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Abstract: In this study, transient non-Fourier heat transfer in a solid cylinder is analytically 
solved based on dual-phase-lag for constant axial heat flux condition. Governing equations 
for the model are expressed in two-dimensional cylindrical coordinates; the equations are 
nondimensionalized and exact solution for the equations is presented by using the 
separation of variable method. Results showed that the dual-phase-lag model requires less 
time to meet the steady temperature compared with single-phase-lag model. On the 
contrary, thermal wave diffusion speed for the dual-phase-lag model is greater than the 
single-phase-lag model. Also the effect of relaxation time in dual-phase-lag model has been 
taken on consideration. 
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1 Introduction 
In classical Fourier heat transfer equation, heat flux has a direct relationship with 
temperature gradient and, accordingly, these occur simultaneously. Therefore, the heat 
wave is propagated with infinite rate; in cases where heat flux or temperature gradient 
changes rapidly, the results of Fourier equation are not consistent with experimental results. 
Fourier’s law is not adequately precise for analyzing cases such as rapid high frequency 
heating such as laser and microwave, low temperature conditions near absolute zero, 
application of non-homogeneous materials such as sand and glass, and examination of 
materials with a slow thermal response time structure, such as biological tissues. Maurer 
et al. [Maurer and Thompson (1973)] according to empirical observations concluded that 
when heat flux is above 107 watts/cm² with time scale of less than 150 PS, Fourier heat 
flux model, which is called classical theory, is rejected.  
Cattaneo [Cattaneo (1958)] and Vernote [Vernote (1958)] separately provided an equation 
for conductivity heat transfer, called the telegraph equation in solids or C-V Model with 
the introduction of a time lag in the appearance of heat flux.  
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Tizo [Tizo (1992)] presented the general equation of C-V model, called single-phase lag 
model; Based on single-phase lag equation, the temperature gradient created at place r and 
time t caused heat flux at place r and the next time 𝑡𝑡 + 𝜏𝜏𝑞𝑞, where 𝜏𝜏𝑞𝑞 is inertia time or lag 
time that shows the time required to collect energy to transfer heat between structural 
elements. The lag time with the first order approximation of Taylor expansion of heat flux 
in the single-phase lag equation becomes the C-V equation. 
For many solids, inertia time is in the range of 10−10 to 10−14 seconds and for gases is in 
the range of 10−8 to 10−10 seconds. Of course, this range increases for some biological 
materials and some materials with a non-homogeneous structure by 102 [Wang, Zhou and 
Wei (2008)]. 
Although many researchers have used the C-V equation widely in applications such as low 
temperatures [Cimmelli and Frischmuth (1996)], materials with a non-homogeneous internal 
structure [Antaki (2005)], high heat flux, laser short-pulse heating [Qiu and Tien (1993)] and 
heating of materials with micro and nano structures [Tzou (2014)], C-V model is contrary to 
Clausius’s theorem. Because C-V wave model may yield results in positive and negative 
values of entropy generation rate, which, in analyzing the second law, is incompatible with 
local thermodynamics equilibrium theory [Askarizadeh and Baniasadi (2017)]. 
The research showed that C-V equation ignored microstructure interactions in small-scale 
heat transfer only by taking into account the rapid transfer effects. Thus, Tizo [Tizo (1995)] 
provided the improved model of dual time lag called dual phase lag; Tizo introduced two 
inherent thermal properties of the system (𝜏𝜏𝑇𝑇 and 𝜏𝜏𝑞𝑞 ); The lag time 𝜏𝜏𝑇𝑇  is called fuzzy lag 
of temperature gradient and indicates the effect of small spatial scales on heat transfer. In 
other words, 𝜏𝜏𝑞𝑞 represents thermal inertia and 𝜏𝜏𝑇𝑇 represents microstructures’ response. 
Talaee et al. [Talaee and Atefi (2011)] examined non-Fourier conductivity heat transfer 
equation with C-V model in a hollow cylinder with alternating flux and provided an 
analytical solution. In the study, they considered the homogeneous and isotropic cylinder. 
In the study, the results for time independent heat flux were obtained variables’ separation 
method and the results of time-dependent heat flux are obtained from two-factor integral.  
Saedodin et al. [Saedodin and Barforoush (2012, 2017)] investigated non-Fourier heat 
transfer equation with C-V model in a solid cylinder with constant heat flux. They used 
variables’ separation method for solving their non-Fourier heat transfer equation and the 
effect of increasing V Number on temperature profile.  
Talaee et al. [Talaee, Sarafrazi and Bakhshandeh (2016)] in their study solved the C-V heat 
transfer equation in a cube by applying pulsed heat flux. In this study, the exact solution 
presented was based on variables’ separation method and two-factor integral. The study 
results showed that a significant difference was found between the profiles of Fourier and 
non-Fourier temperature. 
Fu et al. [Fu, Chen, Qian et al. (2014)] examined the effect of a sudden change in the 
temperature of a gap at the outer surface of a solid cylinder. They considered non-Fourier heat 
transfer equation according to C-V model and used Laplace transform method to solve it. 
