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Abstract: As a core component of the network, web applications have become one of the 
preferred targets for attackers because the static configuration of web applications 
simplifies the exploitation of vulnerabilities by attackers. Although the moving target 
defense (MTD) has been proposed to increase the attack difficulty for the attackers, there 
is no solo approach can cope with different attacks; in addition, it is impossible to 
implement all these approaches simultaneously due to the resource limitation. Thus, the 
selection of an optimal defense strategy based on MTD has become the focus of research. 
In general, the confrontation of two players in the security domain is viewed as a 
stochastic game, and the reward matrices are known to both players. However, in a real 
security confrontation, this scenario represents an incomplete information game. Each 
player can only observe the actions performed by the opponent, and the observed actions 
are not completely accurate. To accurately describe the attacker’s reward function to 
reach the Nash equilibrium, this work simulated and updated the strategy selection 
distribution of the attacker by observing and investigating the strategy selection history of 
the attacker. Next, the possible rewards of the attacker in each confrontation via the 
observation matrix were corrected. On this basis, the Nash-Q learning algorithm with 
reward quantification was proposed to select the optimal strategy. Moreover, the 
performances of the Minimax-Q learning algorithm and Naive-Q learning algorithm were 
compared and analyzed in the MTD environment. Finally, the experimental results 
showed that the strategy selection algorithm can enable defenders to select a more 
reasonable defensive strategy and achieve the maximum possible reward. 
 
Keywords: Moving target defense, Nash-Q learning algorithm, optimal strategy selection, 
incomplete information game, web service. 

