophic collisions will occur in the next 200 years [Bastida and Krag 
(2009); Castronuovo (2011)]. (2) a=7178±100 km, i=99±1°. Region (2) corresponds to 
sun-synchronous conditions, which is very valuable for the commercial and scientific 
application. (3) a=7228±100 km, i=71±1°. In this region, the debris mainly is the spent 
rocket bodies with large mass and cross-section. 
Due to the highest number of catastrophic collisions in region (1) and the high 
commercial interest and scientific application in SSO and their intensive use in region 
(2), especially for remote sensing missions, the debris to be removed in these regions are 
considered as the priority targets in the ADR mission in this paper. 

2.2 Multi-debris active removal mission 
In the ADR mission, the OTS executes phasing maneuvers to reduce the difference of the 
semi major axis, the inclination and the right ascension of the ascending node (RAAN) 
for the different debris. Considering the n debris in the most catastrophic collision orbital 
region and locating on different orbits in LEO, the OTS is required to remove the n debris 
one by one until the n selected debris has been removed. In the process, the tasks are 
executed by the OTS which includes: (a) Performs phasing maneuver and comes to a 
hold position for the selected debris. (b) Inspects the debris and estimates the pose of the 
debris. (c) Deploys a de-orbiting kit in the direction of the debris and ensures the 
de-orbiting kit completes the close approximation, the attitude synchronization maneuver, 
adhesion, de-tumbling and de-orbiting. When the de-orbiting kit fails to attach to the 
debris, the other de-orbiting kit is deployed by the OTS. (d) Transfers to the next selected 
debris. The orbital elements of debris are denoted by Di={ai, ei, ii, Ωi, ωi, θi : i=1, 2, 3,…, 
n} and the initial orbital elements of the OTS are denoted by S0={a0, e0, i0, Ω0, ω0, θ0}, 
where a is the semi-major axis, e is the eccentricity, i is the orbital inclination, Ω is the 
RAAN, ω is the argument of perigee and θ is the true anomaly, as shown in Fig. 1. 
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Figure 1: Classical earth-centered coordinate system and orbital elements 

The whole operation process of ADR mission can be divided into two parts: transferring 
and servicing. Phase (a) is defined as transferring and phases (b) and (c) can be grouped 
into servicing. Phase (d) is seen as the transferring part of the next debris. The specific ADR 
process is shown in Fig. 2. The OTS is launched into the initial orbit at t0 and the servicing 
of the n-th debris is completed at tf, then the ADR mission ends. According to the time, the 
whole ADR mission can be divided into n phases. For the removal mission of the k-th 
debris, the time of the mission is defined as follows: t2k-1 refers to the time when the OTS 
leaves the (k-1)-th debris, t2k refers to the time when the OTS arrives and begins to serve the 
k-th debris, t2k+1 indicates the service ending time for the k-th debris. When k=n, there is 
t2n+1=tf. The transferring time can be expressed as t2k-t2k-1 for the phasing maneuver time of 
the OTS, and the servicing time can be expressed as t2k+1-t2k. Due to consider scenarios with 
de-orbiting kit, the de-orbiting kit is performed attaching to the debris and provide the 
necessary velocity increment and drag the debris into the final disposal orbit [Covello 
(2012)]. Since the large range phasing maneuver only needs to be executed by the OTS, the 
de-orbiting kit strategy is more economical to the propellant consumption of the OTS 
[Berend and Olive (2016)]. Summing up, the goal of the mission is to find the optimal 
service sequence and rendezvous path to visit all debris such that the total propellant 
consumption and the total mission duration are optimal, and the terminal constraint 
conditions should be satisfied meanwhile. So, the ADR mission can be seen as a 
Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to 
minimize the total mission duration and the total propellant consumption. 
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Figure 2: Scenario of the ADR mission 

2.3 Servicing phase 
For the cooperative target, the de-orbiting kit must execute many complicated operation 
in the space rendezvous and docking mission, such as the close proximity, relative 
navigation, station maintenance. Zhang et al. [Zhang and Park (2013)] have studied the 
fuel consumption and the time duration of the multiphase orbital rendezvous mission and 
obtained the Pareto-optimal solutions satisfying engineering constraints. Because the 
debris is the non-cooperative targets, the complicated operation, such as attitude 
synchronization, debris capture and the stability of the combination, must be also 
completed by the de-orbiting kit. It is difficult to deal with the tumbling debris in the 
ADR mission by the de-orbiting kit, which can even lead to a failure of the mission. 
When the de-orbiting kit fails to attach to the debris, the OTS can designate and deploy 
the other de-orbiting kit for the same debris. The time consumption of servicing the non 
cooperative targets will be much longer. In the studies of Cerf et al. [Cerf (2013); Berend 
and Olive (2016)], the duration time is identical, but the characteristic parameter α is 
introduced in this paper to describe the effects of the servicing time for the tumbling 
space debris. 
The servicing time of the k-th space debris can be expressed as: 

( )2 1 2 , ,k k k k k k k cT t t m T∆ α ∆+= − = J ω                                            (1) 

where αk is the scale coefficient which is related to the mass mk, the moment of inertia 
matrix Jk and the angular velocity ωk of the space debris. ∆Tc is the reference time which 
is obtained by Zhang et al. [Zhang and Park (2013)]. When the service time is assumed to 
be same, all αk are a constant. When the service time is very small compared with the 
total mission duration, the service time can be ignored, ∆Tk=0. 