Liu et al. [Liu and Chang (2007)] investigated non-Fourier conductivity heat transfer of 
dual-phase lag in a solid cylinder with regressive exponential pulsed variable heat flux. In 
order to solve the problem, they simultaneously applied Laplace transform method and 
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control volume theory to solve their equations. And the effects of time lag rate, time shift, 
and shape of pulsed heat function have been studied on heat transfer behavior.  
Wu et al. [Wu, Lee, Chang et al. (2015)] in order to solve hyperbolic heat conductivity 
inverse problem used dual phase lag heat transfer model to estimate pulsed heat flux in an 
infinite solid cylinder. They performed their analysis based on numerical methods of 
Laplace transform and volume control. 
Julius et al. [Julius, Lizronock and Socorel (2018)] conducted a comprehensive study on a 
one-dimensional non-Fourier heat transfer with a dual phase lag model on a single sheet. 
They have solved their equations by integrating the analytical method and considering 
time-dependent heat production and combining different boundary conditions (Dirichlet, 
Newman and Robin). 
Wang et al. [Wang, Xu and Zhou (2001)] used separation of the variables method to solve C-
V and dual-phase-lagging heat conduction equations in a finite 1D region under Dirichlet, 
Neumann or Robin boundary conditions, stability of solution in initial condition was considered. 
Non-Fourier heat conduction problem in finite rigid slabs effected by short pulse lasers 
analytically was solved by using Green’s functions and the finite integral transform 
technique [Tang and Araki (1999); Abdel-Hamid (1999)]. 
Moosaie et al. [Moosaie, Atefi and Fardad (2008)] analytically solved hyperbolic heat 
conduction equation under arbitrary initial condition for rectangular plate with 
homogeneous boundary conditions of first type; Temperature field was a double Fourier 
series and the solution was valid even for discontinuous but integrable initial conditions. 
Also Moosaie [Moosaie (2008)] investigated axisymmetric temperature field in a hollow 
sphere by using C-V hyperbolic heat conduction equation and separation of variables 
method to solve the problem. 
Analytical solution of hyperbolic heat equation in a hollow sphere under pulse lasers was 
obtained by Shirmohammadi [Shirmohammadi (2008)]. The temperature distribution, the 
propagation and reflection of the temperature wave due to such heat pulse was investigated 
or different thermal relaxation times and laser pulse duration. 
Nonlinear heat transfer in a fin problem with presuming the thermal conductivity is a linear 
function of temperature and the heat transfer coefficient is expressed in a power-law form 
was considered by Anbarloei et al. [Anbarloei and Shivanian. (2016)]. 
Tsai et al. [Tsai and Hung (2003)] considered Thermal behavior of a solid and a hollow sphere 
due to a sudden temperature change on the outer surface by Laplace transformation and the 
Riemann-sum approximation. Effects of the relaxation time, the imposed temperature ratio on 
the inner and outer layers of the hollow sphere, the thermal diffusivity ratio, and the relaxation 
time ratio of the composite sphere were studied [Tsai, lin and Hung (2005)]. 
Jiang [Jiang (2006)] solved The hyperbolic heat equation process in a hollow sphere with 
boundary surfaces subject to sudden temperature change by analytically means of 
integration transformation. An analytically solution of hyperbolic equation in a hollow 
sphere under harmonic boundary condition was considered by Bahrami et al. [Bahrami, 
Hosseinzadeh, Ghasemiasl et al. (2015)]. Methods of solution of this work were the 
standard separation of variables method and Duhamel integral for applying the time-
dependent boundary conditions. 
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Babaei et al. [Babaei and Chen (2008)] investigated Non Fourier Hyperbolic heat 
conduction in a heterogeneous sphere. All material properties except relaxation time were 
assumed vary continuously within the sphere in the radial direction following a power law 
and the solution was obtained by using numerical inversion of the Laplace transform. 
Unsteady conductive heat transfer in multilayer spherical composite laminates under linear 
boundary conditions consisting of the conduction, convection, and radiation heat transfer 
is considered analytically by Amiri et al. [Amiri and Norouzi (2015)]. Laplace transform 
and separation of variables were utilized to obtain exact solution. 
Askarizadeh et al. [Askarizadeh and Ahmadikia (2018)] studied a high-order dual-phase-
lag (DPL) heat transfer equation and its thermodynamic consistency. Compatibility of first 
and second-order approximations of the DPL model with the traditional second law of 
thermodynamics was shown in the analytical approach.  
Xu [Xu (2011)] considered the paradox of the thermal vibration phenomenon occurring in 
the dual-phase-lagging heat conduction with second law of thermodynamics. He developed 
two types of the extended irreversible thermodynamics to fix this paradox. 
In this study, the exact solution of the heat transfer equation in a solid cylinder with special 
constant heat flux in a part of the cylinder axis based on the dual phase lag model is 
investigated using variables’ separation method. It can cover a wide range of issues, such 
as: resizing the heat flux boundary with time, heat flux acting boundary function, and the 
effect of constant flux applied displacement. 

