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Abstract: The propagation of thermoelastic waves in a homogeneous, isotropic elastic 
semi-infinite space is subjected to rotation and initial stress, which is at temperature 0T -
initially, and whose boundary surface is subjected to heat source and load moving with 
finite velocity. Temperature and stress distribution occurring due to heating or cooling and 
have been determined using certain boundary conditions. Numerical results have been 
given and illustrated graphically in each case considered. Comparison is made with the 
results predicted by the theory of thermoelasticity in the absence of rotation and initial 
stress. The results indicate that the effect of the rotation and initial stress is very pronounced. 
 
Keywords: Thermal stresses, thermoelasticity, wave propagation, rotation, initial stress. 

1 Introduction 
The subject of generalized thermoelasticity has drawn the attention of researchers due to 
its relevance in many practical applications. The generalized thermoelasticity theories 
involve hyperbolic-type governing equations and admit the finite speed of thermal signals. 
In contrast to the conventional theories based on parabolic-type heat equation, these 
theories are referred to as generalized theories. Because of the experimental evidence in 
support of the finiteness of the speed of propagation of a heat wave, generalized 
thermoelasticity theories are more realistic than conventional thermoelasticity theories in 
dealing with practical problems involving very short time intervals and high heat fluxes 
such as those occurring in laser units, energy channels, nuclear reactors, etc. The 
phenomenon of coupling between the thermomechanical behavior of materials and 
magnetic behavior of materials have been studied since the19th. On generalized magneto-
thermoelastic Rayleigh waves in a granular medium under influence of the gravity field 
and initial stress have been studied by Abd-Alla et al. [Abd-Alla, Abo-Dahab, Mahmoud 
et al. (2011); Abd-Alla and Mahmoud (2010)] investigated the magneto-thermoelastic 
problem in rotating non-homogeneous orthotropic hollow cylinder under the hyperbolic 
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heat conduction model.  Propagation of Rayleigh waves in magneto-thermo-elastic half-
space of a homogeneous orthotropic material under the effect of the rotation, initial stress 
and gravity field was studied by Abd-Alla et al. [Abd-Alla, Abo-Dahab, Bayones (2013); 
Ailawalia and Narah (2009)] discussed the effect of rotation in a generalized thermoelastic 
medium with hydrostatic initial stress subjected to ramp-type heating and loading.   
Abouelregal [Abouelregal (2011)] has presented Rayleigh waves in a thermoelastic solid 
half space using dual-phase-lag model. Stoneley waves in a non-homogeneous 
orthotropic granular medium under the influence of gravity studied by Ahmed et al. 
[Ahmed (2005); Ailawalia and  Narah (2009)] investigated the effect of rotation in 
generalized thermoelastic solid under the influence of gravity with an overlying infinite 
thermoelastic fluid. Amin et al. [Amin, El-Bary and Youssef (2017)] investigated the two 
dimensional problem of generalized thermoelastic half space subjected to moving heat 
source. Choudhury et al. [Choudhury, Basu  and Bhattacharyya (2015)] investigated 
wave propagation in a rotating randomly varying  granular generalized thermoelastic 
medium. Deswal et al. [Deswal and Choudhary (2008)] studied the two-dimensional 
interactions due to moving loads in generalized thermoelastic solid with diffusion. 
Deswal et al. [Deswal, Punia and Kalkal (2019)] investigated the propagation of waves at 
an interface between a transversely isotropic rotating thermoelastic solid half space and a 
fiber-reinforced magneto-thermoelastic rotating solid half space. Ezzat et al. [Ezzat and 
Youssef (2010)] proposed the three-dimensional thermal shock problem of generalized 
thermoelastic half-space. Kakar [Kakar (2012)] studied the effect of initial stress and 
gravity on Rayleigh wave propagation in non-homogeneous isotropic elastic media. 
Kumar et al. [Kumar and Deswal (2000)] investigated  the Steady-state response of a 
micropolar generalized thermoelastic half-space to the moving mechanical/thermal loads. 
Propagation of waves in transversely isotropic micropolar generalized thermoelastic half 
space was studied by Kumar et al. [Kumar and Gupta (2010)]. Plane waves at an 
imperfectly bonded interface of two orthotropic generalized thermoelastic rotating half-
spaces with two relaxation times was studied by Kumar et al. [Kumar and Singh (2009); 
Kumar and Chawla (2011)] proposed the wave propagation at the imperfect boundary 
between transversely isotropic thermodiffusive elastic layer and half-space. Kumar et al. 
[Kumar and Singh (2007)] studied the propagation of plane waves in thermoelastic cubic 
crystal material with two relaxation times. Othman et al. [Othman and Atwa (2012)] 
investigated the Thermoelastic plane waves for an elastic solid half-space under the 
hydrostatic initial stress of type III. Rossikhin [Rossikhin (1976)] investigated the 
propagation of plane waves in an anisotropic thermoelastic half-space. Said [Said (2016)] 
investigated the influence of gravity on generalized magneto-thermoelastic medium for 
three-phase-lag model. A reflection of a plane magneto-thermoelastic wave at the 
boundary of a solid half-space in presence of initial stress was studied by Sarkar et al. 
[Sarkar and Lahiri (2012); Sharma and Walia (2007)] investigated the effect of rotation 
on Rayleigh waves in piezothermoelastic half space. Sherief et al. [Sherief and Saleh 
(2005)] investigated the half-space problem in the theory of generalized thermoelastic 
diffusion. Singh et al. [Singh, Yadav and Gupta (2019)] investigated the reflection of 
plane waves from a micropolar thermoelastic solid half-space with impedance boundary 
conditions. Singh [Singh (2010)] investigated the wave propagation in an initially 
stressed transversely isotropic thermoelastic solid half-space. Singh et al. [Singh and 
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Chakraborty (2015)] discussed the three-dimensional thermoelastic problem for a half-
space without energy dissipation. Vishwakarma et al. [Vishwakarma and Gupta (2014)] 
studied Rayleigh wave propagation: A case wise study in a layer over a half space under 
the effect of rigid boundary. Wang et al. [Wang, Yu and Wang (2016)] proposed the 
analytical solutions for elastic fields caused by eigenstrains in two joined and perfectly 
bounded half-spaces and related problems. Xia et al. [Xia, Tian and Shen (2014)] studied 
the dynamic response of two-dimensional generalized thermoelastic coupling problem 
subjected to a moving heat source. 
In spite of all these investigations, no attempt has been made yet to study the propagation of 
a thermoelasticwave  in a half-space of a homogeneous isotropic material  under the effect 
of the gravity field and in contact with change  coordinate system moving with input by 
shifting origin to the position of the input. The components of  displacement, normal stress, 
tangential stress and temperature subjected to heat source and load moving with finite 
velocity are obtained by Lame’s potential method. Numerical computation is performed by 
using a numerical technique and the resulting quantities are shown graphically. The current 
manuscript is devoted to investigate the propagation of wave in a homogeneous isotropic, 
thermoelastic medium under the effect of the rotation and initial stress. The temperature, 
displacement components, stresses components is obtained in the physical domain using 
Lame’s potential method. The results obtained in this investigation are more general in the 
sense that some earlier published results are obtained from our result as special cases. 
Numerical results for temperature, displacement and stress distributions have been obtained 
for a stainless steel like material and presented graphically. 