3 Dynamic model including J2 perturbation 
Due to the debris uncontrolled and subjected to perturbations (Earth gravitational 
perturbations, Sun and Moon attraction, Solar pressure radiation, geomagnetic field, etc.), 
it is valid for a long-duration, non-coplanar rendezvous ADR mission, in which 
perturbations such as J2 should be considered. In two different optimization strategies, the 
two different dynamic models are used, which are the osculating orbital dynamic model 
and the average dynamic model. 
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3.1 Osculating orbital dynamical model 
The osculating orbital dynamical model in Cartesian coordinate system is widely used in 
the spacecraft orbit maneuver problem (such as orbital optimization design) with the 
position vector r and the velocity vector v as the state variable. But the position and the 
velocity in the Cartesian coordinates are the fast variables, for the long duration, the 
smaller integral step size is needed to be chosen in the orbital integral, which greatly 
increases the computation time. Under the effect of the J2 perturbation, the perturbation 
acceleration is small and consequently the solution of the motion can be described in 
terms of “almost constant” orbital elements. If the Gauss orbital equation is used to 
describe the motion of the space debris and the OTS, the classical orbital elements (a, e, i, 
Ω, ω, θ) are used. However, these elements exhibit singularities for e=0 and i=00, 1800. 
Therefore, the equinoctial orbital elements (p, f, g, h, k, L) that avoid the singularities in 
the classical orbital elements have been introduced by Broucke et al. [Broucke and Cefola 
(1972); Walker, Ireland and Owens (1985)]. At the same time, only L is the fast variable, 
so the dynamic equations are used to solve a low-thrust earth orbit transfer problem as 
described by Betts et al. [Betts and Huffman (1993)]. The equinoctial orbital elements to 
formulate the osculating orbital dynamical equations in the matrix form as follows: 

f= +y Ma D  (2) 
where y=[p, f, g, h, k, L]T is the equinoctial orbital element matrix. M is a 6×3 matrix and 
D is a 6×1 matrix, which are expressed as follows: 

( ) ( )
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1 sin sin cos
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g W L f h L k Lp p pL
W W
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p C L
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p h L k L
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2
30 0 0 0 0

T

W
p
µ 
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D  (4) 

where 
2 21 , 1 cos sinC h k W f L g L= + + = + +  

The relationship between the equinoctial orbital elements and the classic orbital elements 
are given as: 
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( ) ( )
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The equinoctial orbital elements y are related to the Cartesian state (r, v) according to the 
expressions 

( )
( )
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2 2
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The J2 perturbation acceleration af by the equinoctial orbital elements y can be expressed as: 

( )
( )( )

( )( )

22
4

2
2 2 4

12 sin cos
3 8 sin cos cos sin
2

4 2 sin cos

fr

f f e

fh

a C h L k L
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C p
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  = = − − +  
   − −   

a  (8) 

In the ADR mission, the transfer time of the OTS is far longer duration. In order to fully 
understand the relationship between the two objectives, the multiple impulses and 
multiple revolutions Lambert rendezvous algorithm considering the effect of J2 
perturbation is used. The solution of Eq. (2) based on the numerical integration method 
can be expressed as: 

( ) ( )( ), ,t t t t t t+ ∆ = + ∆y Y y  (9) 
The position vector r and velocity vector v are obtained by Eqs. (6) and (7), which can be 
given as: 

( ) ( ) ( )( )
( ) ( ) ( )( )

, , ,

, , ,

t t t t t t t

t t t t t t t

 + ∆ = + ∆


+ ∆ = + ∆

r R r v

v V r v
 (10) 

In the every impulse position of the transferring phase, an impulsive ∆vkl is applied, 
where k is the k-th transferring phase, l is the l-th impulse position, and k≤n, l≤N. n and N 
is the debris number and the impulse number of every transferring phase, respectively. 
When the superscript “-” indicates the state before an impulse and the superscript “+” 
indicates the state after an impulse, in the instantaneous t, the position vector and the 
velocity vector satisfy the following as: 

kl kl

kl kl kl

+ −

+ −

 =


= + ∆

r r

v v v
 (11) 

For the intermediate impulse, according to Eq. (10), the following equations must be 
satisfied 
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( ) ( ) ( )( )
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For the first impulse in every transferring phase, the equations are given by 
( )
( )

1 0 0 0 1

1 0 0 0 1

, , ,

, , ,
k k k k k

k k k k k

t t

t t−

=


=

r R r v

v V r v
 (13) 

If the initial coast time is not considered, the motion state of the OTS is consistent with 
that of the (k-1)-th debris at the initial time of the transferring phase. The equations at the 
final conditions for every transferring phase are given by 

( )
( )

, , ,

, , ,

kn kf kf kf kn

kn kf kf kf kn

t t

t t+

 =


=

r R r v

v V r v
 (14) 

