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Abstract: In the process of spectrum perception, in order to realize accurate perception of 
the channel state, the method of multi-node cooperative perception can usually be used. 
However, the first problem to be considered is how to complete information fusion and 
obtain more accurate and reliable judgment results based on multi-node perception results. 
The ideas put forward in this paper are as follows: firstly, the perceived results of each node 
are obtained on the premise of limiting detection probability and false alarm probability. 
Then, on the one hand, the weighted fusion criterion of decision-making weight optimization 
of each node is realized based on a genetic algorithm, and the useless nodes also can be 
screened out to reduce energy loss; on the other hand, through the linear fitting ability of 
RBF neural network, the self-inspection of the perceptive nodes can be realized to ensure the 
normal operation of the perceptive work of each node. What's more, the real-time training 
data can be obtained by spectral segmentation technology to ensure the real-time accuracy of 
the optimization results. Finally, the simulation results show that this method can effectively 
improve the accuracy and stability of channel perception results, optimize the structure of 
the cooperative network and reduce energy consumption. 
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1 Introduction 
Spectrum perception refers to the perception of whether there is a master user signal in 
the channel of different frequency bands within a certain spatial range, so as to find out 
whether there is an unutilized or under-utilized radio “spectrum hole” in the current time 
and space. Spectrum sensing technology is not only an important guarantee to protect 
authorized primary users from being interfered, but also a prerequisite for unauthorized 
secondary users to make full use of spectrum resources to complete communication. 
The traditional spectral sensing methods include energy detection, cyclic stationary 
feature detection and matched filter detection. In practice, in order to facilitate 
implementation, one simple application method energy detection is usually adopted, but 
it is not accurate and stable enough. It is easy to cause interference to primary users, and 
can only be limited to improve spectrum efficiency, for which most of the primary user 
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can't accept such secondary users to use their authorized spectrum. 
Therefore, cooperative spectrum sensing technology is proposed. Cooperative perception 
can improve the accuracy of perception results by eliminating the influence of path shadow 
and depth fading based on the fusion of perception results of multiple nodes in space. The 
difficulty of collaborative perception lies in the selection of information fusion criterion of 
perception results. In the beginning, “and” criterion, “or” criterion was used. Later, some 
literature proposed perception criterion based on d-s evidence theory and other methods. 
However, the fusion results of these methods all have some shortcomings. 
As is known to all, the purpose of cognitive radio is through the use of artificial 
intelligence technology study from the external environment, thus the real-time change 
of transmission parameters such as power, carrier frequency and modulation 
technology, to realize the coexistence of primary users and secondary high reliable 
communication, and the heterogeneous network environment of limited radio spectrum 
resources efficient use. Therefore, artificial intelligence technology can be applied to 
every process of spectral perception. 
Li et al. [Li and Yang (2010)] formalized their application to cognitive radio and developed 
a framework from within which they can be useful. Thilina et al. [Thilina, Choi, Saquib et 
al. (2013)] proposes that support vector machine (SVM) is applied to optimize the 
classification results of cooperative sensing in spectrum sensing. In Zografski et al. 
[Zografski, Bogoeva-Gaceva and Petrusevski (2006)], a machine learning algorithm is used 
to analyze the occupancy state of the primary user to evaluate the probability of the 
secondary user blocking the future slot, so that the system designer can use it to define the 
spectrum allocation and spectrum sharing strategy. 
The idea proposed in this paper is to record the occupation of the main user in the 
cognitive channel in real time by spectral segmentation technology under the condition of 
limiting detection probability and false alarm probability, and combine the perception 
results of each node as the training data of genetic algorithm. 
The overall learning process is to realize the information fusion of the results of each 
perception node based on genetic algorithm to calculate the individual fitness in the 
evolutionary process, and obtain the optimal mapping relationship between the perception 
results of each perception node and channel state, that is, the weight of the perception results 
of each node in the decision-making. In addition, considering that the perceptive devices of 
the perceptive nodes may fail, this paper also proposes to use the nonlinear fitting ability of 
RBF neural network to detect the fault nodes in the learning process, timely troubleshoot the 
faults and avoid affecting the judgment results. 