2 Formulation of the problem 
Consider a half space y ≥ 0, initially at the temperature T0  and in the stress free state. A 
variation in temperature, displacement and stress fields will occur due to actions of 
external loading.  Assuming that the displacement will be along x -axis, the y -axis 
function of space coordinates ,x y  and time t . The initial stress 𝜏𝜏𝑖𝑖𝑖𝑖 are given as: 

𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑥𝑥𝑥𝑥 = 0                                                                                                      (1) 
                                                                                          
where𝜏𝜏 is a function of depth. The equilibrium equations of the initial stress is in the form: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.                                                                                                      (2) 

The generalized equation of heat conduction is given by:  

𝐾𝐾∇2=  𝜌𝜌𝜌𝜌𝑒𝑒 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜏𝜏0 
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

� + (3𝜆𝜆 + 2𝜇𝜇)𝛼𝛼𝑡𝑡𝑇𝑇0( 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜏𝜏0
𝜕𝜕2

𝜕𝜕𝜕𝜕2
) .∇ 𝑢𝑢�⃗ .                          (3) 

The dynamic  equation of motion under the effect of initial stress and rotation is given by: 

(𝜆𝜆 + 𝜇𝜇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇 ∇2𝑢𝑢 − 𝑝𝑝
2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

+ 𝑝𝑝
2
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝛾𝛾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜌𝜌 �𝜕𝜕
2𝑢𝑢
𝜕𝜕𝑡𝑡2

− Ω2𝑢𝑢�,                             (4) 

 

(𝜆𝜆 + 𝜇𝜇) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇 ∇2𝑣𝑣 + 𝑝𝑝
2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝑝𝑝
2
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2

+ 𝛾𝛾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜌𝜌 �𝜕𝜕
2𝑣𝑣
𝜕𝜕𝑡𝑡2

− Ω2𝑣𝑣�.                              (5) 

http://www.sciencedirect.com/science/article/pii/S0020722511001595
http://www.sciencedirect.com/science/article/pii/S0020722511001595
http://www.sciencedirect.com/science/article/pii/S0749641915001242
http://www.sciencedirect.com/science/article/pii/S0749641915001242
http://www.sciencedirect.com/science/article/pii/S0894916614600380
http://www.sciencedirect.com/science/article/pii/S0894916614600380


 
 
 
554                                                                            CMC, vol.62, no.2, pp.551-567, 2020 

The stress, displacement relations isgiven by: 

𝜏𝜏𝑥𝑥𝑥𝑥 = (𝜆𝜆 + 2𝜇𝜇 + 𝑃𝑃)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝜆𝜆 + 𝑃𝑃)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝛾𝛾( 𝑇𝑇 − 𝑇𝑇0), 

𝜏𝜏𝑦𝑦𝑦𝑦 =  (𝜆𝜆 + 2𝜇𝜇 + 𝑃𝑃) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝜆𝜆 + 𝑃𝑃) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝛾𝛾( 𝑇𝑇 − 𝑇𝑇0),                                             (6) 

𝜏𝜏𝑥𝑥𝑥𝑥 =   �𝜇𝜇 −
𝑝𝑝
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝜇𝜇 +
𝑝𝑝
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 

where 

γ = (3λ + 2µ)αt ,θ= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,∇ = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑖𝑖 + 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑗𝑗 . 

Also, T is the temperature, ce is the specific heat, ρ is the density, αt  is the coefficient of 
thermal expansion, τ0  is the relaxation time, K is thermal conductivity and 𝑢𝑢�⃗  = (u, v, 0) is 
the displacement vector, T0  is the initial temperature, Ω =( 0, 0, Ω) is rotation vector.  
Introducing following non-dimensional variables as:  

𝑡𝑡’ =  𝑐𝑐1
2

𝑘𝑘1
𝑡𝑡,   𝑥𝑥𝑖𝑖 ′ =  𝑐𝑐1

𝑘𝑘1
𝑥𝑥𝑖𝑖, 𝑢𝑢′���⃗ =  𝑐𝑐1

3

𝑘𝑘1

𝜌𝜌
(3𝜆𝜆+2𝜇𝜇)𝛼𝛼𝑡𝑡𝑇𝑇0

𝑢𝑢�⃗ ,   Ω′ =  𝑘𝑘1
𝑐𝑐12
Ω,,  𝜏̀𝜏𝑖𝑖 = 𝑐𝑐12

𝑘𝑘1
𝜏𝜏𝑖𝑖 ,                      (7) 

𝜏𝜏′𝑖𝑖𝑖𝑖 =  1
(3𝜆𝜆+2𝜇𝜇)𝛼𝛼𝑡𝑡𝑇𝑇0

𝜏𝜏𝑖𝑖𝑖𝑖 ,  T’=𝑇𝑇
𝑇𝑇0

. 

where 
𝑐𝑐12  =  (𝜆𝜆 + 2𝜇𝜇) 𝜌𝜌⁄ , 𝑘𝑘1 = 𝐾𝐾 𝜌𝜌𝜌𝜌𝑒𝑒⁄ ,   𝜌𝜌 =  𝜌𝜌′

𝛾𝛾𝑇𝑇0
. 

Introducing the non-dimensional variables (7) into (3)-(6), we get: 

∇′2𝑇𝑇′ =  𝜌𝜌𝜌𝜌𝑒𝑒 �
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑡𝑡′
+ 𝜏𝜏 𝜕𝜕

2𝑇𝑇′

𝜕𝜕𝑡𝑡′2
� + 𝜀𝜀 � 𝜕𝜕

𝜕𝜕𝑡𝑡′
+ 𝜏𝜏 𝜕𝜕2

𝜕𝜕𝑡𝑡′2
� ∇ .𝑢𝑢�⃗ ,                                             (8) 

(𝜆𝜆 + 𝜇𝜇)
𝜕𝜕𝜃𝜃′

𝜕𝜕𝑥𝑥′
+ 𝜇𝜇 �

𝜕𝜕2𝑢𝑢′

𝜕𝜕𝜕𝜕2
+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2�

− (𝜆𝜆 + 2𝜇𝜇)
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑥𝑥′
−
𝑝𝑝
2
𝜕𝜕2𝑢̀𝑢
𝜕𝜕𝑦̀𝑦2

+
𝑝𝑝
2
𝜕𝜕2𝑣̀𝑣
𝜕𝜕𝑥̀𝑥𝜕𝜕𝑦̀𝑦

, 

= (𝜆𝜆 + 2𝜇𝜇) �𝜕𝜕
2𝑢𝑢′
𝜕𝜕𝜕𝜕′2

− Ω2𝑢̀𝑢�                                                                                       (9) 