If the finial coast time is not considered, the motion state of the OTS is consistent with 
that of the k-th debris at the finial time of the transferring phase. 
For the multiple revolutions Lambert rendezvous problem, there exist 2Nmax+1 mathematical 
solution for Nmax revolutions [Shen and Tsiotras (2003)]. However, not all of these solutions 
are feasible. In actual engineering, the solutions require the perigee height to be greater than 
a minimum value hmin to avoid the influence of the earth’s atmosphere, such as hmin>200 km, 
and the apogee height to be lower than a maximum value hmax to avoid expensive changes in 
large eccentricity [Yang, Luo, Zhang et al. (2015) ]. 
A non-dimensional time-of-flight is defined as 

12
32 m

t
a
µτ

∆
=  (15) 

where am=s/2 is the minimum energy ellipse semi-major axis [Yang, Luo, Zhang et al. 
(2015); Battin (1999); Der (2011)], s=||r1||+||r2||+||r1−r2|| and ||⋅|| denotes the norm of a 
vector, ∆t12=t2-t1 is the transfer time. Then, the maximum number of revolution Nmax for 
the Lambert transfer orbit can be computed as 

12 12
max 3 3

4
Int =Int Int

2 m

t tN
a s

τ µ µ
π π π

   ∆ ∆ = =           
 (16) 

where Int( ) is the integral function. At the same time, the semi-major axis of the transfer 
orbit satisfies the following equations [Yang, Luo, Zhang et al. (2015)]. 

( )( )
( )( )

min 1 2 min

max 1 2 max

max , /2

min , /2
e

e

a a r r R h

a a r r R h

 ≥ = + +


≤ = + +
 (17) 

The feasible number of revolutions satisfies the following equation 

( ) ( )( )max max minmin ,N a N N N a≤ ≤  (18) 
where N(amin) and N(amax) are the numbers of revolutions corresponding to the minimum 
and maximum semi-major axis. 
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3.2 Averaged dynamic model 
For the space debris and the OTS in the near-circular LEO, the average effect of the J2 
perturbations on the orbit semi-major axis, the eccentricity and the inclination is very small 
in the long duration [Cerf (2013); Howard (2005); Vallado (2007)]. The space debris in the 
LEO is thus still moving on the near-circular orbits, at very close altitudes and inclinations. 
Considering the long-duration secular effect of the J2 perturbation, the averaged dynamic 
equations of the space debris and the OTS can be expressed as follows: 

( )

( )

( )
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2

2 22 7/ 2

2
2 22 7/ 2

2 2 2
23

d d d0, 0, 0
d d d
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d 2

e

e

e

a e i
t t t

iJ R
t e a

iJ R
t e a

M J R e i
t a

ω µ

Ω µ

µ


= = =


 −

=
−


 = − −


  = + − −   

 (19) 

where µ is the gravitational constant and µ=3.986×1014 m3/s2, J2 is the first zonal coefficient 
and J2=1.086×10-3, Re is the mean equatorial radius of the Earth and Re=6378.137 km 
[Howard (2005)]. 
It is very difficult to optimize the mixing problem by using the osculating orbital dynamical 
model for two reasons. First, the search spaces of the optimal variable, such as impulse 
amplitude, burn time and the transferring time, are very large because of the long duration. 
Second, the total number of possible debris sequence is n!. If the search domain around 
good solutions is considered as the focus, the Branch & Bound algorithm becomes less 
efficient [Berend and Olive (2016)]. Therefore, a two-level optimization strategy are 
eagerly sought to successfully solve the complex mixing problem, which includes the 
sequence optimization to determine the removal sequence of the debris and the transferring 
optimization to define the orbital maneuvers. 

4 Two-level optimization strategy 
The optimal transfer strategy depends on the initial and final orbits, the mission 
constraints and the OTS capabilities. In the general case, finding the optimal control law 
is a challenging task. In order to fully understand the relationship between the total fuel 
consumption and the time duration, two different type problems have to be made. First, 
the removal sequence of the debris should be optimized. Second, each transferring stage 
should also be optimized. It should be noted that there exists an infinity of possible 
transfer stages for a given trajectory linking two given debris. Due to the bi-objective 
optimization, a Pareto frontier can be obtained, which gives an interesting insight on the 
trade-off between the time duration and the fuel consumption. In the two-level 
optimization strategy, the mixing optimization problem is divided into the low-level 
optimal process and the high-level optimal process. The low-level optimal process 
determines several optimal sequences and the time interval, as the initial guess of the 
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high-level optimal process. The high-level optimal process finds the set of the optimal 
control input that could trigger the optimal trajectory with the Pareto-optimal solution, 
and the rendezvous boundary conditions can be satisfied. The specific solution procedure 
is denoted as follows. 