2 Problem statement 
In the present study, heat transfer equation of a solid cylinder with a dual phase lag model 
is considered in accordance with Fig. 1. 

 
Figure 1: A cylinder with axial heat flux 

Assuming that the object is homogeneous and isotropic, the governing equations for heat 
transfer are expressed for temperature field 𝑇𝑇(𝑟𝑟. 𝑧𝑧. 𝑡𝑡) as follow: 

𝛼𝛼 �𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝜏𝜏𝑞𝑞
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

� = 𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

+ 1
𝜕𝜕
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

+ 𝜏𝜏𝑇𝑇
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕

2𝑇𝑇
𝜕𝜕𝜕𝜕2

+ 1
𝜕𝜕
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

�                                          (1) 
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where α is the thermal diffusivity coefficient and 𝜏𝜏𝑇𝑇  and 𝜏𝜏𝑞𝑞  are the phase lag of the 
temperature gradient and heat flux, respectively.   
The boundary conditions of the problem are assumed as follow: 
𝜕𝜕𝑇𝑇(0.𝑧𝑧.𝜕𝜕)

𝜕𝜕𝜕𝜕
= 0                                                                                                                      (2-a) 

𝑇𝑇(𝑅𝑅. 𝑧𝑧. 𝑡𝑡) = 𝑇𝑇∞                                                                                                                (2-b) 
𝑇𝑇(𝑟𝑟. 0. 𝑡𝑡) = 𝑇𝑇∞                                                                                                                 (2-c) 

𝐾𝐾 𝜕𝜕𝑇𝑇(𝜕𝜕.𝐿𝐿.𝜕𝜕)
𝜕𝜕𝑧𝑧

= �
0                    𝑟𝑟 < 𝑟𝑟1
𝑞𝑞           𝑟𝑟1 < 𝑟𝑟 < 𝑟𝑟2
0                    𝑟𝑟 > 𝑟𝑟2

                                                                                    (2-d) 

The Initial conditions are considered as follows: 
𝑇𝑇(𝑟𝑟. 𝑧𝑧. 0) = 𝑇𝑇∞                                                                                                                (3-a) 
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

(𝑟𝑟. 𝑧𝑧. 0) = 0                                                                                                                 (3-b) 

 
 3 Method of solution 
In order to compare and analyze the data, dimensionless parameters are defined as follow: 

𝜉𝜉 = 𝜕𝜕
𝑅𝑅

;          𝐹𝐹𝐹𝐹 = 𝛼𝛼0𝜕𝜕
𝐿𝐿2

;            𝜃𝜃 = 𝐾𝐾 𝑇𝑇−𝑇𝑇∞
𝐿𝐿𝑞𝑞0

;       𝛼𝛼0 = 𝐾𝐾0
𝜌𝜌0𝑐𝑐0

;                                                  (4) 

𝜔𝜔 = 𝑧𝑧
𝐿𝐿

;      𝑉𝑉𝑉𝑉𝑇𝑇 = �𝛼𝛼0𝜏𝜏𝑇𝑇
𝐿𝐿2

;         𝑉𝑉𝑉𝑉𝑞𝑞 = �𝛼𝛼0𝜏𝜏𝑞𝑞
𝐿𝐿2

;    𝑀𝑀 = 𝐿𝐿
𝑅𝑅

                                                         (5) 

The dimensionless parameters are applied to heat transfer equations and boundary and primary 
conditions. In this way, heat transfer equation with dual phase lag is obtained as follows: 

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑉𝑉𝑉𝑉𝑞𝑞2
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕2

� = 𝑀𝑀2 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝑀𝑀2

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 + 𝑉𝑉𝑉𝑉𝑇𝑇2

𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

�𝑀𝑀2 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝑀𝑀2

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2�           (6) 

And boundary dimensionless conditions are equal to  
𝜕𝜕𝜕𝜕(0.𝜕𝜕.𝜕𝜕𝜕𝜕)

𝜕𝜕𝜕𝜕
= 0                                                                                                                   (7-a) 

𝜃𝜃(1.𝜔𝜔.𝐹𝐹𝐹𝐹) = 0                                                                                                               (7-b) 
𝜃𝜃(𝜉𝜉. 0.𝐹𝐹𝐹𝐹) = 0                                                                                                                (7-c) 

𝜕𝜕𝜕𝜕(𝜕𝜕.1.𝜕𝜕𝜕𝜕)
𝜕𝜕𝜕𝜕

= �
0                    𝜉𝜉 < 𝜉𝜉1
1          𝜉𝜉1 < 𝜉𝜉 < 𝜉𝜉2
0                   𝜉𝜉 > 𝜉𝜉2

                                                                                     (7-d) 

And dimensionless initial conditions are rewritten as follow: 
𝜃𝜃(𝜉𝜉.𝜔𝜔. 0) = 0                                                                                                                 (8-a) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

(𝜉𝜉.𝜔𝜔. 0) = 0                                                                                                             (8-b) 

Özisik [Özisik (2013)] divided the solution of Eq. (6) into total of steady and unsteady 
problems as follows: 
𝜃𝜃(𝜉𝜉.𝜔𝜔.𝐹𝐹𝐹𝐹) = 𝜓𝜓(𝜉𝜉.𝜔𝜔.𝐹𝐹𝐹𝐹) + 𝜙𝜙(𝜉𝜉.𝜔𝜔)                                                                               (9) 
That φ (ξ.ω) is a steady problem solution with heterogeneous boundary conditions and ψ 
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(ξ.ω.Fo) is a transient problem solving with homogeneous boundary conditions. 

3.1 Steady problem 
The equation of the steady state is obtained as follows: 

𝑀𝑀2 𝜕𝜕
2𝜙𝜙
𝜕𝜕𝜕𝜕2

+ 𝑀𝑀2

𝜕𝜕
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2 = 0                                                                                                  (10) 

And the boundary conditions of the problem are as follows: 
𝜕𝜕𝜙𝜙(0.𝜕𝜕)

𝜕𝜕𝜕𝜕
= 0                                                                                                                     (11-a) 

𝜙𝜙(1.𝜔𝜔) = 0                                                                                                                  (11-b) 
𝜙𝜙(𝜉𝜉. 0) = 0                                                                                                                   (11-c) 

𝜕𝜕𝜙𝜙(𝜕𝜕.1)
𝜕𝜕𝜕𝜕

= �
0                    𝜉𝜉 < 𝜉𝜉1
1          𝜉𝜉1 < 𝜉𝜉 < 𝜉𝜉2
0                   𝜉𝜉 > 𝜉𝜉2