2 Sensing model 
2.1 Single perceptive node model 
At each perception node, spectral perception is conducted by energy detection method, so 
a binary hypothesis test model is established as follows: 

𝑥𝑥(𝑖𝑖) = �
𝑛𝑛(𝑖𝑖),                     𝐻𝐻0
ℎ𝑠𝑠(𝑖𝑖) + 𝑛𝑛(𝑖𝑖),     𝐻𝐻1

                                              (1) 

In the above formula, 𝑥𝑥(𝑖𝑖) represents the sampled signal received at the 𝑖𝑖th time, 𝑛𝑛(𝑖𝑖) 
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represents the noise signal in space, 𝑠𝑠(𝑖𝑖) represents the main user signal emitted by the 
transmitter, and ℎ represents the attenuation coefficient of the main user signal in the 
process of spatial propagation. Suppose that 𝐻𝐻0 means that the primary user signal does 
not exist, that is, the received signal only contains noise signal, 𝐻𝐻1 means that the primary 
user exists, that is, the received signal has both noise signal and primary user signal. 
Normally, the corresponding statistic T or decision threshold λ can be constructed based 
on the signal to noise ratio of the channel. When T < λ, receiving hypothesis 𝐻𝐻0, the 
primary user signal does not exist，conversely, when T > λ accepts a hypothesis 𝐻𝐻1, the 
primary user exist. What’s more, the threshold value is uncertain when T=lambda, or it 
needs to be judged in another way. In cooperative perception, the perception results of other 
nodes can be fused to make judgments. 
Therefore, the detection probability and false alarm probability of node 𝑖𝑖 are shown 
in Eq. (2). 

�
𝑃𝑃𝑑𝑑𝑑𝑑 = 𝑃𝑃{T𝑑𝑑 > λ𝑑𝑑|𝐻𝐻1}
𝑃𝑃𝑓𝑓𝑑𝑑 = 𝑃𝑃{T𝑑𝑑 > λ𝑑𝑑|𝐻𝐻0}      𝑛𝑛 = 1,2,3, … … ,𝑛𝑛                                   (2) 

2.2 Cooperative spectrum perception model 
In the application of centralized spectrum sensing technology, the traditional fusion 
criteria of perception results include “and” criterion and “or” criterion. When the “and” 
criterion is used, the detection probability 𝑃𝑃𝑑𝑑_𝐴𝐴𝐴𝐴𝐴𝐴 and false alarm probability 𝑃𝑃𝑓𝑓_𝐴𝐴𝐴𝐴𝐴𝐴 of 
the collaborative perception model with n perception nodes are shown in Eq. (3): 

�
𝑃𝑃𝑑𝑑_𝐴𝐴𝐴𝐴𝐴𝐴 = ∏ 𝑃𝑃𝑑𝑑𝑑𝑑𝑛𝑛

𝑑𝑑=1
𝑃𝑃𝑓𝑓_𝐴𝐴𝐴𝐴𝐴𝐴 = ∏ 𝑃𝑃𝑓𝑓𝑑𝑑𝑛𝑛

𝑑𝑑=1
      𝑛𝑛 = 1,2,3, … … ,𝑛𝑛                                    (3) 

When the “or” criterion is used, the detection probability 𝑃𝑃𝑑𝑑_OR  and false alarm 
probability 𝑃𝑃𝑓𝑓_𝑂𝑂𝑂𝑂 of the collaborative perception model with n perception nodes are 
shown in Eq. (3): 

�
𝑃𝑃𝑑𝑑_𝑂𝑂𝑂𝑂 = 1 −∏ (1 − 𝑃𝑃𝑑𝑑𝑑𝑑)𝑛𝑛

𝑑𝑑=1
𝑃𝑃𝑓𝑓_𝑂𝑂𝑂𝑂 = 1 −∏ (1 − 𝑃𝑃𝑓𝑓𝑑𝑑)𝑛𝑛

𝑑𝑑=1
       𝑛𝑛 = 1,2,3, … … , 𝑛𝑛                            (4) 