1 Introduction 
With the continuous development of computer networks and systems in various fields of 
daily life, the use of web applications has become the most popular way for businesses to 
provide services over the Internet. Consequently, web applications are vulnerable to 
various forms of exploits, such as SQL injects, XSS, Trojan. Since web applications are 
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the “front door” for many businesses, the security is of paramount importance. 
To defend systems from exploits, the existing network defense techniques, for instance, 
firewalls, intrusion detection systems and anti-viruses are often employed in web 
applications. However, the attacks on web applications are becoming more complex, which 
has made it difficult for the existing defense techniques to counter them. To reduce the cost 
and information asymmetry between malicious intruders and defenders, the moving target 
defense (MTD) has been proposed by the networking and information technology research 
and development program (NITRD). MTD can continuously change the attack surface of 
the web application and make the targeted application random, dynamic and heterogeneous, 
which increases the difficulty level for the attackers. It is noted that MTD is used to 
complement the existing security techniques, not to replace them. 
Research on MTD has experienced tremendous growth [Sushil (2013)]. Taguinod et al. 
[Taguinod, Doupe, Zhao et al. (2015)] divided web applications into different layers and 
discussed the components that can be shifted in the web application layers. The authors 
developed a compiler that could perform the translation from Python to PHP and a tool 
that could automate the conversion or migration between MySQL and PostgreSQL. 
Heydari et al. [Heydari, Kim and Yoo (2017)] presented an anti-censorship framework 
using the moving target defense designed using Mobile IPv6. It assigned end-users to 
random groups and provided them with an IP that the end-users can use to access the 
website. The framework could enable government or private groups to prevent the public 
from accessing certain types of information easily. Vikram et al. [Vikram, Yang and Gu 
(2013)] presented a non-intrusive moving-target defense system that could prevent web 
bots from automating web resource accesses by randomizing HTML elements without 
affecting the normal users. In addition, mutating the IP address, route and proxy could 
also protect web applications [Jafarian, Al-Shaer and Duan (2015); Duan, Al-Shaer and 
Jafarian (2013); Jia, Sun and Stavrou (2013); Venkatesan, Albanese, Amin et al. (2016)]. 
Connell et al. [Connell, Menasce and Albanese (2018)] proposed a quantitative analytic 
model for assessing the availability and performance of resources that are reconfigured by 
an MTD. Connell et al. [Connell, Pham and Philip (2018)] proposed a method to defend 
against multi-step attacks by transforming the service platform and IP address, and they 
analyzed the effectiveness of the method. Some existing studies have proposed various 
MTD technologies for protecting web applications. However, these MTD technologies 
are aimed at defending against one specific type of attack, and they cannot defend against 
other attacks. 
Because different network security threatens need to explore different exploration 
surfaces [Zhuang, DeLoach and Ou (2014)], there is still no sole MTD technology that 
can defend the system against all possible threats. In addition, running all these mutation 
technologies simultaneously is not feasible due to the limitation of host or network 
resources. Therefore, facilitating effective selection of MTD technology has become 
extremely important in real-time defense. Some existing studies have formulated this 
problem as a game between the defender and attacker. 
Vadlamudi et al. [Vadlamudi, Sengupta, Taguinod et al. (2016)] used the Bayesian 
Steinberg game to formalize the attack-defense process specifically based on Web 
platforms to determine an optimal mixed policy. The empirical results showed that the 
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technique could effectively identify the most critical vulnerabilities and most sensitive 
attack types. In Steinberg game, the defender knows the attacker’s reward function, but 
this is practically difficult to achieve. Sun et al. [Sun, Li, Xiong et al. (2018)] regarded 
the network security as a zero-sum multi-objective game. They combined Pareto 
optimization and Q-learning methods to determine the most harmful attacks and find the 
best defense strategy against an attack. Manadhata [Manadhata (2013)] presented a two-
player stochastic game model to determine an optimal MTD strategy. The defender could 
choose the optimal strategies to mutate using the concept of the Nash equilibrium. 
Unfortunately, Manadhata just put forward the theoretical method, and there is no 
experimental verification. In addition, they did not consider the accuracy of the 
observation of the attacker's actions. Lei et al. [Lei, Ma and Zhang (2017)] modeled the 
MTD confrontation as a Markov game (MG-MTD). In this game, the attacker and the 
defender considered the cost and benefit during the strategy selection, and the cost and 
benefit could be converted to change the attack surface [Manadhata and Wing (2011)] 
and the exploration surface. Maleki et al. [Maleki, Valizadeh, Koch et al. (2016)] 
proposed a Markov model-based framework for MTD analysis. It was proved that the 
defense was effectively improved when multiple MTD schemes at different layers of the 
software stack were combined. He et al. [He, Dai, Ning et al. (2015)] proposed an 
algorithm that combined conventional reinforcement learning with a Bayesian-type 
identification procedure for IDS configuration. A type identification was conducted by 
analyzing the actions of the intruder and then updating these using Bayes’ formula. Next, 
an optimal configuration was selected based on the type of intruder. The results showed 
that this method can identify the intruder type with high accuracy and provide an 
effective IDS configuration with a given set of reward matrices. 
The discussion above indicates that certain achievements have been made in the domain 
of defense strategy selection. Unfortunately, most of these studies assumed that both the 
defender and the attacker have the complete information concerning the opponent. In fact, 
the defenders have limited information regarding the attackers in terms of accurate intent 
and reward. 
Yang et al. [Yang, Niu and Peng (2017)] regarded the incomplete information game as a 
blind confrontation. They established a channel model that could transform “the attacker 
or the defender wins one time” to “one bit is transmitted successfully in the channel”. 
Chung et al. [Chung, Kamhoua, Kwiat et al. (2016)] proposed the Q-Learning to learn the 
opponent’s action and make a proper decision in cases that the defender had limited 
information concerning the attacker’s reward and strategies. In terms of performance, 
Naive-Q Learning outperforms the Minimax-Q Learning. He et al. [He, Dai and Ning 
(2015)] proposed two algorithms in which the defender can learn and adapt faster in 
unknown dynamic environments by exploiting the private local information of the 
environment, which is unknown to the attacker. To accelerate the speed of convergence 
and avoid the local optimum, Lin et al. [Lin, Wang, Han et al. (2009)] proposed an 
improved Q-Learning algorithm that combined the Q-learning algorithm, truncated TD 
estimation and simulated annealing algorithm into a military chess game. The results 
show that the improved Q-learning converged faster than the simple Q-learning and that 
it can avoid suboptimum and repeated learning. Sandholm [Sandholm (2015)] abstracted 
the original game as a similar game. Then, the abstracted game was solved using Nash 
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equilibrium and mapped back to the original game. Nguyen et al. [Nguyen, Alpcan and 
Basar (2008); Nguyen, Alpcan and Basar (2009)] viewed the security game as a fictitious 
play game. The authors analyzed the convergence of the players’ strategies; however, 
these strategies have not been applied yet. Hu et al. [Hu, Liu and Zhang (2018)] 
transformed the uncertainty of the game characteristics between both sides of the attacker 
and defender to the uncertainty of each other’s type. However, the attacker’s reward is 
considered to be a fixed value in the article, and the authors did not consider the 
inaccuracy of the observation.  
It is common for researchers to apply the Reinforcement Learning algorithm, or an 
improved method to cope with the incomplete information game. These algorithms rely 
on observing the actions of the opponent. However, the accuracy of observations is 
always ignored, leading to a reduction in the practicality of the proposed methods. In 
addition, these methods are only applied to the general attack defense, and there is no 
research on the application of the incomplete information game to MTD. In this study, 
the interaction between a defender and an attacker is viewed as a two-player incomplete 
game, which aims to maximize the strategic reward by selecting optimal strategies for the 
defender without exceeding the limitations of resources. To solve the problem of 
incompleteness, the defender simulates the distribution of the attacker’s attack strategies 
through the historical knowledge, and the reward of attack is corrected through the 
observation matrix, which made the optimal strategy selection more practical. In terms of 
the optimal strategy selection, the Nash-Q learning algorithm is applied in MTD for the 
first time. Further, the experimental results demonstrated the possibility of applying 
Nash-Q learning to effectively learn an opponent’s behavior and make a proper decision. 