4.1 Low-level optimization process 
In the low-level optimization strategy, the main objective is to determine several optimal 
sequences and the time interval as the initial input of the high-level optimal process. In 
order to reduce the computation time of the feasible solution and obtain several optimal 
debris removal sequences as fast as possible, several hypotheses are introduced: (a) The 
impulse maneuver is used by the OTS, (b) The circular drifting orbit strategy is used for 
the correction of the RAAN, (c) The correction of the true anomaly and the perigee 
argument in the orbit transfer are negligible. 
During the whole removal process of the debris, corresponding to the removal sequence 
D=(D1, D2, …, Dn), the debris one by one until the n-th debris is removed by the OTS. 
For the removal of the k-th debris, the time sequence of the OTS is tk=[t2k-1, tkd1, tkd2, t2k, 
t2k+1], where tkd1 is the start time of the drifting phase, tkd2 is the end time of the drifting 
phase. Due to the whole ADR mission starts at t1 and ends at tf, there is t2n+1=tf. In the 
interval of time t2k and t2k+1, the de-orbiting kit completes operations including the close 
proximity, synchronization, capture and the stability of the combination. When the 
de-orbiting kit completes the service of the k-th debris at the time t2k+1, the transferring 
phase starts for the (k+1)-th debris. Repeating these operations, the OTS would 
rendezvous with debris which are selected and finish the whole mission in tf. 
According to the hypothesis, the states of the OTS and the k-th debris at time t can be 
describe as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,s s s s s k k k k kt a t e t i t t t a t e t i t tΩ Ω= =      E E  (20) 
The orbital elements of the drifting orbit for the k-th space debris removal can be denoted as: 

( ) ( ) ( ) ( ), 0, ,kd kd kd kdt a t i t tΩ=   E  (21) 
In the transferring stages of the OTS, the Hohmann transfer strategy is used [Cerf (2013); 
Berend and Olive (2016)]. In the first and second transfer stage, the velocity increments 
are [∆vk1, ∆vk2] and [∆vk3, ∆vk4]. In the case an inclination change is performed 
simultaneously with a shape change as shown in Fig. 3, the plane change accompanied by 
velocity change is the most efficient, so the impulsive maneuver is assessed as the norm 
of the vectors difference 

( ) ( )2 2 2 coski kdi ki kdi ki kdi ki kdi kiv v v v v i i∆ = − = + − −v v  (22) 
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Figure 3: (a) Hohmann transfer strategy; (b) velocity change accompanied by plane change 

Based on the Hohmann transfer strategy, these velocity increments can be obtained as 
follows: 
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 (23) 

In order to reduce the fuel consumption of the OTS, the drifting time ∆tkd is calculated so 
that the RAAN of the drift orbit and the debris orbit are equal at the end of the drifting 
stage. As a time constraint, it is calculated using the following formula 

( )[ ]
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 (24) 

The servicing time of the k-th debris can be expressed as: 

2 1 2k k kT t t∆ += −  (25) 
In this time interval, the de-orbiting kit completes the near range approximation, attitude 
synchronization, capture, stability of the combination and other operations. The time 
interval is assumed to be related to the mass, the moment of inertia, the relative velocity 
and the tumbling angular velocity of the tumbling debris. For different debris, the servicing 
time interval is different, but it is a constant ∆Tk in the servicing phase of the debris. 
The main objective of the low-level optimal process is to determine several optimal 
sequences and the time interval as the initial guess of the high-level optimal process. For 
the ADR mission, the optimal variable vector of the mixing problem in low-level 
optimization process is expressed as: 

[ ],j j d j
 =  u D E  (26) 

where Dj is the j-th optimal removal sequences and [Ed]j=[E1d, E2d,…, End]j is the drifting 
orbit parameters vector of the j-th optimal sequences. The low-level optimization process 
of the ADR mission can be modeled as: 
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where m is the number of the optimal removal sequences that satisfies the minimum fuel 
consumption in one year, ∆Tmax is the maximum removal time in the ADR mission, ∆vmax 
is the maximum characteristic velocity of the OTS. In order to prevent the optimal 
solution is lost before the high-level optimization process and reduce the computing time 
of the high-level optimization process, m is set to five for n=5 in this paper. 

4.2 High-level optimization process 
According to the results obtained in the low-level optimization process, the sequence D 
of the space debris removal is fixed in the high-level optimization process, and the 
optimization problem is a piecewise optimal control problem with some state constraints. 
Along with the time axis, the generic continuous-time state of the OTS for the k-th space 
debris could be abstractly depicted as Fig. 4. 

tt2k-1 tkm1

Transferring Servicing

1st 2nd 
ith

Nth

(t2k) t2k+1tkm2 tkmi tkmN  
Figure 4: Generic continuous-time state of the OTS for the k-th debris 

4.2.1 Design variables 
The design variables include the impulse number N, the impulse time interval ∆tkmi and 
the velocity increment ∆vkmi. As shown in Fig. 4, there are n×(4N-5) design variables for 
an N-impulse maneuver plan in the n-debris active removal mission: 
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 (28) 

where tkmi is the i-th impulse time in the k-th transferring phase. ∆vkmi is the i-th velocity 
increment vector in the k-th transferring phase, Nk is the impulse number of the k-th 
transferring phase. In order to save the calculation time, the impulse number can be set to 
a constant, such as Nk=2, 3 or 4. 
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4.2.2 Objective function 
In this paper, the ADR mission contains two kinds of objective functions, which are the 
total time duration and the total propellant consumption, respectively. In the transferring 
stage, when the OTS transfers from the i-th debris to the j-th debris, the fuel consumption 
∆vij and duration ∆Tij are required. Based on the definition of the time in the ADR 
mission, as shown in Fig. 2 and Fig. 4, the transferring time can be expressed as: 