                                                                                       (11-d) 

Eq. (10) can be written using variables’ separation method as follows: 
𝜙𝜙(𝜉𝜉.𝜔𝜔) = 𝑋𝑋(𝜉𝜉)𝑍𝑍(𝜔𝜔)                                                                                                             (12) 
With applying Eq. (12) to Eq. (10), Eq. (13) is obtained as follows: 
𝑀𝑀2

𝑋𝑋
�𝜕𝜕

2𝑋𝑋
𝜕𝜕𝜕𝜕2

+ 1
𝜕𝜕
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕
� = − 1

𝑍𝑍
𝜕𝜕2𝑍𝑍
𝜕𝜕𝜕𝜕2 = −𝛾𝛾2                                                                                   (13) 

Eq. (13) is divided into two distinct equations in terms of the variables ξ and ω that the 
separated equation in the direction of ξ with its boundary conditions is equal to 

𝜉𝜉2 𝜕𝜕
2𝑋𝑋
𝜕𝜕𝜕𝜕2

+ 𝜉𝜉 𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕

+ 𝜉𝜉2 𝛾𝛾2

𝑀𝑀2 𝑋𝑋 = 0                                                                                                           (14) 

𝐵𝐵. 𝑐𝑐 �
𝜕𝜕𝑋𝑋(0)
𝜕𝜕𝜕𝜕

= 0

𝑋𝑋(1) = 0
                                                                                                                       (15) 

The corresponding answer to Eq. (14) is equal to 

𝑋𝑋(𝜉𝜉) =  𝐶𝐶1𝐽𝐽0 �
𝛾𝛾
𝑀𝑀
𝜉𝜉� + 𝐶𝐶2𝑌𝑌0 �

𝛾𝛾
𝑀𝑀
𝜉𝜉�                                                                                              (16) 

With applying the boundary condition Eq. (15), 𝐶𝐶2 = 0, and Eq. (16) is reduced as follow: 

𝑋𝑋(𝜉𝜉) =  𝐶𝐶1𝐽𝐽0 �
𝛾𝛾
𝑀𝑀
𝜉𝜉�                                                                                                             (17) 

In Eq. (17), 𝛾𝛾
𝑀𝑀

  is the solution of the equation 𝐽𝐽0 �
𝛾𝛾
𝑀𝑀
� = 0.  

The separated equation in the direction ω and its corresponding boundary conditions are 
observed in Eqs. (18) and (19) 
𝜕𝜕2𝑍𝑍
𝜕𝜕𝜕𝜕2 −𝛾𝛾2𝑍𝑍 = 0                                                                                                                          (18) 

𝐵𝐵. 𝑐𝑐   𝑍𝑍(0) = 0                                                                                                                         (19) 
The answer of the differential Eq. (18) is obtained with applying boundary conditions Eq. 
(19) as follows: 
𝑍𝑍(𝜔𝜔) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝛾𝛾𝜔𝜔)                                                                                                             (20) 
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The general answer of the steady state Eq. (10) is obtained using variables’ separation 
method as follow: 

𝜙𝜙(𝜉𝜉.𝜔𝜔) = ∑ 𝑎𝑎𝑛𝑛 𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝛾𝛾𝑛𝑛𝜔𝜔)∞
𝑛𝑛=1 𝐽𝐽0 �

𝛾𝛾𝑛𝑛
𝑀𝑀
𝜉𝜉�                                                                          (21) 

Using the orthogonal function and boundary conditions Eq. (11-d), 𝑎𝑎𝑛𝑛  is obtained as follow: 

𝑎𝑎𝑛𝑛 =
2𝑀𝑀�−𝜕𝜕1𝐽𝐽1�

𝛾𝛾𝑛𝑛
𝑀𝑀𝜕𝜕1�+𝜕𝜕2𝐽𝐽1(𝛾𝛾𝑛𝑛𝑀𝑀𝜕𝜕2)�

𝛾𝛾𝑛𝑛2 cosh𝛾𝛾𝑛𝑛 �𝐽𝐽1(𝛾𝛾𝑛𝑛𝑀𝑀 )�
2                                                                                         (22) 

3.2 Transient problem 

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑉𝑉𝑉𝑉𝑞𝑞2
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕2

� = 𝑀𝑀2 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝑀𝑀2

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 +  𝑉𝑉𝑉𝑉𝑇𝑇2

𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

�𝑀𝑀2 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝑀𝑀2

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2�      (23) 

The boundary conditions of the transient problem are equal to: 
𝜕𝜕𝜕𝜕(0.𝜕𝜕.𝜕𝜕𝜕𝜕)

𝜕𝜕𝜕𝜕
= 0                                                                                                                (24-a) 

𝜓𝜓(1.𝜔𝜔.𝐹𝐹𝐹𝐹) = 0                                                                                                            (24-b) 
𝜓𝜓(𝜉𝜉. 0.𝐹𝐹𝐹𝐹) = 0                                                                                                             (24-c) 

𝜕𝜕𝜕𝜕(𝜕𝜕.1.𝜕𝜕𝜕𝜕)
𝜕𝜕𝜕𝜕

= �
0                    𝜉𝜉 < 𝜉𝜉1
1          𝜉𝜉1 < 𝜉𝜉 < 𝜉𝜉2
0                   𝜉𝜉 > 𝜉𝜉2

                                                                                   (24-d) 