(𝜆𝜆 + 𝜇𝜇)
𝜕𝜕𝜃𝜃′

𝜕𝜕𝑦𝑦′
+ 𝜇𝜇 �

𝜕𝜕2𝑣𝑣′

𝜕𝜕𝑥𝑥′2
+
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜕𝜕2�

− (𝜆𝜆 + 2𝜇𝜇)
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑦𝑦′
−
𝑝𝑝
2
𝜕𝜕2𝑣̀𝑣
𝜕𝜕𝑥̀𝑥2

+
𝑝𝑝
2
𝜕𝜕2𝑢̀𝑢
𝜕𝜕𝑥̀𝑥𝜕𝜕𝑦̀𝑦

 

= (𝜆𝜆 + 2𝜇𝜇) �𝜕𝜕
2𝑣𝑣′
𝜕𝜕𝜕𝜕′2

− Ω2𝑣̀𝑣�.                                                                                     (10) 

The stress, displacement relations isgiven by: 

𝜏̀𝜏𝑥𝑥′𝑥𝑥′ =  
𝜕𝜕𝑢̀𝑢
𝜕𝜕𝜕𝜕′

+ (1 − 2𝑐𝑐2)
𝜕𝜕𝑣̀𝑣
𝜕𝜕𝜕𝜕′

− 𝑇𝑇′, 

𝜏𝜏′𝑦𝑦′𝑦𝑦′ =  
𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ (1 − 2𝑐𝑐2)
𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

− 𝑇𝑇′, 

𝜏𝜏′𝑥𝑥′𝑦𝑦′ = �𝑐𝑐2 − 𝑝𝑝∗

2
� 𝜕𝜕𝑢̀𝑢
𝜕𝜕𝑥̀𝑥

+ �𝑐𝑐2 + 𝑝𝑝∗

2
� 𝜕𝜕𝑢̀𝑢
𝜕𝜕𝑦̀𝑦

                                                                  (11) 

where 
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𝜀𝜀 =  (3𝜆𝜆 + 2𝜇𝜇)𝛼𝛼𝑡𝑡  2𝑇𝑇0
𝜌𝜌𝜌𝜌𝑒𝑒(𝜆𝜆+2𝜇𝜇)

, 𝜏𝜏 = 𝜏𝜏0
𝑐𝑐1  2

𝑘𝑘1
, 𝑝𝑝∗ = 𝑝𝑝

𝜆𝜆+2𝜇𝜇+𝑃𝑃
, 𝑐𝑐2 = 𝜇𝜇

𝜆𝜆+2𝜇𝜇+𝑃𝑃
. 

3 Solution of the problem 
From Helmholt’s theorem [Morse and Feshbach (1953)], we have 
𝑢𝑢�⃗ = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝜙𝜙 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓�⃗ , 𝜓𝜓�⃗  = (0, 0,𝜓𝜓).                                                                  (12) 
We may write the displacement u and v in terms of potentials as follows  

u = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

v =𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                                                                                                           (13) 

By substituting from (13) into (8)-(10), we get 

�∇2 − 𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜏𝜏 𝜕𝜕2

𝜕𝜕𝜕𝜕2
� 𝑇𝑇 = 𝜀𝜀 � 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜏𝜏 𝜕𝜕2

𝜕𝜕𝜕𝜕2
� ∇2𝜙𝜙,                                                          (14a) 

�∇2 − 𝜕𝜕2

𝜕𝜕𝜕𝜕2
− Ω2�𝜙𝜙 = 𝑇𝑇,                                                                                     (14b) 

�∇2 − 𝑐𝑐2 𝜕𝜕2

𝜕𝜕𝜕𝜕2
+ 𝑐𝑐2Ω2�𝜓𝜓 = 0.                                                                            (14c) 

We change to coordinate system moving with input by shifting origin to the position of 
the input 

X''= –mt', y''= y’,  ∇12=  𝜕𝜕2

𝜕𝜕𝜕𝜕′′2
+ 𝜕𝜕2

𝜕𝜕𝜕𝜕′′2
.                                                                    (15) 

where m  = 𝜈𝜈/𝑐𝑐1 dimensionless loading speed and coordinates x’’ and y’’ move in the 
positive direction of x -axis with speed m’.  
By substituting from (15) into (14a)-(14c), we get 

�∇12 + 𝑚𝑚 𝜕𝜕
𝜕𝜕𝑥𝑥′′

− 𝜏𝜏𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕′′2
� 𝑇𝑇 = 𝜀𝜀 �−𝑚𝑚 𝜕𝜕

𝜕𝜕𝜕𝜕′′
+ 𝜏𝜏𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕′′2
� ∇12𝜙𝜙,                          (16a) 

�∇12 − 𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕′′2
− Ω2�𝜙𝜙 = 𝑇𝑇,                                                                             (16b) 

�∇12 − 𝑐𝑐2𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕′′2
+ 𝑐𝑐2Ω2�𝜓𝜓 = 0.                                                                      (16c) 

For easy calculations, we will omit the double primes, also writing ∇ to ∇1 , we get 

�∇2 + 𝑚𝑚 𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕2
�𝑇𝑇 = 𝜀𝜀 �−𝑚𝑚 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜏𝜏𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕2
� ∇2𝜙𝜙,                                  (17a) 

�∇2 − 𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕2
− Ω2�𝜙𝜙 = 𝑇𝑇,                                                                               (17b) 

�∇2 − 𝑐𝑐2𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕2
+ 𝑐𝑐2Ω2�𝜓𝜓 = 0.                                                                       (17c) 

Substituting from (17b) into (17a), we have 

[�∇2 + 𝑚𝑚 𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕2
� −

∂
∂

−∇ 2

2
22(

x
m  
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+ 𝜀𝜀 �𝑚𝑚 𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜏𝜏𝑚𝑚2 𝜕𝜕2

𝜕𝜕𝜕𝜕2
� ∇2]φ = 0.                                                                              (18) 

Now we assume the solutions of (17c) and (18) in the form 
𝜓𝜓 = 𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎′𝑦𝑦 , 𝜙𝜙 = 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎𝜎𝜎                                                                           (19) 
where, A and B are constants , k is the wave number and σ and σ' is  unknown quantities 
to be determined.  
Using (19) in (17c) and (18), we have 
𝜎𝜎′2 + 𝑘𝑘2(𝑐𝑐2𝑚𝑚2 − 1) + 𝑐𝑐2Ω2 = 0                                                                     (20) 
and 
(𝜎𝜎2 + 𝑘𝑘2(𝜏𝜏𝑚𝑚2 − 1) + 𝑖𝑖𝑖𝑖𝑖𝑖)(𝜎𝜎2 + 𝑘𝑘2(𝑚𝑚2 − 1) − Ω2) 
+𝜀𝜀(𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑘𝑘2𝑚𝑚2)(𝜎𝜎2 − 𝑘𝑘2) = 0.                                                                     (21) 
From (19), we have 