It can be seen that with the use of the “and” criterion, the false alarm probability of the 
perception model will decrease with the increase of the number of nodes, so the 
reliability will be improved, but the detection probability will also decrease, resulting in 
lower detection accuracy and lower spectrum utilization. At the same time, with the use 
of “or” criterion, although the detection probability is improved with the increase of the 
number of nodes, the false alarm probability is also increased, resulting in a decrease in 
reliability. Therefore, there are some deficiencies in both schemes. 
In order to achieve high detection probability and false alarm probability, the weighted fusion 
criterion is used in this paper. In cooperative perception, based on fusion judgment with 
different weights, the detection probability 𝑃𝑃𝑑𝑑_𝜔𝜔 and false alarm probability 𝑃𝑃𝑓𝑓_𝜔𝜔 are shown 
in Eq. (5): 

�
𝑃𝑃𝑑𝑑_𝜔𝜔 = ∑ 𝜔𝜔𝑑𝑑𝑃𝑃𝑑𝑑𝑑𝑑𝑛𝑛

𝑑𝑑=1
𝑃𝑃𝑓𝑓_𝜔𝜔 = ∑ 𝜔𝜔𝑑𝑑𝑃𝑃𝑓𝑓𝑑𝑑𝑛𝑛

𝑑𝑑=1
      𝑛𝑛 = 1,2,3, … … ,𝑛𝑛                                    (5) 
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It can be known from formula (5) that 𝑃𝑃𝑑𝑑_𝜔𝜔 ∈ [min(𝑃𝑃𝑑𝑑𝑑𝑑) , max (𝑃𝑃𝑑𝑑𝑑𝑑)] ， 𝑃𝑃𝑓𝑓_𝜔𝜔 ∈
[min�𝑃𝑃𝑓𝑓𝑑𝑑� , max (𝑃𝑃𝑓𝑓𝑑𝑑)] . That is, when the detection probability and false alarm 
probability of each node are not the same, the detection probability and false alarm 
probability of fusion judgment result are reduced. Therefore, this paper considers the 
value of limiting the detection probability of each node 𝑃𝑃𝑑𝑑𝑑𝑑 ≥ 𝑃𝑃𝑑𝑑0, the value of limiting 
the false alarm probability of each node 𝑃𝑃𝑓𝑓𝑑𝑑 ≤ 𝑃𝑃𝑓𝑓0, then the global probability value after 
fusion can be obtained to ensure the arrival the scope of 𝑃𝑃𝑑𝑑_𝜔𝜔 ≥ 𝑃𝑃𝑑𝑑0，𝑃𝑃𝑓𝑓_𝜔𝜔 ≤ 𝑃𝑃𝑓𝑓0. 
In Lin [Lin (2010)], it is mentioned that when detection probability and false alarm 
probability are known, the relationship between the number of samples needed and SNR 
is shown in Eq. (6). 
N = 2[Q−1�𝑃𝑃𝑓𝑓𝑓𝑓� − Q−1(𝑃𝑃𝑑𝑑)(1 + snr)]2/𝑠𝑠𝑛𝑛𝑠𝑠2                               (6) 
Therefore, given the appropriate sampling frequency 𝑓𝑓𝑠𝑠 , the optimal detection time 
required for each node to achieve the rated performance under the condition of known 
SNR can be obtained. In this way, the waste of energy and time can be reduced as much 
as possible on the premise that the perception results of each node reach the standard 
detection probability and false alarm probability, so as to ensure the accuracy and 
reliability of fusion perception results. 

3 Self-checking machine learning model 
In order to ensure high detection probability and false alarm probability at the same time, 
this paper proposes a centralized spectrum sensing technology model based on 
self-checking machine learning, as shown in Fig. 1. 

 
Figure 1: Centralized spectrum sensing model flowchart based on self-checking machine 
learning 

As can be seen from Fig. 1, the perception results obtained by n perception nodes are input 
data of the machine learning training data set, and the actual channel states obtained by the 
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cognitive channel perception antenna and spectrum segmentation technology are output 
data of the training data set. These data are used for machine learning training on the one 
hand, on the other hand, transmitted to the database for recording, and the initialized input 
weight can be determined by statistics. Machine learning is divided into two parts. One part 
is to determine the optimal weight of information fusion of multi-node perception results 
and remove useless nodes based on the genetic algorithm; the other part is to locate fault 
nodes through fault detection neural network. 