2 2 1ij j jT t t∆ −= −  (29) 
The first objective is the total time duration, which can be expressed as: 

1 f
0 , 0

min ij ij j j
i j n j n

f t T e T e T∆ ∆ ∆
≤ ≤ < ≤

= = = +∑ ∑  (30) 

where eij is a binary selection variable for the switching from the Di to Dj, and eij equals to 0 
or 1. ej is a binary selection variable for the service to the j-th debris, and ej equals to 0 or 1. 
When the service time is considered, the ej is equal to 1, otherwise, ej is equal to 0. When 
the service time of all space debris is not considered, the Eq. (30) can be simplified as: 

1 f
0 ,

min ij ij
i j n

f t T e T∆ ∆
≤ ≤

= = = ∑  (31) 

The second objective is the total propellant consumption of the ADR mission, which can 
be expressed as: 

2
0 ,

min ij ij
i j n

f v e v∆ ∆
≤ ≤

= = ∑  (32) 

For the different reasons, the total time duration and the total fuel consumption are 
constrained. For the total duration, it determines the mean number of space debris that is 
removed each year. According to the recent studied [Lion and Johnson (2008, 2009); Lion 
(2011)], the 5-10 space debris are removed per year to stabilize the debris population. 
Therefore, the maximum value of ∆T is one year in this paper. For the total propellant 
consumption, it determines the burn duration of the OTS’s rocket engine or the security 
margin of the OTS. The maximum velocity increment ∆vmax is provided by the OTS, so the 
total velocity increment must be less than ∆vmax, i.e., ∆v≤∆vmax. In the ADR mission, it is 
interesting to seek the shortest mission time and the lowest propellant consumption. Indeed, 
the shorter mission time is used, the more space debris is removed in one year. The lower 
fuel is consumed, the longer time is used by the OTS in ADR mission. 

4.2.3 Constraints 
The duration between two adjacent maneuvers should be long enough that the trajectories 
of the spacecraft can be properly measured, so as: 

( ) [ ]min 2 1 21 , ,kmi kmi k kkm it t t t t t−−− ≥ ∆ ∈  (33) 
where ∆tmin is the needed duration between two adjacent maneuvers. When the OTS 
arrives to the k-th debris at t2k, the OTS’s state must coincide with the k-th debris’s state. 
So, the position and velocity of the OTS must satisfy a set of linkage conditions 

( ) ( )
( ) ( )

2 2

2 2

0

0
k k k
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t t

t t
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r r

v v
 (34) 

Associated with any pair (Dj, Dk), the transferring time should satisfy 
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min 2 2 1 maxk k k kt t t t−≤ − ≤  (35) 
where tkmin describes the required minimum time for transferring, tkmax gives the permitted 
maximum duration for the k-th debris. These values can be set reasonably according to 
the time values determined in the low-level optimization process. 
To deal with the nonlinear equality constraints presented in Eq. (34), the perturbed 
Lambert algorithm is used, so the last two impulses can be obtained as follows: 

( )( ) ( ) ( )( )1 1 1, PLA , , ,kmN kmN kmNkm N km N km Nt t− − −∆ ∆ =v v r r  (36) 

4.2.4 Optimization model 
Overall, the high-level optimization process of the ADR mission can be rewritten as 
follows: 
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4.3 Optimization algorithm 
To solve the multi-objective optimization problem, the existing methods can be roughly 
categorized into two classes: aggregative methods and Pareto-based methods. The 
aggregative method is to convert multiple objectives into single objective based on the 
assumption [Youssef and Eimaraghy (2008)]. On the contrary, the Pareto-based method is 
to provide a list of interesting trade-offs between the objectives rather than a lone solution 
supposing [Deb, Pratap, Agarwal et al. (2002)]. Since the two objectives under 
consideration are in conflict, the Pareto-based method is adopted. In the field of 
spacecraft trajectory optimization, NSGA-II is widely used in the low thrust orbit 
optimization design of the interplanetary spacecraft [Hartmann, Coverstone-Carroll and 
Williams (1998); Coverstone-Carroll, Hartmann and Mason (2000)], low thrust optimal 
transfer orbit [Lee, Allmen, Fink et al. (2005)], multi-objective optimal rendezvous [Luo, 
Lei and Tang (2007); Luo, Tang and Parks (2008)] and RLV optimal re-entry trajectory 
[Braun, Lupken, Flegel et al. (2013)]. Considering the successful application of NSGA-II 
for related problems, the NSGA-II is also employed to solve the mixing optimal problem 
in this paper. 
The NSGA-II is conceived as one of the famous Pareto-based multi-objective 
evolutionary algorithms (MOEAs). The main advantages of the NSGA-II approach 
compared with the other MOEAs are: (1) A fast non-dominated sorting approach ranks 
the solutions of a population by layers of non-dominated solution; (2) A crowding 
distance-based comparison operator is utilized to select solution for diversity 
preservation; (3) An elitism selection procedure is used to identify the best solutions from 
the individuals combining the parent and offspring populations with respect to fitness and 
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spread. For further details about NSGA-II, the interested reader can refer to Deb et al.  
[Deb, Paratap, Agarwal et al. (2002)]. 