σ'= ±�𝑘𝑘2(1− 𝑐𝑐2𝑚𝑚2) − 𝑐𝑐2Ω2.                                                                            (22) 
For σ' to be real ,𝑘𝑘2(1 − 𝑐𝑐2𝑚𝑚2) > 𝑐𝑐2(Ω2 + 2Ω𝑖𝑖𝑖𝑖𝑖𝑖),𝜓𝜓 to be bound σ' > 0  
Also from (21), we have 

𝜎𝜎1,2 = ± 1
2
�−2𝛼𝛼 ± 2�𝛼𝛼2 − 4β                                                                         (23) 

Also, 𝜙𝜙 to be bound   σ > 0 . 
𝛼𝛼 = (𝑘𝑘2(𝑚𝑚2 − 1) − Ω2 + 𝑘𝑘2(𝜏𝜏𝑚𝑚2 − 1) + 𝑖𝑖𝑖𝑖𝑖𝑖(1 + 𝜀𝜀) + 𝜏𝜏𝑘𝑘2𝑚𝑚2𝜀𝜀) 
β = 𝑘𝑘4(𝜏𝜏𝑚𝑚2 − 1)(𝑚𝑚2 − 1) − Ω2𝑘𝑘2(𝜏𝜏𝜏𝜏2 − 1) + 𝑖𝑖𝑖𝑖𝑘𝑘3(𝑚𝑚2 − 1) − 𝑖𝑖𝑖𝑖𝑖𝑖(Ω2 + 𝑘𝑘2𝜀𝜀)   

− 𝜏𝜏𝑘𝑘4𝑚𝑚2𝜀𝜀 
We can write the solution (19) in the form 
ψ =𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎′𝑦𝑦,  φ =𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎1𝑦𝑦 + 𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎2𝑦𝑦.                                                 (24) 

The stress components in terms of ϕ and  ψ are 

𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ (1 − 2𝑐𝑐2) �𝜕𝜕
2𝜙𝜙
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� − 𝑇𝑇,                                               (25) 

𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ (1 − 2𝑐𝑐2) �𝜕𝜕
2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� − 𝑇𝑇,                                               (26) 

𝜏𝜏𝑥𝑥𝑥𝑥 = �𝑐𝑐2 − 𝑃𝑃∗

2
� �𝜕𝜕

2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜓𝜓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� + �𝑐𝑐2 + 𝑃𝑃∗

2
� � 𝜕𝜕

2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜕𝜕2𝜓𝜓
𝜕𝜕𝑦𝑦2

�.                                  (27)                 

Substituting from (24) into (13), (17b) and  (25)-(27), we have 
𝑇𝑇 = ℓ1𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎1𝑦𝑦 + ℓ2𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎2𝑦𝑦,                                                                     (28) 
𝑢𝑢 = �𝑖𝑖𝑖𝑖[𝐴𝐴1𝑒𝑒−𝜎𝜎1𝑦𝑦 + 𝐴𝐴2𝑒𝑒−𝜎𝜎2𝑦𝑦] − 𝜎𝜎′𝐵𝐵𝑒𝑒−𝜎𝜎′𝑦𝑦�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,                                                (29) 

𝑣𝑣 = −�𝜎𝜎1𝐴𝐴1𝑒𝑒−𝜎𝜎1𝑦𝑦 + 𝜎𝜎2𝐴𝐴2𝑒𝑒−𝜎𝜎2𝑦𝑦 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝜎𝜎′𝑦𝑦�𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,                                             (30) 

𝜏𝜏𝑥𝑥𝑥𝑥 = 𝐹𝐹1𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎1𝑦𝑦 + 𝐹𝐹2𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎2𝑦𝑦 + 𝐹𝐹3𝐵𝐵𝑒𝑒𝑖𝑖𝑘𝑘𝑘𝑘−𝜎𝜎
′𝑦𝑦,                                        (31) 

𝜏𝜏𝑦𝑦𝑦𝑦 = 𝑉𝑉1𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎1𝑦𝑦 + 𝑉𝑉2𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎2𝑦𝑦 + 𝑉𝑉3𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎
′𝑦𝑦,                                        (32) 

𝜏𝜏𝑥𝑥𝑥𝑥 = 𝑀𝑀1𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎1𝑦𝑦 + 𝑀𝑀2𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎2𝑦𝑦 + 𝑀𝑀3𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝜎𝜎
′𝑦𝑦.                                     (33) 
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where 
ℓ1 = σ12 + k2(m2 − 1) − Ω2, 
ℓ2 = σ22 + k2(m2 − 1) − Ω2, 
F1 = −k2 + (1 − 2c2)σ12-ℓ1  , F2 = −k2 + (1 − 2c2)σ22-ℓ2 ,  
F3 = −ikσ′ + ikσ′(1− 2c2)  , V1 = σ12 − k2(1− 2c2)-ℓ1  , V2 = σ22 − k2(1− 2c2)-ℓ2,  

V3 = ikσ′ − ikσ′(1− 2c2)  , M1 = −�k2 �c2 − P∗

2
� + ikσ1 �c2 + P∗

2
�� , 

M2 = −�k2 �c2 − P∗

2
� + ikσ2 �c2 + P∗

2
�� , M3 = −�ikσ′ �c2 − P∗

2
� − σ′2 �c2 + P∗

2
��. 

4 Boundary conditions 
The boundary conditions at the interface 0=y  subjected to an arbitrary normal force 1P   are: 

1( ,0) ,ikx
xx x Peτ =  
𝜏𝜏𝑥𝑥𝑥𝑥(𝑥𝑥, 0) = 0,                                                                                                       (34) 

( , ) ( ,0) 0.T x o hT x
x

∂
+ =

∂
 

where, 1P  is the magnitude of mechanical force, k is the wave number. 

Now, using the boundary conditions  to determine the constants A1 ,A2  and B, we have 

𝐴𝐴1 = −𝑃𝑃1𝑀𝑀3ℓ2(ℎ+𝑖𝑖𝑖𝑖)
𝐺𝐺

, 𝐴𝐴2 = 𝑃𝑃1𝑀𝑀3ℓ1(ℎ+𝑖𝑖𝑖𝑖)
𝐺𝐺

 ,    𝐵𝐵 = 𝑃𝑃1(ℎ+𝑖𝑖𝑖𝑖)(𝑀𝑀1ℓ2−𝑀𝑀2ℓ1)
𝐺𝐺

 , 

𝐺𝐺 = 𝐹𝐹1𝑀𝑀3ℓ2(ℎ + 𝑖𝑖𝑖𝑖) + 𝐹𝐹2𝑀𝑀3ℓ1(ℎ + 𝑖𝑖𝑖𝑖) + 𝐹𝐹3(ℎ + 𝑖𝑖𝑖𝑖)(𝑀𝑀1ℓ2 −𝑀𝑀2ℓ1). 