3.1 Data acquisition based on spectrum segmentation 
Spectrum segmentation technology refers to the frequency band bandwidth is divided 
into several parts based on different purposes, such as frequency division multiplexing 
technology, a typical application, the total bandwidth used for transmission channel is 
divided into a number of sub-bands (or called sub-channels), each sub-channel to 
transmit one signal. In this paper, we consider applying spectrum segmentation 
technology to the training data collection of spectrum perception, and divide the channel 
used by authorized users into two sub-bands, as shown in Fig. 2. The total bandwidth of 
the channel is W, in which the sub-band with bandwidth of 𝑊𝑊𝑠𝑠 is used to receive 
channel signals for spectral perception. Based on the energy detection method, the 
authorized users and cognitive users’ use state in the channel can be counted as the 
training data of machine learning. The sub-band with the remaining the bandwidth of W𝑐𝑐 
is used for the data transmission of cognitive users. In addition, in order to reduce the 
impact on the data transmission rate of cognitive users to assume W𝑐𝑐 ≫ 𝑊𝑊𝑠𝑠. 

 
Figure 2: Sketch Map of spectrum segmentation technology 

3.2 Weight optimization based on genetic algorithm 
The decision-making model based on information fusion of perception results is actually 
a classifier of perception results. By referring to Han [Han (2005)], we can know that 
common classification algorithms include decision tree, Bayesian network, neural 
network and so on. In order to observe the optimization weight more conveniently, this 
paper uses the weighted naive Bayes classification algorithm based on genetic algorithm 
mentioned in Bao et al. [Bao, Zhou and Duan (2018)] to realize the weight optimization 
of channel state judgment results of each perception node. 
Set the attribute vector X = {𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑚𝑚} to represent m perceptive nodes, each node 
collects n sets of data for training. The actual state of the channel obtained by spectral 
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sensing technology is taken as the category variable C. The data was collected n times 
and the result C was obtained that C = {𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝑛𝑛}, so it can be obtained that the 
training sample set is Train = {X,𝐶𝐶} and the test sample set is Test = �𝑋𝑋𝑗𝑗�. 
The weighted naive Bayesian classification model is shown in Eq. (7). 
(𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇) = 𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑃𝑃(𝐶𝐶𝑘𝑘)∏ 𝑝𝑝(𝑥𝑥𝑑𝑑|𝐶𝐶𝑘𝑘)𝜔𝜔𝑖𝑖𝑚𝑚

𝑑𝑑=1 , 1 ≤ k ≤ n                        (7) 
In the formula, 𝜔𝜔𝑑𝑑 represents the weight of the perceptive node. The greater the attribute 
weight is, the more accurate the detection of the actual channel state is, and the greater 
the influence on the judgment result is. 
In order to obtain the optimal weight, genetic algorithm can be used to search for the 
optimal combination of weights. Genetic algorithm is a heuristic algorithm that solves the 
optimization of search by simulating the natural selection of Darwinian biological evolution 
and the biological evolution process of genetic mechanism. It can operate directly on 
structural objects without the limitation of derivative and continuity of functions, and it has 
inherent implicit parallelism and better global optimization ability. Moreover, the 
probabilistic optimization method can be automatically acquired and guide the optimization 
search space, adjust the search direction adaptively without a definite rule. 
Therefore, the corresponding genetic algorithm model is established as shown in Fig. 3. 