4.4 Solution for the two-level optimization strategy 
In the two-level optimization strategy, the mixing optimization problem is divided into 
the low-level and high-level optimal process. The low-level optimal process determines 
several optimal sequences and the time interval, as the initial guess of the high-level 
optimal process. The high-level optimal process finds the set of the optimal control input 
that could trigger the optimal trajectory with the Pareto-optimal solution. The averaged 
dynamic model is used in the low-level optimization problem, which can only obtain an 
approximate solution, but cannot attain the desired state in the absolute dynamics system, 
and the rendezvous boundary conditions cannot be satisfied. To deal with this problem, 
the osculating orbital dynamical model is proposed to refine the approximate solution to a 
precise solution. The solution process of the two-level optimization strategy is 
summarized as follows: 
Step I. l=0, l is number of the remove sequence and l≤n!, n is the number of the debris, 
set the initial orbital elements of both the OTS and the debris, Es (t0) and Ek (t0), as well as 
the maximum removal time ∆Tmax, the maximum characteristic velocity ∆vmax, boundary 
values of design variables Ed, the number of the optimal removal sequences m, and the 
common parameters for the NSGA-II. 
Step II. The Pareto frontier of each sequence is obtained using Eq. (27) according to the 
NSGA-II method. By comparison, the m optimal sequences Dj and the corresponding 
design variables (Ed)j are obtained. 
Step III. j=1, set the needed duration between two adjacent maneuvers ∆tmin, the common 
parameters for the NSGA-II. 
Step IV. The minimum duration time for transferring tkmin and the permitted maximum 
duration time describes tkmax for the k-th debris based on the estimate value (Ed)j of the 
low level optimization problem. 
Step V. Solve the high level optimization problem of Eq. (37) using the NSGA-II, obtain 
the Pareto frontier of the j-th sequence, the absolute trajectories and the maneuver plan of 
the OTS. 
Step VI. If j>m, the calculation is terminated and the optimal sequence Dopt and the 
corresponding design variables x is the final solution; else go to Step IV. 

5 Numerical results 
The ADR mission is a most effective method to mitigate the space debris density and 
stabilize the space debris environment. A self-sustaining, cascading process is known as 
the Kessler syndrome [Lion and Johnson (2008, 2009); Lion (2011)], and this 
phenomenon will eventually become the most important long-term source of the space 
debris. According to the recent studies [Lion and Johnson (2008, 2009); Lion (2011)], the 
5-10 space debris in the crowded altitudes and the inclination bands are removed per year 
to stabilize the debris population. The five space debris with high priority has been 
extracted from an initial list of 477 candidate debris in LEO in the 500-1200 km altitude 
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range. Due to the plane change maneuver are very costly in term of propellant 
consumption, the space debris with the close inclination values are been choose in the 
removal list. The debris selection criterions have been detailed in Braun et al. [Braun, 
Lupken, Flegel et al. (2013)]. In this study, the two test cases given here are the debris in 
two different regions for ADR mission. In the first region, the semi-major axis and 
inclination ranges of space debris have the characteristics as following: a=7178±100 km, 
i=99±1°. The region corresponds to sun-synchronous conditions, which is very valuable 
for the commercial and scientific application [Castronuovo (2011)]. In the second region, 
the semi-major axis and inclination ranges of space debris have the characteristics as 
following: a=7378±100 km, i=82±1°. The highest number of catastrophic collisions will 
occur in the next 200 years [Bastida and Krag (2009); Castronuovo (2011)]. 
The constants used in this study are Re=6378.137 km, J2=1.082626×10-3 and 
µ=3.9860044×1014 m3/s2. The removal duration is less than 730 days (two years) in the low 
level optimization process and 365 days (one year) in the high level optimization process, 
where t1=0, tf≤730 (365) days, and ∆T=tf−t0. Tabs. 1 and 2 list the initial orbital elements of 
the debris for the two different regions. The first test case was used by Cerf [Cerf (2015)], 
and the second test case was used by Yu et al. [Yu, Chen and Chen (2015)]. The first test 
case has differences of 200 km in a, 20 deg in Ω and 7 deg in θ; the second test case has 
differences of 23 km in a, 2 deg in Ω and 260 deg in θ. The scale coefficient αk is assumed 
to be related to the mass, the moment of inertia matrix and the tumbling which is different 
and the reference time ∆Tc=14400 s (4 hours) is obtained by Zhang et al. [Zhang and Park 
(2013)]. The bound of the service time is [50,840] hours for the total ADR mission in the 
Yu et al. [Yu, Chen and Chen (2015)]. In this study, the classical orbital elements and the 
Hohmann transfer strategy are used in the low-level optimization process. The equinoctial 
orbital elements and the perturbed Lambert algorithm are used in the high-level 
optimization process. 