5 Numerical results and discussion 
The material chosen in this work  of stainless steel, the physical data are given [Datta 
(1986)] 

.,1097.7 3=ρ  
-6 -1 3

013.2 10 deg , 0.560 10 ., 293.1 ,t ex c x T Kα = = =  

10 -1 10 -1
19.3 10 , 8.4 10 , 2., 1., 4.25,x Nm Nm P P mλ µ= = = = =  

1 150., 0.2., 0.002.k c h= = =  

Considering the above physical data, non-dimensional field variables have been 
evaluated and results are presented in the form of graphs at different positions of y at 

1.0.x =  the graphical results for the displacement components , the stress components, 
and temperature are shown in Figs. 1 to 7, respectively: 
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Figure 1: Variation of  rotation Ω on  T, u, v, xxτ , yyτ and xyτ  with respect to y 

Ω=1 oooooooo,  Ω=2 _______ , Ω=3  +++++++ 

Fig. 1 shows the variations of the value of temperature T , the value of displacement 
components vu, , value of normal stresses xxτ , yyτ and value of shear stress xyτ  with 

respect to axial y  for different values of rotation Ω  and axial y  for the moving load 
source. The values of temperature, the value of displacement components vu,  and  value of 
normal stresses yyxx ττ ,  increase with increasing of rotation, while  value  of shear stress 
and axial displacement v decrease with increasing of rotation, as well it decreases with 
increasing of axial y in the whole range of the axial y , except the value of normal stress 

yyτ  has oscillatory behavior  due to moving load source concerned we see that oscillate is 
more in left side and less in right side., it is noticed that  the temperature, shear stress and 
normal stress  satisfied the boundary conditions. 
 

          T                                                                   u   

         
xxτ                                                                  v          

        
xyτ                                                             yyτ           
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Figure 2: Variation of  wave number k on  T, u, v, xxτ , yyτ and xyτ  with respect to y 

k=2 oooooooo,  k=3 _______ , k=4  ++++++ 

Fig. 2 shows the variations of the value of temperature T , the value of displacement 
components vu, , value of normal stresses xxτ , yyτ and value of shear stress xyτ  with 

respect to axial y  for different values of wave number k and axial y  for the moving 

load source. The values of temperature, the value of normal stress yyτ  and  value of shear 

stress xyτ  increase with increasing of wave number, while  value  of normal stress xxτ
and displacement components  vu, decrease with increasing of wave number, as well it 
decreases with increasing of axial y in the whole range of the axial y , except the value 

of normal stress yyτ  has oscillatory behavior  due to moving load source concerned we 
see that oscillate is more in left side and less in right side., it is noticed that  the 
temperature, shear stress and normal stress  satisfied the boundary conditions. 

             T                                                          u 

 
xxτ                                                        v               

 
xyτ                                                   yyτ               
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Figure 3:Variationof  initial stress P on  T, u, v, xxτ , yyτ and xyτ  with respect to y 

𝑃𝑃 = 3 ∗ 1010oooooooo,  𝑃𝑃 = 6 ∗ 1010_______ ,  𝑃𝑃 = 9 ∗ 1010+++++++ 

Fig. 3 shows the variations of the value of temperature T , the value of displacement 
components vu, , value of normal stresses xxτ , yyτ and value of shear stress xyτ  with 
respect to axial y  for different values of initial stress P and axial y  for the moving load 
source. The values of temperature  and  value of displacement components  decrease with 
increasing of initial stress, while  value  of shear stress xyτ increases  with increasing of 

initial stress, as well as, the normal stress yyτ ncreases and decreases with increasing of 

initial stress, while the initial stress there is no effect on the normal stresss xxτ , as well it 
decreases with increasing of axial y in the whole range of the axial y , except the value of 

normal stress yyτ  has oscillatory behavior  due to moving load source concerned we see 
that oscillate is more in left side and less in right side., it is noticed that  the temperature, 
shear stress and normal stress  satisfied the boundary conditions. 

            T                                                             u 

     
xxτ                                                             v             

        
xyτ                                                          yyτ            
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6 Special cases 
6.1 If the rotation is neglected 

Figure 4: Variationof  wave number k on  T, u, v, xxτ , yyτ and xyτ  with respect to y 
k=2 oooooooo,  k=3 _______ , k=4  +++++++ 

Fig. 4 shows the variations of the value of temperature T , the value of displacement 
components vu, , value of normal stresses xxτ , yyτ and value of shear stress xyτ  with 

respect to axial y  for different values of wave number k and axial y  for the moving 
load source in the neglecting of the rotation. The values of temperature  and  value of 
stresses components ,yy xyτ τ  increase with increasing of wave number, while  the value  

of displacement components  ,u v and normal stress xxτ decrease with increasing of 
wave number, as well it increases and decreases with increasing of axial y in the whole 
range of the axial y  . It is noticed that  the temperature, shear stress and normal stress  
satisfied the boundary conditions. 

               T                                                         u 

 
xxτ                                                        v                

 
xyτ                                                      yyτ                  
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Figure 5: Variationof  initial stress P on  T, u, v, xxτ , yyτ and xyτ  with respect to y 
𝑃𝑃 = 3 ∗ 1010oooooooo,  𝑃𝑃 = 6 ∗ 1010_______ ,  𝑃𝑃 = 9 ∗ 1010+++++++ 

Fig. 5 shows the variations of the value of temperature T , the value of displacement 
components vu, , value of normal stresses xxτ , yyτ and value of shear stress xyτ  with 
respect to axial y  for different values of initial stress P and axial y  for the moving load 
source in the neglecting of the rotation. The values of temperature  and  value of 
displacement components ,u v decrease with increasing of initial stress, while  value  of 

shear stress xyτ increases  with increasing of initial stress, as well as, the normal stress yyτ
ncreases and decreases with increasing of initial stress, while the initial stress there is no 
effect on the normal stresss xxτ , as well it decreases with increasing of axial y in the whole 

range of the axial y , except the value of normal stress yyτ  has oscillatory behavior  due to 
moving load source concerned we see that oscillate is more in left side and less in right 
side., it is noticed that  the temperature, shear stress and normal stress  satisfied the 
boundary conditions. 
 

         T                                                         u 

 
xxτ                                                        v            

 
xyτ                                                     yyτ          
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6.2 If the initial stress is neglected 

Figure 6: Variationof  rotation Ω on  T, u, v, xxτ , yyτ and xyτ  with respect to y 
Ω=1 oooooooo,  Ω=2 _______ , Ω=3  +++++++ 

Fig. 6 shows the variations of the value of temperature T , the value of displacement 
components vu, , value of normal stresses xxτ , yyτ and value of shear stress xyτ  with 
respect to axial y  for different values of rotation Ω and axial y  for the moving load 
source in the neglecting of the initial stress. The values of temperature,axial displacement 
component v and normal stresses components ,xx yyτ τ increase with increasing of 

rotation, while  values  of radial displacement u  and shear stress xyτ decrease with 

increasing of rotation, as well as, the normal stress yyτ  increases and decreases with 
increasing of rotation, while it increases and decreases with increasing of axial y in the 

whole range of the axial y , except the value of normal stress yyτ  has oscillatory 
behavior  due to moving load source concerned we see that oscillate is more in left side 

    T                                                         u 

 
xxτ                                                        v    

 
xyτ                                                     yyτ    
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and less in right side.,it is noticed that  the temperature, shear stress and normal stress  
satisfied the boundary conditions. 