2 Attack model 
This section provides a detailed description of the two sides of the security game in Web 
applications and establishes an interaction model between the attacker and the defender. 
On one hand, the defensive party, usually a Web system administrator, is responsible for 
managing and securing applications. On the other hand, the attacker is a malicious 
opponent who attempts to compromise the Web application and obtain sensitive data 
available in the servers. 
In the attack model, Web applications have different attack surfaces. Therefore, the 
attacker can use different attacks to attack the targets. 
As shown in Fig. 1, attackers can reach different targets through different types of attack. 
On the defensive side, the defender can choose different system configurations to change 
according to the attack types. It should be noted that the chosen defense method is not 
only capable of defending against one type of attack. It may be able to defend against 
different attacks, and it may have different defense effect. For example, changing the 
database can protect against reconnaissance attacks, as well as SQL injection attacks, but 
it is more effective for SQL injection attacks. Therefore, the defender needs to select the 
most effective mutation element to transform according to the type of attack. 
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Figure 1: Mapping relationship between the attacker and defender in Web applications 

In the context of attackers, a Web attack is any type of offensive maneuver that targets 
databases, infrastructures or networks. Web attacks mainly include SQL injections, XSS, 
Trojan Horses, reconnaissance, DDoS and so on. These attacks attempt to expose, alter, 
disable, destroy, steal or gain unauthorized access to a WEB application. For example, a 
Distributed Denial of Service (DDoS) attack poses a constant threat to Web services as they 
may critically deteriorate the service performance or cause the complete shutting down of a 
website, even if for a brief time. The purpose of DDoS is to consume the target’s bandwidth, 
CPU or service resources. The SQL injection is a code injection technique that inserts 
nefarious SQL statements into an entry field for execution (e.g., to dump the database 
contents to the attacker). An XSS enables attackers to inject client-side scripts into web 
pages viewed by other users; subsequently the attacker can gain session cookies maintained 
by the browser on behalf of the user. Currently, some sophisticated technologies exist 
[Boyd, Kc, Locasto et al. (2010); Faghani and Nguyen (2013); Simpson, Shirazi, 
Marnerides et al. (2018)] to detect and defend against these attacks. However, the use of 
these technologies is limited and they cannot defend against unknown attacks. 
In contrast with the monogamous and passive attributes of traditional defense methods, 
MTD keeps transforming the resource vulnerabilities of the protected systems by 
randomly shifting the configuration and the status of network components to deceive and 
confuse the attackers. 
There are many configurations that can be shifted by the defender, such as the IP address, 
port, databases, MAC, and operating system. Different configurations can prevent 
different attacks. For example, the use of random IP addresses and ports can disrupt the 
reconnaissance activities; they can also defend against DDoS attacks and provide certain 
defense against worm attacks. Replacing one or more proxies and remapping clients to 
proxies can mitigate DDoS and reconnaissance attacks. When the defender mutates the 
database and the implementation language, the efforts of the attackers may increase 
considerably to launch successful SQL inject attacks. It can be seen that a configuration 
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can defeat a variety of attacks, but the defense effects are different. The simplest way to 
ensure service security is to transform all configurations at the same time; however, this 
strategy is unrealistic owing to the limited system resources. As a result, the defender 
must select an optimal defense configuration according to the attack type. 