And also initial conditions by replacing Eq. (9) in primary conditions Eq.  (8) are rewritten 
as follow: 
𝜓𝜓(𝜉𝜉.𝜔𝜔. 0) = −𝜙𝜙(𝜉𝜉.𝜔𝜔)                                                                                                 (25-a) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

(𝜉𝜉.𝜔𝜔. 0) = 0                                                                                                            (25-b) 

The answer for differential Eq. (23) using variables’ separation method is considered as follows: 
𝜓𝜓(𝜉𝜉.𝜔𝜔.𝐹𝐹𝐹𝐹) =  𝑋𝑋(𝜉𝜉)𝑍𝑍(𝜔𝜔)τ(𝐹𝐹𝐹𝐹)                                                                                       (26) 
With applying Eq. (28), Eq. (25) is obtained as follow: 
1
τ
𝜕𝜕τ
𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑉𝑉𝑉𝑉𝑞𝑞2

τ
𝜕𝜕2τ
𝜕𝜕𝜕𝜕𝜕𝜕2

− 𝑉𝑉𝑉𝑉𝑇𝑇2

τ
𝜕𝜕τ
𝜕𝜕𝜕𝜕𝜕𝜕

�1
𝑋𝑋
�𝑀𝑀2 𝜕𝜕

2𝑋𝑋
𝜕𝜕𝜕𝜕2

+ 𝑀𝑀2

𝜕𝜕
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕
�+ 1

 𝑍𝑍
�𝜕𝜕

2𝑍𝑍
𝜕𝜕𝜕𝜕2�� = 1

𝑋𝑋
�𝑀𝑀2 𝜕𝜕

2𝑋𝑋
𝜕𝜕𝜕𝜕2

+ 𝑀𝑀2

𝜕𝜕
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕
� +

1
 𝑍𝑍
�𝜕𝜕

2𝑍𝑍
𝜕𝜕𝜕𝜕2� = ±𝛾𝛾2 ± 𝜆𝜆2 = ±𝜐𝜐2                                                                                                  (27) 

Eq. (27) is divided into three distinct equations in terms of the variables ξ, ω and Fo. The 
separated equation in the direction of ξ is equal to: 
𝜕𝜕2𝑋𝑋

𝜕𝜕𝜕𝜕
2 + 1

𝜕𝜕
𝜕𝜕𝑋𝑋
𝜕𝜕𝜕𝜕

+ 𝛾𝛾2

𝑀𝑀2 𝑋𝑋 = 0                                                                                                             (28) 

𝜕𝜕𝑋𝑋(0)
𝜕𝜕𝜕𝜕

= 0                                                                                                                       (29-a) 

𝑋𝑋(1) = 0                                                                                                                       (29-b) 
With applying boundary conditions, the Eq. (28) is obtained as follow: 

𝑋𝑋�𝜉𝜉� = 𝐶𝐶𝐽𝐽0 �
𝛾𝛾
𝑀𝑀
𝜉𝜉�                                                                                                                 (30) 
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The separated equation in the direction ω and its corresponding boundary conditions are 
observed as Eqs. (31) and (32): 
𝜕𝜕2𝑍𝑍
𝜕𝜕𝜕𝜕2 + 𝜆𝜆2𝑍𝑍 = 0                                                                                                                             (31) 

𝑍𝑍(0) = 0                                                                                                                             (32) 
The differential Eq. (31) is calculated with applying boundary conditions Eq. (32) as 
follows: 
𝑍𝑍(𝜔𝜔) = 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝑔𝑔𝜔𝜔)                                                                                                              (33) 

In the Eq. (30) and Eq. (33), 𝛾𝛾
𝑀𝑀

 and λ are the answers of the equations 𝐽𝐽0 �
𝛾𝛾
𝑀𝑀
� = 0 and cos 

(λ) = 0, respectively. 
The separated equation in terms of Fo, dimensionless time variable is shown in Eq. (34): 

𝑉𝑉𝑉𝑉𝑞𝑞2
𝜕𝜕2τ
𝜕𝜕𝜕𝜕𝜕𝜕2

+ �1 + 𝑉𝑉𝑉𝑉𝑇𝑇2𝜐𝜐2�
𝜕𝜕τ
𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜐𝜐2τ = 0                                                                             (34) 

The initial condition is equal to: 

  𝜕𝜕τ
𝜕𝜕𝜕𝜕𝜕𝜕

(0) = 0                                                                                                                                          (35) 

The answer of Eq. (34) is based on the existing conditions and divided into two parts of the 
complex and real answer. 

If �1 + 𝑉𝑉𝑉𝑉𝑇𝑇2𝜐𝜐2�
2 − 4𝜐𝜐2𝑉𝑉𝑉𝑉𝑞𝑞2 > 0, Eq. (34) has the following real answer: 

τ𝑓𝑓.𝑔𝑔(𝑡𝑡) = 𝑉𝑉
− 
�1+𝑉𝑉𝑉𝑉𝑇𝑇

2𝜐𝜐2�𝐹𝐹𝐹𝐹

2𝑉𝑉𝑉𝑉𝑞𝑞2 �𝐶𝐶1𝐶𝐶𝐶𝐶𝐶𝐶ℎ �𝐴𝐴𝑓𝑓𝑔𝑔
𝜕𝜕𝜕𝜕

2𝑉𝑉𝑉𝑉𝑞𝑞2
�+ 𝐶𝐶2 cosh�𝐴𝐴𝑓𝑓𝑔𝑔

𝜕𝜕𝜕𝜕
2𝑉𝑉𝑉𝑉𝑞𝑞2

��                         (36) 