 

Figure 7: Variation  of  wave number k on  T, u, v, xxτ , yyτ and xyτ  with respect to y 
k=2 oooooooo,  k=3 _______ , k=4  +++++++ 

Fig. 7 shows the variations of the value of temperature T , the value of displacement 
components vu, , value of normal stresses xxτ , yyτ and value of shear stress xyτ  with 

respect to axial y  for different values of wave number k and axial y  for the moving 
load source in the neglecting of the initial stress. The values of temperature,  normal 
stress yyτ and shearstresse components xyτ increase with increasing of wave number, 

while  values  of radial displacement u  and shear stress xyτ  decrease with increasing of 
wave number, while it increases and decreases with increasing of axial y  in the whole 
range of the axial y . It is noticed that  the temperature, shear stress and normal stress  
satisfied the boundary conditions. 
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7 Conclusion 
Behavior of displacement, stresses and temperature in a homogeneous, isotropic,  
generalized thermoelastic medium with initial stress and rotation. The theoretical and 
numerical results reveal that all the considered parameters, namely, rotation, initial stress 
and wave number have significant effects on the field variables. According to the above 
analysis, we can conclude the following points: 
1. The method which used in the present article is applicable to a wide range of problems 
in thermodynamics and thermoelasticity. 
2. The presence of rotation, initial stress and wave number play a significant role in all 
the physical quantities. The temperature, displacement components and stress 
components of all the physical quantities decrease or increase while the rotation, initial 
stress and wave number increases.  
3. Deformation of a body depends on the nature of  the moving load source applied as 
well as the type of boundary conditions. 
4. The results presented in this paper will be very helpful  for researchers concerning with 
material science,  designers of new materials,  low-temperature physicists,  as well as for 
those working on the development thermoelasticity and in practical situations as in 
geophysics. The methods used in the present article are applicable to a wide range of 
problems in thermodynamics and thermoelasticity.  
5. Study of the phenomenon of rotation is also used to improve the conditions of oil extractions. 
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	,𝜆+𝜇.,𝜕,𝜃-′.-𝜕,𝑦-′..+𝜇,,,𝜕-2.,𝑣-′.-,𝜕,𝑥-′.-2..+,,𝜕-2.𝑣-,𝜕𝑦-2...−,𝜆+2𝜇.,𝜕,𝑇-′.-𝜕,𝑦-′..−,𝑝-2.,,𝜕-2.,𝑣.-,𝜕,𝑥.-2..+,𝑝-2.,,𝜕-2.,𝑢.-𝜕,𝑥.𝜕,𝑦..
	=,𝜆+2𝜇.,,,𝜕-2.𝑣′-,𝜕𝑡′-2..−,Ω-2.,𝑣...                                                                                     (10)
	The stress, displacement relations isgiven by:
	,,𝜏.-,𝑥-′.,𝑥-′..= ,𝜕,𝑢.-𝜕𝑥′.+,1−2,𝑐-2..,𝜕,𝑣.-𝜕𝑦′.−,𝑇-′.,
	,,𝜏-′.-,𝑦-′.,𝑦-′..= ,𝜕𝑣′-𝜕𝑦′.+,1−2,𝑐-2..,𝜕𝑢′-𝜕𝑥′.−,𝑇-′.,
	,,𝜏-′.-,,𝑥-′.𝑦-′..=,,𝑐-2.−,,𝑝-∗.-2..,𝜕,𝑢.-𝜕,𝑥..+,,𝑐-2.+,,𝑝-∗.-2..,𝜕,𝑢.-𝜕,𝑦..                                                                  (11)
	where
	𝜀= ,(3𝜆 + 2𝜇),𝛼-𝑡-  2.,𝑇-0.-,𝜌𝑐-𝑒.(𝜆+2𝜇)., 𝜏=,𝜏-0.,,𝑐-1-  2.-,𝑘-1..,  ,𝑝-∗.=,𝑝-𝜆+2𝜇+𝑃.,  ,𝑐-2.=,𝜇-𝜆+2𝜇+𝑃..
	3 Solution of the problem
	From Helmholt’s theorem [Morse and Feshbach (1953)], we have
	,𝑢.=𝑔𝑟𝑎𝑑 𝜙+𝑐𝑢𝑟𝑙 ,𝜓., ,𝜓. = ,0, 0, 𝜓..                                                                  (12)
	We may write the displacement u and v in terms of potentials as follows
	u = ,𝜕𝜙-𝜕𝑥.+,𝜕𝜓-𝜕𝑦.
	v =,𝜕𝜙-𝜕𝑦.−,𝜕𝜓-𝜕𝑥.                                                                                                           (13)
	By substituting from (13) into (8)-(10), we get
	,,∇-2.−,𝜕-𝜕𝑡.−𝜏,,𝜕-2.-,𝜕𝑡-2...𝑇=𝜀,,𝜕-𝜕𝑡.+𝜏,,𝜕-2.-,𝜕𝑡-2...,∇-2.𝜙,                                                          (14a)
	,,∇-2.−,,𝜕-2.-,𝜕𝑡-2..−,Ω-2..𝜙=𝑇,                                                                                     (14b)
	,,∇-2.−,𝑐-2.,,𝜕-2.-,𝜕𝑡-2..+,𝑐-2.,Ω-2..𝜓=0.                                                                            (14c)
	We change to coordinate system moving with input by shifting origin to the position of the input
	X''= –mt', y''= y’,,  ∇-1-2.= ,,𝜕-2.-,𝜕𝑥′′-2..+,,𝜕-2.-,𝜕𝑦′′-2...                                                                    (15)
	where = 𝜈/,𝑐-1. dimensionless loading speed and coordinates x’’ and y’’ move in the positive direction of -axis with speed m’.
	By substituting from (15) into (14a)-(14c), we get