 
Figure 3: Genetic algorithm structure diagram 

In order to establish the model, it is assumed that there are n perceptive nodes in the 
system, so the number of attributes is n, and the length of each chromosome is n. The 
number of data collected by each node is m, so the number of individuals in the 
population of the genetic algorithm is set as m, and set the maximum number of 
iterations to maxd . 
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The genetic algorithm mainly includes three basic genetic operators: selection, crossover 
and mutation. Selection is survival of the fittest, is to select and retain chromosomes that 
are more in line with the requirements by setting the fitness calculation method. In this 
paper, the detection probability of perceptual results is used as the fitness of the selection 
operator. Crossover is the genetic process of replacing and recombining part of the 
attribute structure of two parent chromosomes to generate new chromosomes. The 
probability of crossover operator 𝑝𝑝𝑗𝑗𝑐𝑐 needs to be set in the model. Mutation is a process 
in which the gene value of some attribute loci of some chromosomes in a population 
changes, and the probability of mutation operator 𝑝𝑝𝑏𝑏𝑏𝑏 needs to be set in the model.  
Fig. 3 shows that the parameters of the model of weight optimization genetic algorithm 
have been determined, so that the genetic population can be initialized, the fitness of 
chromosomes in each generation can be calculated, and the optimal solution can be 
finally searched. 
According to the obtained weights, nodes with extremely small weights can be screened 
out. It can be seen that they are useless in the current channel perception, and this node is 
no longer used for perception, which not only saves energy consumption, but also 
optimizes the cooperative perception structure and reduces training data. 

3.3 Fault detection based on neural network 
RBF neural network was selected as the fault detection neural network based on the 
characteristics of high requirements of spectral perception for the accuracy of results and 
fast implementation of the training process. Compared with BP neural network used in 
some references, the RBF neural network has a very high approximation accuracy for the 
mapping relation between input and output. At the same time, as a feedforward neural 
network, RBF neural network has the ability of global approximation, which avoids the 
disadvantages of BP neural network falling into local minimization. With a compact 
topology, its structural parameters can be separated for learning, and its convergence 
speed is fast. 
To achieve weight optimization by applying RBF neural network, it is necessary to 
establish a three-layer forward network with a hidden layer, as shown in Fig. 4. The 
perception result of each perception node is taken as the input vector of the first layer. 
The second layer is the hidden layer, which is used to complete the transformation of 
input vectors from the spatial layer to the nonlinear high-dimensional layer. The 
transformation function of the hidden layer is a non-negative nonlinear function that is 
radially symmetric to the center point and attenuates. The third layer is the output layer, 
which is used to find out the mapping relationship with the hidden layer, and to output 
the linear weighted sum of hidden elements. 
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Figure 4: RBF neural network structure diagram 

In the process from the input layer to the hidden layer, the k-means algorithm is used to 
calculate the center vector 𝜇𝜇𝑑𝑑, and the KNN (K Nearest Neighbor) algorithm is used to 
calculate the width vector 𝜎𝜎𝑑𝑑. And the connection weight from the hidden layer to the 
output layer is 𝜔𝜔𝑑𝑑. 
Therefore, the relationship between input and output can be expressed as: 
𝑦𝑦𝑑𝑑 = ∑ 𝜔𝜔𝑑𝑑𝑗𝑗𝜙𝜙��|𝑥𝑥 − 𝜇𝜇𝑑𝑑|��, (𝑗𝑗 = 1,2, … , 𝑐𝑐)𝑓𝑓

𝑑𝑑=1                                   (8) 
In the above formula, ||x||2 = ∑ 𝑥𝑥𝑘𝑘2𝑏𝑏

𝑘𝑘=1 , 𝜙𝜙(∙) is the activation function, and gaussian is 
commonly used as the activation function. 
The process of fault detection based on RBF neural network is shown in Fig. 5. 

 
Figure 5: Fault detection flow chart based on RBF neural network 

Firstly, the historical perception data of each perception node are preprocessed to obtain 
training data, and the RBF neural network group is established. The number of perceptive 
nodes is m, and the number of data collected by each node is n groups. Therefore, data 
preprocessing is m groups of data to construct m RBF neural networks. The input data of 
each group of data is shown in Eq. (9): 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑋𝑋1
𝑋𝑋2
⋮

𝑋𝑋𝑗𝑗−1
𝑋𝑋𝑗𝑗+1
⋮
𝑋𝑋𝑚𝑚 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥11
𝑥𝑥21
⋮

𝑥𝑥(𝑗𝑗−1)1
𝑥𝑥(𝑗𝑗+1)1

⋮
𝑥𝑥𝑚𝑚1

𝑥𝑥12
𝑥𝑥22
⋮

𝑥𝑥(𝑗𝑗−1)2
𝑥𝑥(𝑗𝑗+1)2

⋮
𝑥𝑥𝑚𝑚2

⋯
⋯
⋱
⋯
⋯
⋱
⋯

𝑥𝑥1𝑛𝑛
𝑥𝑥2𝑛𝑛
⋮

𝑥𝑥(𝑗𝑗−1)𝑛𝑛
𝑥𝑥(𝑗𝑗+1)𝑛𝑛

⋮
𝑥𝑥𝑚𝑚𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, j = 1,2, … , m                             (9) 