Table 1: Debris list of around 99o inclination [Cerf (2015)] 
Debris a (km) e i (deg) Ω (deg) ω (deg) θ (deg) 

1 7055.3 0.0001 98.1 188.3 0 9.83 
2 7128.5 0.0000 98.4 174.7 0 5.06 
3 7152.5 0.0001 98.5 194.1 0 9.24 
4 7200.0 0.0001 98.7 180.3 0 12.38 
5 7264.4 0.0001 98.9 191.0 0 2.42 

Table 2: Debris list of around 82o inclination [Yu, Chen and Chen (2015)] 
Debris a (km) e i (deg) Ω (deg) ω (deg) θ (deg) 

1 7377.14 0.0002 82.0 100.5 0 30 
2 7377.07 0.0001 82.3 99.5 0 60 
3 7378.47 0.0001 82.5 101 0 120 
4 7388.43 0.0002 81.9 99 0 220 
5 7400.46 0.0001 81.6 100 0 260 
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If the out-of-plane maneuver is used directly to correct the large initial RNNA difference, 
the propellant consumption would be prohibitively very high. For the OTS, this is 
obviously not appropriate. Instead, the natural orbital precession rate due to the Earth’s J2 
perturbation can be used to modify the RNNA difference of the orbits for the OTS and 
the space debris. This means that the RNNA difference can be indirectly corrected via an 
in-plane maneuver combined with long-duration orbital drifting under J2 perturbation 
[Cerf (2015); Olympio and frouvelle (2014); Yu, Chen and Chen (2015); Berend and 
Olive (2016)]. For the LEO short-duration near-coplanar rendezvous, the orbital drifting 
time would be very long-duration, so the RNNA difference is corrected using the 
out-of-plane maneuvers. 
According to the characteristic of the ADR mission in the low-level optimization process, 
the first Hohmann transfer needs to be performed at the beginning time to drifting orbit 
so as to correct the RNNA difference, and the second Hohmann transfer needs to be 
performed at the rendezvous time to correct the semi-major axis difference between the 
OTS and the space debris. In actual engineering, the drifting orbit require the semi-major 
axis to be greater than a minimum value to avoid the influence of the earth’s atmosphere 
for the OTS, and to be lower than a maximum value to avoid expensive orbital maneuver 
in large difference of semi-major axis. Due to the plane change maneuver are very costly 
in term of propellant consumption, it can be estimated that 100 m/s of cross-track 
maneuver to correct 1 deg of inclination difference, so the inclination of the OTS with the 
close inclination values are been choose in the removal process. Based on the above 
analysis, the boundary values of the design variables in the low-level optimization 
process are set as in Tab. 3. The low-level optimal process determines the optimal 
sequences, the time interval and the increment of velocity, which are the initial guess of 
the high-level optimization process. The boundary values of the design variables in the 
high-level optimization process are determined by initial guess values. 
The NSGA-II is used for optimization to calculate the Pareto frontier of the ADR mission, 
with the other algorithm parameter values being the same as those given in Tab. 4. Taking 
into account the randomness of NSGA-II, each case is run 10 times. By removing the 
repeated and dominated solutions, the Pareto optimal solutions of the problem are obtained. 

Table 3: Boundary values of design variables 
Case amin (km) amax (km) imin (deg) imax (deg) 
First 6800 7800 97 100 

Second 7000 8000 80 84 

Table 4: NSGA-II parameters 
Parameter value 
Population size 100 
Maximum number of generation 400 
Mutation probability 0.2 
Crossover probability 0.8 
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5.1 Optimization results of the low-level optimization process 
To validate the performance of the proposed low-level optimization model, the first test 
case is solved for four impulse maneuvers. The success rate for each configuration is 
100%, which demonstrates that the low-level optimization model successfully locates 
feasible solutions in the experiments. In addition, the Pareto frontier of the bi-objective 
optimization problem shows that the NSGA-II is efficient and robust in obtaining the 
near-optimal solutions.  

 
Figure 5: Pareto-optimal solutions for different mission sequences (24135 and 24153) in 
case 1 

In order to compare the result of the Cerf [Cerf (2015)], the Pareto-fronts for the different 
sequences (24135 and 24153) of the ADR mission using the low-level optimization 
process are illustrated in Fig. 5, in which the mission duration does not include the 
Servicing time. From Fig. 5, the results can be seen: (1) in general, with the increase of 
the time duration, the velocity increment of the OTS in the ADR mission would decrease; 
(2) with the increase of the time duration, the changes of the velocity increment for the 
different sequences of the ADR mission would be different; (3) for the different ADR 
sequences, such as 24135 and 24153, when the ADR time duration less than 336 days, the 
velocity increment of the sequence 24153 is less than that of the sequence 24135, the 
results are consistent with that in the Cerf [Cerf (2015)]. 
In order to obtain more clearly the effect of different ADR sequences on the velocity 
increments of the OTS, Fig. 6 shows the Pareto optimal solutions in the five different 
ADR sequences. In addition to the results obtained in Fig. 5, it is also showed that the 
velocity increments of the five different ADR sequences are bounding together in the 
time duration [335,375] days, that is, the velocity increments are almost equal. The result 
is mainly due to the true anomaly of the debris is relatively concentrated, which provides 
a good reference for the removal of concentrated debris. 
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Figure 6: Pareto-optimal solutions for five different mission sequences in case 1 

 
Figure 7: Pareto-optimal solutions for five different mission sequences in case 2 