	,,∇-1-2.+𝑚,𝜕-𝜕,𝑥-′′..−𝜏,𝑚-2.,,𝜕-2.-,𝜕𝑥-′′2...𝑇=𝜀,−𝑚,𝜕-𝜕𝑥′′.+𝜏,𝑚-2.,,𝜕-2.-,𝜕𝑥′′-2...,∇-1-2.𝜙,                          (16a)
	,,∇-1-2.−,𝑚-2.,,𝜕-2.-,𝜕𝑥′′-2..−,Ω-2..𝜙=𝑇,                                                                             (16b)
	,,∇-1-2.−,𝑐-2.,𝑚-2.,,𝜕-2.-,𝜕𝑥′′-2..+,𝑐-2.,Ω-2..𝜓=0.                                                                      (16c)
	For easy calculations, we will omit the double primes, also writing ∇ to ,∇-1. , we get
	,,∇-2.+𝑚,𝜕-𝜕𝑥.−𝜏,𝑚-2.,,𝜕-2.-,𝜕𝑥-2...𝑇=𝜀,−𝑚,𝜕-𝜕𝑥.+𝜏,𝑚-2.,,𝜕-2.-,𝜕𝑥-2...,∇-2.𝜙,                                  (17a)
	,,∇-2.−,𝑚-2.,,𝜕-2.-,𝜕𝑥-2..−,Ω-2..𝜙=𝑇,                                                                               (17b)
	,,∇-2.−,𝑐-2.,𝑚-2.,,𝜕-2.-,𝜕𝑥-2..+,𝑐-2.,Ω-2..𝜓=0.                                                                       (17c)
	Substituting from (17b) into (17a), we have
	+ 𝜀,𝑚,𝜕-𝜕𝑥.−𝜏,𝑚-2.,,𝜕-2.-,𝜕𝑥-2...,∇-2.]=0.                                                                              (18)
	Now we assume the solutions of (17c) and (18) in the form
	𝜓=𝐵,𝑒-𝑖𝑘𝑥−𝜎′𝑦. , 𝜙=𝐴,𝑒-𝑖𝑘𝑥−𝜎𝑦.                                                                           (19)
	where, A and B are constants , k is the wave number and σ and σ' is  unknown quantities to be determined.
	Using (19) in (17c) and (18), we have
	,𝜎′-2.+,𝑘-2.,,𝑐-2.,𝑚-2.−1.+,𝑐-2.,Ω-2.=0                                                                     (20)
	and
	,,𝜎-2.+,𝑘-2.,𝜏,𝑚-2.−1.+𝑖𝑚𝑘.,,𝜎-2.+,𝑘-2.,,𝑚-2.−1.−,Ω-2..
	+𝜀,𝑖𝑚𝑘+𝜏,𝑘-2.,𝑚-2..,,𝜎-2.−,𝑘-2..=0.                                                                     (21)
	From (19), we have
	σ'= ±,,𝑘-2.,1−,𝑐-2.,𝑚-2..−,𝑐-2.,Ω-2...                                                                            (22)
	For σ' to be real ,,𝑘-2.,1−,𝑐-2.,𝑚-2..>,𝑐-2.,,Ω-2.+2Ω𝑖𝑚𝑘.,𝜓 to be bound σ' >0
	Also from (21), we have
	,𝜎-1,2.=±,1-2.,−2𝛼±2,,𝛼-2.−4(..                                                                         (23)
	Also, 𝜙 to be bound   σ >0 .
	𝛼=,,𝑘-2.,,𝑚-2.−1.−,Ω-2.+,𝑘-2.,𝜏,𝑚-2.−1.+𝑖𝑚𝑘(1+𝜀)+𝜏,𝑘-2.,𝑚-2.𝜀.
	(=,𝑘-4.,𝜏,𝑚-2.−1.,,𝑚-2.−1.−,Ω-2.,𝑘-2.,,𝜏𝑚-2.−1.+𝑖𝑚,𝑘-3.,,𝑚-2.−1.−𝑖𝑚𝑘,,Ω-2.+,𝑘-2.𝜀.  −𝜏,𝑘-4.,𝑚-2.𝜀
	We can write the solution (19) in the form
	,𝐵𝑒-𝑖𝑘𝑥−𝜎′𝑦.,  ,𝐴-1.,𝑒-𝑖𝑘𝑥−,𝜎-1.𝑦.+,𝐴-2.,𝑒-𝑖𝑘𝑥−,𝜎-2.𝑦..                                                 (24)
	The stress components in terms of ϕ and  ψ are
	,𝜏-𝑥𝑥.=,,𝜕-2.𝜙-𝜕,𝑥-2..+,,𝜕-2.𝜓-𝜕𝑥𝜕𝑦.+,1−2,𝑐-2..,,,𝜕-2.𝜙-𝜕,𝑦-2..−,,𝜕-2.𝜓-𝜕𝑥𝜕𝑦..−𝑇,                                               (25)
	,𝜏-𝑦𝑦.=,,𝜕-2.𝜙-𝜕,𝑦-2..−,,𝜕-2.𝜓-𝜕𝑥𝜕𝑦.+,1−2,𝑐-2..,,,𝜕-2.𝜙-𝜕,𝑥-2..+,,𝜕-2.𝜓-𝜕𝑥𝜕𝑦..−𝑇,                                               (26)
	,𝜏-𝑥𝑦.=,,𝑐-2.−,,𝑃-∗.-2..,,,𝜕-2.𝜙-𝜕,𝑥-2..+,,𝜕-2.𝜓-𝜕𝑥𝜕𝑦..+,,𝑐-2.+,,𝑃-∗.-2..,,,𝜕-2.𝜙-𝜕𝑥𝜕𝑦.+,,𝜕-2.𝜓-𝜕,𝑦-2....                                  (27)
	Substituting from (24) into (13), (17b) and  (25)-(27), we have
	𝑇=,ℓ-1.,𝐴-1.,𝑒-𝑖𝑘𝑥−,𝜎-1𝑦..+,ℓ-2.,𝐴-2.,𝑒-𝑖𝑘𝑥−,𝜎-2.𝑦.,                                                                     (28)
	𝑢=,𝑖𝑘,,𝐴-1.,𝑒-−,𝜎-1𝑦..+,𝐴-2.,𝑒-−,𝜎-2.𝑦..−,𝜎-′.𝐵,𝑒-−,𝜎-′.𝑦..,𝑒-𝑖𝑘𝑥.,                                                (29)
	𝑣=−,,𝜎-1.,𝐴-1.,𝑒-−,𝜎-1𝑦..+,𝜎-2.,𝐴-2.,𝑒-−,𝜎-2.𝑦.−𝑖𝑘𝐵,𝑒-−,𝜎-′.𝑦..,𝑒-𝑖𝑘𝑥.,                                             (30)
	,𝜏-𝑥𝑥.=,𝐹-1.,𝐴-1.,𝑒-𝑖𝑘𝑥−,𝜎-1.𝑦.+,𝐹-2.,𝐴-2.,𝑒-𝑖𝑘𝑥−,𝜎-2.𝑦.+,𝐹-3.𝐵,𝑒-𝑖𝑘𝑥−,𝜎-′.𝑦.,                                        (31)
	,𝜏-𝑦𝑦.=,𝑉-1.,𝐴-1.,𝑒-𝑖𝑘𝑥−,𝜎-1.𝑦.+,𝑉-2.,𝐴-2.,𝑒-𝑖𝑘𝑥−,𝜎-2.𝑦.+,𝑉-3.𝐵,𝑒-𝑖𝑘𝑥−,𝜎-′.𝑦.,                                        (32)
	,𝜏-𝑥𝑦.=,𝑀-1.,𝐴-1.,𝑒-𝑖𝑘𝑥−,𝜎-1.𝑦.+,𝑀-2.,𝐴-2.,𝑒-𝑖𝑘𝑥−,𝜎-2.𝑦.+,𝑀-3.𝐵,𝑒-𝑖𝑘𝑥−,𝜎-′.𝑦..                                     (33)
	where
	,ℓ-1.=,σ-1-2.+,k-2.,,m-2.−1.−,Ω-2.,
	,ℓ-2.=,σ-2-2.+,k-2.,,m-2.−1.−,Ω-2.,
	,F-1.=−,k-2.+(1−2,c-2.),σ-1-2.-,ℓ-1.  , ,F-2.=−,k-2.+(1−2,c-2.),σ-2-2.-,ℓ-2. ,
	,F-3.=−ik,σ-′.+ik,σ-′.(1−2,c-2.)  , ,V-1.=,σ-1-2.−,k-2.(1−2,c-2.)-,ℓ-1.  , ,V-2.=,σ-2-2.−,k-2.(1−2,c-2.)-,ℓ-2.,
	,V-3.=ik,σ-′.−ik,σ-′.(1−2,c-2.)  , ,M-1.=−,,k-2.,,c-2.−,,P-∗.-2..+ik,σ-1.,,c-2.+,,P-∗.-2... ,
	,M-2.=−,,k-2.,,c-2.−,,P-∗.-2..+ik,σ-2.,,c-2.+,,P-∗.-2..., ,M-3.=−,ik,σ-′.,,c-2.−,,P-∗.-2..−,,σ-′.-2.,,c-2.+,,P-∗.-2....
	4 Boundary conditions
	The boundary conditions at the interface  subjected to an arbitrary normal force   are:
	,𝜏-𝑥𝑦.,𝑥,0.=0,                                                                                                       (34)
	where, is the magnitude of mechanical force, is the wave number.
	Now, using the boundary conditions  to determine the constants ,A-1. ,,A-2.  and B, we have
	,𝐴-1.=,−,𝑃-1.,𝑀-3.,ℓ-2.(ℎ+𝑖𝑘)-𝐺., ,𝐴-2.=,,𝑃-1.,𝑀-3.,ℓ-1.(ℎ+𝑖𝑘)-𝐺. ,    𝐵=,,𝑃-1.(ℎ+𝑖𝑘),,𝑀-1.,ℓ-2.−,𝑀-2.,ℓ-1..-𝐺. ,