3 MTD confrontation model based on game theory 
Game theory is the study of mathematical models of conflict between intelligent rational 
decision-makers. Game theory describes a game by specifying the players involved in the 
game, the order in which the players take actions, the possible actions of the players, each 
player’s knowledge of the previous actions taken and each player’s knowledge about the 
reward function [Liang and Xiao (2013)]. In game theory, a player’s strategy is any of the 
actions the player can choose in a setting in which the reward depends on not only the 
player’s own actions but also the action of the opponent. A player’s strategy will 
determine the action that the player may adopt at any stage of the game. 
During an attack process, a malicious intruder chooses an action among a set of possible 
actions at each internal step of the process. Likewise, the defender needs to arrange some 
plans to thwart the attack. In practical cases, the security resources of the system are 
limited. These limited resources must be allocated and scheduled efficiently to avoid 
predictability. Fortunately, computational game theory can build decision-aids for 
realizing the allocation of efficient security resources. 
In this study, the interactions between an attacker and a defender are modeled as a two-
player stochastic game. It is noted that the game theory assumes that each player is 
rational. This means that each player aims to choose the best strategy that can bring the 
greatest benefit. As shown in Fig. 2, the game is played in a sequence of stages. At the 
beginning of each stage, the game is in an initial state nS  . The players select actions 
from the defend set and attack set, and each player receives a reward that depends on the 
current state and the chosen actions. Next, the game moves to a new state +1nS . The 
procedure is repeated at the new state and continues for a finite or infinite number of 
stages. The total reward for a player is often taken to be the discounted sum of the stage 
rewards or the limit inferior of the averages of the stage rewards. 
 

 

Figure 2: MTD confrontation model 
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In the MTD confrontation model, the game can be constructed as follows: 
Definition: The MTD confrontation model based on a game is a seven-
tuple,   ,  ,  ,  ,  ,  ,  N S A D RA RD P< >  ; these terms are the basic elements used to describe a game. 

(1) { }= ,A DN N N is the player set in the MTD confrontation model, which is assumed to 
contain only two players; the malicious intruder AN   and the defender  DN .  

(2) { }1 2 3, , ..., kA A A A A=  is the action set of the attackers. It includes k  types of attacks. 
In each state, attackers can select one action from A  to launch. These attacks are 
independent of each other.  
(3) { }1 2 3, , ..., lD D D D D= is the action set of defenders. There are  l   types of defending 
methods. In this MTD confrontation model, different defensive actions represent different 
MTD techniques. Each MTD technology can defend against one or more attacks with 
different defense effects. For example, the MTD technology based on proxy mutation can 
defend against scanning attacks and DDoS attacks, and the proxy mutation provides 
better defense against the scanning attacks than against the DDoS attacks. In addition, 
due to different resource allocations, the same defensive action has different defensive 
effects in different states. 
(4) { }1 2 n, ,...,S S S S=  is the set of system states. Each state contains all the defensive 
actions, but the defense focus of these states is different. The system resources allocated for 
defense actions in different states are different. This implies that different states are targeted 
for different attacks. For example, the defense focuses of state nS   is a DDoS attack and 
that of state 1nS +  is an SQL injection attack. In state nS , the system allocates a large 
number of port resources for defense, and in state 1nS + , the system allocates a large amount 
of database resources for defense. In contrast, state nS  has a better defense against DDoS 
attacks than state 1nS + , while state 1nS +  is more effective against SQL injection attacks. 
Although each state can defend against all attacks, the effectiveness of the defense is not 
the same. Due to the limited resources, defenders can only choose one defensive action in 
each state. Therefore, the defender should choose the appropriate state and defense action. 
Further, the state transforms constantly according to the confrontation of the defender and 
intruder with a certain probability. 
(5) RA represents the reward function for the attackers. After the attacker has taken action 
in the game, he/she will receive a negative or a positive return, and this return is his/her 
reward. However, in an actual scenario, both sides of the MTD confrontation model are 
not aware of the reward matrix of the other side. This study focuses on methods to 
determine the reward of the attacker. 
(6) RD  represents the revenue of the defensive side. When a defender performs an action, 
the action may benefit the defender. From the above introduction, the damages caused by 
the same attack may be different in different system states. Hence, the benefit of the same 
defense method is different in different system states. It is worth noting that the benefit of 
the defender will be different even in the same state. 