If �1 + 𝑉𝑉𝑉𝑉𝑇𝑇2𝜐𝜐2�
2 − 4𝜐𝜐2𝑉𝑉𝑉𝑉𝑞𝑞2 < 0, Eq. (34) has an imaginary answer as follows: 

τ𝑓𝑓.𝑔𝑔(𝑡𝑡) = 𝑉𝑉
− 
�1+𝑉𝑉𝑉𝑉𝑇𝑇

2𝜐𝜐2�𝐹𝐹𝐹𝐹

2𝑉𝑉𝑉𝑉𝑞𝑞2 (𝐶𝐶1𝐶𝐶𝐶𝐶𝐶𝐶 ��𝐴𝐴𝑓𝑓𝑔𝑔�𝑖𝑖
𝜕𝜕𝜕𝜕

2𝑉𝑉𝑉𝑉𝑞𝑞2
� + 𝐶𝐶2𝑐𝑐𝐹𝐹𝐶𝐶(�𝐴𝐴𝑓𝑓𝑔𝑔�𝑖𝑖

𝜕𝜕𝜕𝜕
2𝑉𝑉𝑉𝑉𝑞𝑞2

))                       (37) 

𝐶𝐶1 and 𝐶𝐶2 are constant coefficients of the equation obtained from the initial condition of 
Eq. (35). The value of 𝐴𝐴𝑓𝑓𝑔𝑔 is equal to: 

𝐴𝐴𝑓𝑓𝑔𝑔 = ��1 + 𝑉𝑉𝑉𝑉𝑇𝑇2𝜐𝜐2�
2 − 4𝑉𝑉𝑉𝑉𝑞𝑞2𝜐𝜐2;    𝐴𝐴𝑓𝑓𝑔𝑔 = 𝐶𝐶�𝐴𝐴𝑓𝑓𝑔𝑔�𝑖𝑖                                                         (38) 

The general solution of Eq. (34) is: 

τ𝑓𝑓.𝑔𝑔(𝑡𝑡) = 𝐶𝐶

⎩
⎪
⎨

⎪
⎧

    

𝑉𝑉
− 
�1+𝑉𝑉𝑉𝑉𝑇𝑇

2𝜐𝜐2�𝐹𝐹𝐹𝐹

2𝑉𝑉𝑉𝑉𝑞𝑞2 ��1+𝑉𝑉𝑉𝑉𝑇𝑇
2𝜐𝜐2�

𝐴𝐴𝑓𝑓𝑓𝑓
𝐶𝐶𝐶𝐶𝐶𝐶ℎ �𝐴𝐴𝑓𝑓𝑔𝑔  𝜕𝜕𝜕𝜕

2𝑉𝑉𝑉𝑉𝑞𝑞2
�+ 𝑐𝑐𝐹𝐹𝐶𝐶ℎ � 𝐴𝐴𝑓𝑓𝑔𝑔

𝜕𝜕𝜕𝜕
2𝑉𝑉𝑉𝑉𝑞𝑞2

��

𝑉𝑉
− 
�1+𝑉𝑉𝑉𝑉𝑇𝑇

2𝜐𝜐2�𝜉𝜉

2𝑉𝑉𝑉𝑉𝑞𝑞2 ��1+𝑉𝑉𝑉𝑉𝑇𝑇
2𝜐𝜐2�

�𝐴𝐴𝑓𝑓𝑓𝑓�𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶 ��𝐴𝐴𝑓𝑓𝑔𝑔�𝑖𝑖  𝜕𝜕𝜕𝜕

2𝑉𝑉𝑉𝑉𝑞𝑞2
� + 𝑐𝑐𝐹𝐹𝐶𝐶 � �𝐴𝐴𝑓𝑓𝑔𝑔�𝑖𝑖

𝜕𝜕𝜕𝜕
2𝑉𝑉𝑉𝑉𝑞𝑞2

��
 

        (39) 

The general solution of Eq. (23) is obtained by replacing the solutions of Eq. (30), Eq. (33) 
and Eq. (39) in Eq. (26) as follows: 
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𝜓𝜓�𝜂𝜂.𝜔𝜔. 𝜉𝜉� = ∑ ∑ 𝐶𝐶𝑓𝑓𝑔𝑔𝐺𝐺
𝑔𝑔=0