	𝐺=,𝐹-1.,𝑀-3.,ℓ-2.,ℎ+𝑖𝑘.+,𝐹-2.,𝑀-3.,ℓ-1.,ℎ+𝑖𝑘.+,𝐹-3.,ℎ+𝑖𝑘.,,𝑀-1.,ℓ-2.−,𝑀-2.,ℓ-1...
	5 Numerical results and discussion
	The material chosen in this work  of stainless steel, the physical data are given [Datta (1986)]
	Considering the above physical data, non-dimensional field variables have been evaluated and results are presented in the form of graphs at different positions of y at  the graphical results for the displacement components , the stress components, and...
	Figure 1: Variation of  rotation Ω on  T, u, v, , and  with respect to y
	Ω=1 oooooooo,  Ω=2 _______ , Ω=3  +++++++
	Fig. 1 shows the variations of the value of temperature , the value of displacement components , value of normal stresses , and value of shear stress  with respect to axial  for different values of rotation  and axial  for the moving load source. The ...
	Figure 2: Variation of  wave number k on  T, u, v, , and  with respect to y
	k=2 oooooooo,  k=3 _______ , k=4  ++++++
	Fig. 2 shows the variations of the value of temperature , the value of displacement components , value of normal stresses , and value of shear stress  with respect to axial  for different values of wave number and axial  for the moving load source. Th...
	Figure 3:Variationof  initial stress P on  T, u, v, , and  with respect to y
	𝑃=,3∗10-10.oooooooo,  𝑃=,6∗10-10._______ ,  𝑃=,9∗10-10.+++++++
	Fig. 3 shows the variations of the value of temperature , the value of displacement components , value of normal stresses , and value of shear stress  with respect to axial  for different values of initial stress and axial  for the moving load source....
	6 Special cases
	6.1 If the rotation is neglected
	Figure 4: Variationof  wave number k on  T, u, v, , and  with respect to y
	k=2 oooooooo,  k=3 _______ , k=4  +++++++
	Fig. 4 shows the variations of the value of temperature , the value of displacement components , value of normal stresses , and value of shear stress  with respect to axial  for different values of wave number and axial  for the moving load source in ...
	Figure 5: Variationof  initial stress P on  T, u, v, , and  with respect to y
	𝑃=,3∗10-10.oooooooo,  𝑃=,6∗10-10._______ ,  𝑃=,9∗10-10.+++++++
	Fig. 5 shows the variations of the value of temperature , the value of displacement components , value of normal stresses , and value of shear stress  with respect to axial  for different values of initial stress and axial  for the moving load source ...
	6.2 If the initial stress is neglected
	Figure 6: Variationof  rotation Ω on  T, u, v, , and  with respect to y
	Ω=1 oooooooo,  Ω=2 _______ , Ω=3  +++++++
	Fig. 6 shows the variations of the value of temperature , the value of displacement components , value of normal stresses , and value of shear stress  with respect to axial  for different values of rotation and axial  for the moving load source in the...
	Figure 7: Variation  of  wave number k on  T, u, v, , and  with respect to y
	k=2 oooooooo,  k=3 _______ , k=4  +++++++
	Fig. 7 shows the variations of the value of temperature , the value of displacement components , value of normal stresses , and value of shear stress  with respect to axial  for different values of wave numberand axial  for the moving load source in t...
	7 Conclusion
	Behavior of displacement, stresses and temperature in a homogeneous, isotropic,  generalized thermoelastic medium with initial stress and rotation. The theoretical and numerical results reveal that all the considered parameters, namely, rotation, init...
	1. The method which used in the present article is applicable to a wide range of problems in thermodynamics and thermoelasticity.
	2. The presence of rotation, initial stress and wave number play a significant role in all the physical quantities. The temperature, displacement components and stress components of all the physical quantities decrease or increase while the rotation, ...
	3. Deformation of a body depends on the nature of  the moving load source applied as well as the type of boundary conditions.
	4. The results presented in this paper will be very helpful  for researchers concerning with material science,  designers of new materials,  low-temperature physicists,  as well as for those working on the development thermoelasticity and in practical...
	5. Study of the phenomenon of rotation is also used to improve the conditions of oil extractions.
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