The output data is shown in Eq. (10): 



 
 
 
 
Cooperative Perception Optimization Based on Self-Checking                   755 

Y𝑗𝑗 = X𝑗𝑗 = �x𝑗𝑗1 x𝑗𝑗2  ⋯ x𝑗𝑗𝑛𝑛�, j = 1,2, … , m                                    (10) 
Therefore, each perception result of each perception node is preprocessed into m groups 
through data preprocessing, and corresponding output 𝑦𝑦𝑗𝑗 can be obtained through the 
nonlinear fitting of the corresponding RBF neural network respectively. 
Fault diagnosis is to compare the 𝑦𝑦𝑗𝑗 output by the neural network with the perception 
result 𝑥𝑥𝑗𝑗 of the actual perception node j, as shown in Eq. (11): 

�
𝑃𝑃(𝑦𝑦𝑗𝑗 ≠ 𝑥𝑥𝑗𝑗) ≤ 𝜀𝜀,                𝐻𝐻0
𝑃𝑃(𝑦𝑦𝑗𝑗 ≠ 𝑥𝑥𝑗𝑗) > 𝜀𝜀,                𝐻𝐻1

                                             (11) 

In the above formula, 𝜀𝜀 is the threshold to determine whether a fault occurs. In order to 
avoid contingency, the output value of the neural network is compared with the 
perception result many times. The fault probability with inconsistent statistical results is 
compared with the threshold value. When the fault probability of a node is greater than 
the threshold value, the node is judged to have a fault. 

4 Experimental simulation and analysis 
By referring to IEEE802.22 standard and other references, it is learned that spectrum 
sensing in an ideal state requires detection probability of more than 99% and false alarm 
probability of less than 10%. Therefore, in the simulation, the detection probability value 
of each perception node is set as 𝑃𝑃𝑑𝑑𝑑𝑑 ≥ 99%, and the false alarm probability value is set 
as 𝑃𝑃𝑓𝑓𝑑𝑑 ≤ 10% . The change relationship between the number of single-perception 
samples of each node and the SNR is shown in Fig. 6 according to Eq. (6). 

 
Figure 6: Curve of the relationship between the number of single perception samples 
and SNR 

Therefore, the detection time of each node was obtained, and the number of perceptive 
nodes was set as 10, so the corresponding perception results could be obtained. 1000 
times of data were collected for the training of weight optimization by genetic algorithm. 
In order to verify the theory given above, the actual environment is simulated in the 
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laboratory, with larger obstacles representing buildings, and smaller obstacles 
representing trees, the transceiver antenna and obstacles are arranged as shown in Fig. 7. 

 
Figure 7: Structure of experimental simulation environment 

In the simulation experiment, there are 10 sensing nodes in the system, so the number of 
attributes is 10 and the length of each chromosome established is 10. The number of data 
collected by each node is 1000, so the number of individuals in the population of the 
genetic algorithm is set as 1000. The maximum number of iterations was set as 500, the 
probability of chromosome crossing was 0.2, and the probability of mutation was 0.2. 
The accuracy of fusion results was taken as the fitness of the genetic algorithm. Finally, 
the relationship between fitness and iteration times in the process of genetic algorithm 
searching for the optimal solution can be obtained by importing data simulation, as 
shown in Fig. 8.  
It can be seen from the Fig. 8 that the optimal solution is close to the optimal solution 
after about 80 iterations. Therefore, in order to save energy consumption and reduce 
operation time, the maximum number of genetic iterations can be set to 100 when 
updating the model with real-time data in the later stage to meet the requirements. 

 
Figure 8: Graph of the relationship between genetic fitness and the number of iterations 
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The optimized weight obtained from the training data through genetic algorithm is shown 
in Tab. 1, and the optimal fitness corresponding to the following weight is 0.984. 