𝜕𝜕
𝑓𝑓=1 𝑉𝑉

− 
�1+𝑉𝑉𝑉𝑉𝑇𝑇

2𝜐𝜐2�𝐹𝐹𝐹𝐹

2𝑉𝑉𝑉𝑉𝑞𝑞2 ��1+𝑉𝑉𝑉𝑉𝑇𝑇
2𝜐𝜐2�

𝐴𝐴𝑓𝑓𝑓𝑓
sinh �𝐴𝐴𝑓𝑓𝑔𝑔  𝜕𝜕𝜕𝜕

2𝑉𝑉𝑉𝑉𝑞𝑞2
� +

cosh � 𝐴𝐴𝑓𝑓𝑔𝑔
𝜕𝜕𝜕𝜕

2𝑉𝑉𝑉𝑉𝑞𝑞2
�� × 𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝜔𝜔)𝐽𝐽0 �

𝛾𝛾𝑓𝑓
𝑀𝑀
𝜉𝜉� + ∑ ∑ 𝐶𝐶𝑓𝑓𝑔𝑔∞

𝑔𝑔=𝐺𝐺+1
∞
𝑓𝑓=𝜕𝜕+1 𝑉𝑉

− 
�1+𝑉𝑉𝑉𝑉𝑇𝑇

2𝜐𝜐2�𝜉𝜉

2𝑉𝑉𝑉𝑉𝑞𝑞2 ×

��1+𝑉𝑉𝑉𝑉𝑇𝑇
2𝜐𝜐2�

�𝐴𝐴𝑓𝑓𝑓𝑓�𝑖𝑖
sin��𝐴𝐴𝑓𝑓𝑔𝑔�𝑖𝑖  𝜕𝜕𝜕𝜕

2𝑉𝑉𝑉𝑉𝑞𝑞2
�+ cos � �𝐴𝐴𝑓𝑓𝑔𝑔�𝑖𝑖

𝜕𝜕𝜕𝜕
2𝑉𝑉𝑉𝑉𝑞𝑞2

��× 𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆𝜔𝜔)𝐽𝐽0 �
𝛾𝛾𝑓𝑓
𝑀𝑀
𝜉𝜉�                          (40) 

Using the initial condition Eq. (25-a) and the orthogonal function, 𝐶𝐶𝑓𝑓𝑔𝑔 is equal to  

𝐶𝐶𝑓𝑓𝑔𝑔 = −2 𝑎𝑎𝑓𝑓 𝛾𝛾𝑓𝑓 cosh (𝛾𝛾𝑓𝑓) (−1)𝑓𝑓

(𝛾𝛾𝑓𝑓2+𝜆𝜆𝑓𝑓
2)

                                                                                                           (41) 

𝐶𝐶𝑓𝑓𝑔𝑔 =
−4𝑀𝑀�−𝜕𝜕1𝐽𝐽1�

𝛾𝛾𝑓𝑓
𝑀𝑀𝜕𝜕1�+𝜕𝜕2𝐽𝐽1(

𝛾𝛾𝑓𝑓
𝑀𝑀𝜕𝜕2)�

𝛾𝛾𝑓𝑓 �𝐽𝐽1(
𝛾𝛾𝑓𝑓
𝑀𝑀 )�

2
 

(−1)𝑓𝑓

(𝛾𝛾𝑓𝑓2+𝜆𝜆𝑓𝑓
2)

                                                                                             (42) 

4 Results and discussion 
In this section, first results of this investigation are compared with results of Saedodin et al. 
[Saedodin and Barforoush (2012, 2017)]. After that in second section results of 2D non-
Fourier heat conduction are presented. For verification this work,  τ𝑇𝑇 = 0 , ξ2 = 1 and 
Saedodin’s problem’s boundrary conditions are applied; comparing results of current work 
and Barforoush are shown in Figs. 2-4. According to the results, there are no differences 
between two works and this work is absolutely compatible with Saedodin’s work. 
Fig. 2 shows changing of dimensionless temperature across radius direction in the different 
Vernotte numbers. In the C-V hyperbolic heat conduction, increasing relaxation time 
causes decreasing thermal wave speed, so thermal wave needs more time to sense another 
side of cylinder. 
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Figure 2: Comparison of Saedodin’s work [Saedodin and Barforoush (2012)] with current 
work (𝛏𝛏𝟏𝟏 = 𝟎𝟎.𝟖𝟖. 𝛏𝛏𝟐𝟐 = 𝟏𝟏 𝑭𝑭𝑭𝑭 = 𝟎𝟎.𝟏𝟏.  𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎 𝛏𝛏𝟐𝟐 = 𝟏𝟏.𝐌𝐌 = 𝟏𝟏𝟏𝟏) 

Comparison of three dimensional temperature gradient in Saedodin and Barforoush’s et al. 
work with current work is shown in Figs. 3-4. Behavior of thermal waves is the same in 
the both works. Fig. 3 is shown for 𝑉𝑉𝑉𝑉𝑞𝑞 = 0.3 and another one (Fig. 4) is shown for 𝑉𝑉𝑉𝑉𝑞𝑞 =
0.6 so by increasing of relaxation time, heat transfer behaves more wavy. 

 
               a) Saedodin’ works                                             b) current work 

Figure 3: Comparison of three dimensional temperature gradient in Saedodin and 
Barforoush’s work with this work  
 (𝑭𝑭𝑭𝑭 = 𝟎𝟎.𝟓𝟓.𝑴𝑴 = 𝟒𝟒;𝑽𝑽𝑽𝑽𝒒𝒒 = 𝟎𝟎.𝟑𝟑 𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎. 𝛏𝛏𝟏𝟏 = 𝟎𝟎.𝟕𝟕. 𝛏𝛏𝟐𝟐 = 𝟏𝟏) 

 
Figure 4: Comparison of three dimensional temperature gradient in Saedodin and 
Barforoush’s work with this work  
(𝑭𝑭𝑭𝑭 = 𝟎𝟎.𝟓𝟓.𝑴𝑴 = 𝟒𝟒;𝑽𝑽𝑽𝑽𝒒𝒒 = 𝟎𝟎.𝟏𝟏 𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎 . 𝛏𝛏𝟏𝟏 = 𝟎𝟎.𝟕𝟕 𝛏𝛏𝟐𝟐 = 𝟏𝟏) 