In order to further verify the effectiveness of the low-level optimization model, the 
second test case is solved for four impulse maneuvers. The Pareto-fronts for the five 
different sequences of the ADR mission using the low-level optimization process are 
illustrated in Fig. 7. From Fig. 7, the results can be seen: (1) with the increase of the time 
duration, the velocity increment of the OTS in the ADR mission would decrease, but the 
velocity increment of some sequences decreases very slowly, such as 45123; (2) the 
velocity increments of the five different ADR sequences are relatively scattered in the 
time duration [100,500] days, the result is mainly due to the true anomaly of the debris is 
relatively dispersed. 
As discussed earlier, the low-level optimal process determines several optimal sequences 
and the time interval, as the initial guess of the high-level optimal process. In the next 
section, the high-level optimal process finds the set of the optimal control input that could 
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trigger the optimal trajectory with the Pareto-optimal solution, and the rendezvous 
boundary conditions can be satisfied. 

5.2 Optimization results of the high-level optimization process 
To solve the multi-objective optimization problem, the Pareto-based method is to provide 
a list of interesting trade-offs between the objectives rather than a lone solution 
supposing. In this paper, the Pareto optimal solutions have been calculated using the 
NSGA-II, which is conceived as one of the famous Pareto-based multi-objective 
evolutionary algorithms (MOEAs) [Deb, Pratap, Agarwal et al. (2002)]. Based on the 
results provided by the low level optimization process, the Pareto optimal solutions of the 
ADR mission is obtained by NSGA-II using the high level optimization process. 
For the second case, the Pareto-front of the three optimal sequences (15423, 54123 and 
14523) is shown in Figs. 8-10, respectively. From these Figures, the results can be seen: 
(1) the optimal velocity increments are calculated, which is 186.94 m/s, 214.82 m/s and 
226.47 m/s, respectively; (2) when the time duration is larger than a certain threshold, 
such as 154.33 day, 238.01 day and 175.64 day for three sequences respectively, the 
velocity increment decreases very slowly while the time duration increases; (3) for the 
impulse maneuver, the change of time duration will significantly increase the velocity 
increment of the OTS, so the points of the Pareto front are sparse and discontinuous. At 
the discontinuity of the Pareto front, the velocity increment of the OTS cannot be 
significantly reduced through the time duration increase. 

 
Figure 8: Pareto-optimal solutions for mission sequence (15423) 
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Figure 9: Pareto-optimal solutions for mission sequence (54123) 

 
Figure 10: Pareto-optimal solutions for mission sequence (14523) 

It is important to note that the optimal solutions for the three different sequences shown in 
Figs. 8-10 are the subset of the solution spaces for the different sequences of the ADR 
mission that have been explored, so the Pareto-front actually depends on the multi-objective 
optimization method and the parameter setting of the given optimization method. Therefore, 
the Pareto-front is obtained using the multi-objective optimization methods, which is 
dominated by the true Pareto-front of the problem. The true Pareto front is unknown but can 
be approached using the better optimization algorithm and reasonable parameter settings. 
For the optimal solutions of the cases using the two-level optimization strategy, three 
different reasons guarantee the sub-optimal solutions approaching the true Pareto-front of the 
ADR mission. The first reason is the choice of the low-level optimal process, which uses a 
simplified optimal model, providing the several optimal sequences and the time interval as 
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the initial guess of the high-level optimal process. The low-level optimal process is the key 
of a fast computation. The second reason is the high-level optimal process, which can trigger 
the optimal trajectory with the Pareto-optimal solution because of the more impulses are 
adopted, the J2 perturbation effects are consider and the rendezvous boundary conditions can 
be satisfied. The third reason is the choice of the NSGA-II, which have the main advantages 
compared with other multi-objective optimization algorithms, such as a fast non-dominated 
sorting, a crowding distance-based comparison operator and an elitism selection procedure. 

6 Conclusion 
A two-level optimization strategy for multi-debris removal mission in LEO is proposed, 
which includes the low-level optimization process and the high-level optimization process. 
To improve the overall performance of the multi-debris active removal mission and obtain 
multiple Pareto-optimal solutions, the ADR mission is seen as a Time-Dependant Traveling 
Salesman Problem (TDTSP) with two objective functions to minimize the total mission 
duration and the total propellant consumption. The problem mixes the sequence 
optimization to determine the sequence of removal of space debris and the transferring 
optimization to define the orbital maneuvers. Two optimization models for the low-level 
optimization process and the high-level optimization process are built in solving the 
multi-debris removal mission, and the NSGA-II is employed to obtain the optimal Pareto 
solution. Numerical results show the following. 
1) The two level optimization strategy and solution proposed in this paper can effectively 
address the ADR mission planning problem. 
2) The low level optimization strategy can successfully obtain the optimal sequences and 
the initial solution for the ADR mission. 
3) The high level optimization strategy can efficiently and robustly find the feasible 
optimal solution for long duration perturbed rendezvous problem. 
In future work, the following studies will be considered. First, the low-thrust transfer 
strategy and hybrid-thrust transfer strategy will be considered. Second, how to select the 
priority space debris which can minimize the collision risk and the velocity increment of 
the OTS. Third, the actual characteristic of the space debris will be considered. 
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