 
 
 
770                                                                              CMC, vol.62, no.2, pp.763-786, 2020 

(7) { }( )( | , , ) , , ,j i k l i j k lP P S S A D S S S A A D D= ∈ ∈ ∈  is the system state transition 

probability, where ( | , , )j i k lP S S A D denotes the possibility of system state transition from 

iS  to jS  when the defender takes action kA  and attackers launch lD . The transition of 
the network state occurs in the process of occurrence of different confrontation phases.  
Based on the MTD confrontation model, the selection algorithm is designed as described 
in the following section. 

4 Optimal strategy selection algorithm 
In an offensive and defensive game, both sides of the game are rational, and players will 
choose strategies in response to other players’ strategies to maximize their reward. In 
order to solve this security game, the Nash-Q learning algorithm was used to learn and 
decide the optimal policy of the defenders. 

4.1 Reward quantification 
4.1.1 Reward of attacker 
In a security game, if the reward matrix of both players is known to each other, players 
can compute the set of Nash equilibria of the game and play one of these strategies to 
maximize their expected gain. However, this assumption is generally not practical. 
Although it is impossible to determine the opponent’s reward matrix in advance, it is 
possible to observe the actions performed by the opponent. Therefore, the rewards of the 
opponent can be evaluated based on the observed actions. 
Let ( )iv j  indicate the Boolean value corresponding to the attacker performing action i  in 
state jS . If the attacker takes action i  in state j , then ( )iv j  is equal to 1; otherwise 

( )iv j  is equal to 0. Hence the frequency of attack action i  observed after t  confrontation 
times can be expressed as: 

0
( ) ( ( )) /

t

i
j

q i v j t
=

= ∑                                                                                                              (1) 

where 
0

( ))
t

i
j

v j
=
∑  represents the number of times action i  is executed in the previous t  

states. The observed frequency depends on the observation of the attacker’s actions. 
However, these observations are not perfect, since a false positive probability always exists.  
We define DO as the observation matrix of the defender, this matrix represents the 
probability that a defender recognizes attack action m  as attack action n , and it satisfies 

1
k

m
n

m
o =∑ . 
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Let ( ) ( ) ( ) ( )1 , 2 , 3 , ,DF q q q q k=    be the observed frequency of the defender and 

( ) ( ) ( ) ( )= 1 , 2 , 3 , ,DF q q q q k  

   
  be the empirical frequency. The correspondence 

between DF and DF  can be expressed as 

D D DF O F= ∗                                                                                                                       (2) 
Hence, the empirical frequency can be computed by  

-1
D D DF O F= ∗

                                                                                                                     (3) 
By counting the empirical frequency of the attacker’s actions, it can be considered that a 
higher action frequency corresponds to a greater reward for the action. This is because 
the attacker always chooses the action that can maximize the reward to attack. The 
reward of the attacker depends on the damage of attack and the action taken by the 
defender. The damage of nA is defined as ( )nDM A . Different types of attacks lead to 
different damage to the target. For example, the scan attack obtains only the information 
of the target, while the SQL injection attack can obtain the administrator's username and 
password, or even the administrator privileges. The damage of SQL injection attack is 
greater than that of the scan attack, that is, ( ) ( )DM Scan DM SQLI< . As described in the 
previous section, different configurations have different defense effects against different 
attacks in different states. Let ( ),j m nD Aη  represent the defense effect of defense action 

mD  against attack nA  in state j . When the attack is completely blocked, ( ), 1j m nD Aη = . 

When the defense is completely invalid, ( ), 0j m nD Aη = , and in other cases, 

( )0 , 1j m nD Aη< < . Note that it is unrealistic to completely block an attack; the goal is to 
improve the defense as much as possible. Thus, the attacker’s reward in a different state 
can be expressed as: 

( ), , ( ) * ( )*(1 ( , ))j n m n j n mRA S A D DM A q n A Dη= −                                                           (4) 

where ( )q n represents the empirical frequency of the attack nA , and 1 ( , )j n mA Dη−  
represents the proportion of benefit that the attacker can obtain. 

4.1.2 Reward of defender 
The reward of the defender depends on the type of attack and the state. However, the 
defender’s observation of the attack is inaccurate. Thus, the reward of the defender in 
state j  can be expressed as 
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( ), , ( ) * * ( , )n
j n m n n j n mRD S A D DM A o A Dη=                                                                     (5) 

where ( )nDM A  represents the hazard of the observed attack. n
no  is the element on the 

diagonal in the observation matrix DO , which indicates the probability that the defender 
accurately identifies the attack nA . ( , )j n mA Dη  represents the defense effect of mD  on 

nA  in state j .  