In order to simulate and plot the charts, the values ξ1 = 0.4  and ξ2 = 0.6  have been 
assumed and investigated. 
Fig. 5 shows the analytical answer of the problem in three states of heat transfer with 
Fourier equations, single phase lag and dual phase lag in the cylinder axis in terms of 
dimensionless time. It can be seen that in single and dual phase lags, in contrast to Fourier 
state, there is a time lag of 0.1 to 0.2 s. This time lag indicates the limitation of the heat 
wave rate and the time it takes to transfer the effect of applying heat flux across the cylinder 
axis. Also, the single-phase lag model exhibits more wave-like properties than dual phase 
and Fourier models. This model not only has more time lag at the beginning, but also needs 
more time to reach the stable temperature. 
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Figure 5: Dimensionless temperature change diagram to dimensionless time in three states 
of Fourier, single phase lag and dual phase lag (ξ = 0.ω = 1.M = 1) 

Fig. 6 shows changes in dimensionless temperature across the cylinder axis for heat transfer 
with Fourier, single phase lag, and dual phase lag equations. It is observed that the 
maximum temperature has occurred in the single phase lag model. The reason for this is 
that the single-phase lag model did not reach a stable temperature of 0.2. It is also observed 
in this figure that the rate of propagation of heat wave in Fourier and dual phase lag 
methods is higher than the single-phase lag method. 

 
Figure 6: Changes in dimensionless temperature across the cylinder  
(𝛏𝛏 = 𝟎𝟎.𝑭𝑭𝑭𝑭 = 𝟎𝟎.𝟐𝟐.𝑴𝑴 = 𝟐𝟐.𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎.𝟐𝟐.𝑽𝑽𝑽𝑽𝒒𝒒 = 𝟎𝟎.𝟓𝟓) 

Fig. 7 shows changes in dimensionless temperature along the radius of the cylinder for heat 
transfer with Fourier equations, single phase lag, and dual phase lag. The maximum 
temperature changes occurred at the site of the application of constant heat flux. 
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Figure 7: Temperature change diagrams along the radius of the cylinder  
(ω = 1 Fo = 0.05.M = 2,𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎.𝟐𝟐.𝑽𝑽𝑽𝑽𝒒𝒒 = 𝟎𝟎.𝟓𝟓) 

Fig. 8 shows isothermal lines along ξ and ω based on dual phase lag model. In this figure, 
isothermal lines’ density at the site of constant heat flux boundary is clearly visible. Due 
to the boundary condition θ (1, ω, Fo)=0, heat flux moves along the radius toward the 
center of the cylinder. 

 
Figure 8: Isothermal lines along ξ and ω based on dual phase lag model 
�𝑭𝑭𝑭𝑭 = 𝟎𝟎.𝟐𝟐.𝑴𝑴 = 𝟏𝟏.𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎.𝟐𝟐.𝑽𝑽𝑽𝑽𝒒𝒒 = 𝟎𝟎.𝟓𝟓� 

The response of the analysis of dimensionless temperature at dimensionless time for dual 
phase lag model in terms of various ratios of length to the radius of the cylinder (M) can 
be seen in Fig. 9. According to Fig. 9, the longer the ratio of the length to the radius of the 
cylinder (M), the less time for the temperature to reach a steady state. Also, with increasing 
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the ratio of length to radius of the cylinder, primary time lag also reduced. For example, at 
M=1, primary time lag is approximately 0.1, which is reduced to 0.05 at M=2. 

 
Figure 9: Changes in dimensionless temperature and dimensionless time at different ratios 
of cylinder length-radius �𝑭𝑭𝑭𝑭 = 𝟎𝟎.𝟐𝟐.𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎.𝟐𝟐.𝑽𝑽𝑽𝑽𝒒𝒒 = 𝟎𝟎.𝟓𝟓� 

Fig. 10 shows changes in the increase of heat flux phase lag on dimensionless temperature 
in the dual phase lag model in the range of 0 to 4. In this figure, it can be seen that with 
constant temperature gradient time lag and increased heat flux, the wave properties increase 
and the amount of time lag initially increases and the system also needs more time to reach 
the steady-state temperature. 

 
Figure 10: The effect of lag of different times of heat flux on dimensionless temperature 
(ξ = 0.ω = 1 .𝑴𝑴 = 𝟏𝟏.𝑽𝑽𝑽𝑽𝑻𝑻 = 𝟎𝟎.𝟐𝟐.) 

Fig. 11 shows the effect of time lag changes in the temperature gradient on the 
dimensionless temperature profile. As shown in Fig. 11, in a low temperature gradient lag, 
the amount of heat wave propagation is very small and mild, which heat wave propagation 
increases with increasing the time lag of the temperature gradient. Meanwhile, with fixing 
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time lag of heat flux and increasing temperature gradient time lag, with the wave sentence 
in dual phase lag model, non-wave behavior for heat transfer is predicted, and dual phase 
lag model is similar to Fourier state. 

 
Figure 11: The effect of different times’ lag of temperature gradient on dimensionless 
temperature 

5 Conclusion 
In this study, the exact solution of the non-Fourier heat transfer equation was obtained based 
on the dual phase lag in a solid cylinder by applying constant axial heat flux and compared 
with the results of Fourier heat transfer equation and the fuzzy change. According to the results, 
the single phase lag model exhibits more wave properties than the dual phase lag model. This 
feature requires more time to achieve a steady state. Meanwhile, the propagation rate of the 
heat wave in the dual phase lag model is greater than the single phase lag, although the 
maximum temperature occurs in the single phase lag model. With increasing time lag of heat 
flux and temperature gradient time lag the time to reach the stable temperature increased, with 
the difference that the increase in the time lag of heat flux increases the wave properties, but, 
in contrast the increase in temperature gradient time lag will neutralize the wave properties 
and increases heat release. Also, increasing the length to radius ratio reduces the time to reach 
the stable temperature in the dual phase lag model. 
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