Table 1: Optimal weights corresponding to each sensing node 

Sensing Node 
Number 1 2 3 4 5 

Optimal weight 0.086496 0.0006773 0.16392 0.097439 0.15046 
Sensing Node 

Number 6 7 8 9 10 

Optimal weight 0.16541 0.15943 0.01937 0.15045 0.0061805 

As can be seen from Tab. 1, the weights of nodes 2 and 10 are extremely small, which is 
consistent with the situation that nodes 2 and 10 in Fig. 7 are affected by large obstacles. 
So they can be regarded as useless nodes. Remove the data of useless nodes, set the 
maximum iteration number to 100, and use genetic algorithm to train again to get the 
relationship between fitness and iteration number, as shown in Fig. 9. 

 
Figure 9: Graph of the relationship between genetic fitness and iteration times after 
removing useless nodes 

The optimized weight obtained by training the data with the useless nodes removed is 
shown in Tab. 2, and the optimal fitness corresponding to the following weight is 0.977. 

Table 2: Optimal Weights of Sensing Nodes after Removing Useless Nodes 

Sensing Node 
Number 1 3 4 5 

Optimal weight 0.091103 0.14578 0.12842 0.12907 
Sensing Node 

Number 6 7 8 9 

Optimal weight 0.1778 0.16169 0.013502 0.14792 
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It can be seen that although the optimal fitness decreases slightly at this time, the training 
results are close to the optimal solution after 32 iterations, and the solving speed is 
greatly improved. At the same time, there is no useless node, and the corresponding 
weight is roughly the same as the original model, so it can be used as the optimal weight 
for multi-node weighted fusion judgment of collaborative perception. 
Similarly, the collected data are transferred to the neural network for training. 900 groups 
of data are randomly selected as the training data to establish the neural network, and the 
remaining 100 groups are taken as the test data. The detection results are shown in Fig. 10. 

 
Figure 10: Schematic diagram of test results for 100 times 

Another 100 times of data were collected. The statistical results of 100 times of detection 
were taken as a fault judgment, and the 10 nodes were judged respectively. The judgment 
results are shown in Fig. 11. 

 
Figure 11: Schematic diagram of fault judgment results of 10 perceptive nodes 
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It can be seen from Fig. 10 that in the 100 detection attempts under normal circumstances, 
only 7 times that the fitting result is different from the perceived result. In the fault 
judgment in Fig. 11, it can be seen that the probability of 10 perception nodes except 
node 7 that the fitting result is the same as the perceived result is more than 90%. For the 
perceptive node 7, the detection results are shown in Fig. 12. 

 
Figure 12: Schematic diagram of detection results of spectrum sensing node 7 

It can be seen that the number of times that the fitting results differ from the perception 
results in this detection reaches 36 times. There is no doubt that this error rate is large, so 
it can be determined that node 7 is faulty. 

5 Conclusions and prospects 
In this paper, the innovation points in the first place is different from the previous paper 
first put forward the method to calculate the performance, but in the limit of detection 
probability and false alarm probability of all nodes under the premise of the standard for 
the perception of the result, so as to ensure the probability and false alarm probability of 
collaborative perception results based on weighted fusion detection can be up to standard, 
realize the global optimization result. Secondly, after using genetic algorithm to train the 
historical data to obtain the optimal weights of each node, this paper uses the optimized 
weights to remove the useless nodes, optimize the cooperative sensing network structure, 
reduce energy consumption and algorithm complexity. At the same time, in order to 
ensure higher reliability, this paper also proposed that the training data could be applied 
to RBF neural network again to realize fault detection of the sensing node, relying on the 
efficient and reliable nonlinear fitting ability of RBF neural network to timely and 
accurately detect and locate fault nodes. In addition, this paper also applies spectrum 
segmentation technology to ensure the real-time accuracy of training data. From the 
experimental results, it can be seen that the idea proposed in this paper effectively 
guarantees the global performance of the fusion of cooperative perception nodes to reach 
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more than 97%. In the case of the existence of useless nodes, it can be accurately detected 
and hardly affects the performance of cooperative perception after removal. And the 
detection of node faults can also ensure its timeliness and accuracy. 
 
Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
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