4.2 Nash-Q learning algorithm 
In the Nash-Q learning algorithm, the Q-function for any individual player becomes 

( , , )Q S D A  rather than the single-agent Q-function ( , )Q S A  or ( , )Q S D . Therefore, the 
optimal quality function for the defender is defined as 

1

1 1 +1 +1( , , ) ( , , ) ( | , , ) ( , , )
j

D A D
j n m j n m j j n m j j j

S S
QD S A D RD S A D P S S A D V Sβ π π

+

+ +
∈

= + ∗ ∗∑      (6) 

where ( , , )j n mQD S A D  represents the total expected discounted reward for the defender 

when the defender takes action mD  and the attacker takes action nA  in state jS  and all 
players follow the Nash equilibrium from then on. β  represents the discount factor. 

+1
A
jπ and +1

D
jπ  represent the Nash equilibrium strategy of the attacker and defender in state 

+1jS , respectively. 1 +1 +1( , , )A D
j j jVD S π π+  represents the optimal value function for the 

defender in the next state 1jS +  and it can be represented as 

1 +1 +1 1 1( , , ) ( ( , , ), ( , , ))A D D
j j j j jVD S NASH QD S A D QA S A Dπ π+ + ∗ ∗ + ∗ ∗=                                     (7) 

where ( ( ), ( ))DNASH QD QA   in Eq. (7) represents the reward of the defender under the 
Nash equilibrium. D∗  and A∗  represent the actions taken by both sides of the game under 
the condition of Nash equilibrium. 
Similar to the defender, the optimal quality function ( , , )j n mQA S A D  and value function 

1 1 1( , , )A D
j j jVA S π π+ + +  for the attacker are defined as 

1

1 1 1 1( , , ) ( , , ) ( | , , ) ( , , )
j

A D
j n m j n m j j n m j j j

S S
QA S A D RA S A D P S S A D VA Sβ π π

+

+ + + +
∈

= + ∗ ∗∑         (8) 

1 1 1( , , ) ( ( , , ), ( , , ))A D A
j j jVA S NASH QD S A D QA S A Dπ π+ ∗ ∗ + ∗ ∗ + ∗ ∗=                                         (9) 

Next, the Nash equilibrium strategies A
jπ and D

jπ  can be written as 

arg ( ( , , ), ( , , ))D D
j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗=                                                           (10) 

and  
arg ( ( , , ), ( , , ))A A

j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗=                                                           (11) 

It is apparent that if a defender wants to choose a defense strategy that is consistent with the 
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Nash equilibrium, the defender must know not only his/her quality function, but also the 
quality function of attacker. Therefore, after each confrontation, the state transfers from jS  
to +1jS , and both sides of the game need to update their quality functions based on the 
observed actions and rewards respectively. Thus, the updated quality functions become 

1 1 1

'( , , ) ( , , ) *[ ( , , )

                              * ( , , ) ( , , )]
j n m j n m j n m

A D
j j j j n m

QD S A D QD S A D RD S A D

VD S QD S A D

α

β π π+ + +

= + +

−
                                                  (12) 

1 1 1

'( , , ) ( , , ) *[ ( , , )

                             * ( , , ) ( , , )]
j n m j n m j n m

A D
j j j j n m

QA S A D QA S A D RA S A D

VA S QA S A D

α

β π π+ + +

= + +

−
                                            (13) 

where α represents the learning rate. The updated strategies then become 

' arg ( '( , , ), '( , , ))D D
j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗=                                                        (14) 

' arg ( '( , ), '( , ))A A
j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗=                                                            (15) 

A completely specific version of the algorithm is given as follows. 
Algorithm 1: Algorithm of Optimal Defense Strategy Selection 
Input: Attack action A ,  Empirical frequency DF , Defense action D  

Output: optimal defense strategy π  
1. Initialization:  
2. Let 0QA = , 0QD = , 0VD = , 0VA = , 0j ←   

3. Initialize(state 0S ) 

4. Choose Action: 
5. if random() < explor  then 

6.       return Random 
7. return D

jπ  

8. end if 
9. Learn: 
10. Update( DF ),Update( RA ) 

11. System State 1j jS S+ ←  

12. Update ( 'QD ), Update( 'QA ),  Update( 'Djπ ),Update( 'Ajπ ) 

13. 1j j+ ←  

In this algorithm, parameter explor controls how often the agent will deviate from its 
current policy to ensure that the state space is adequately explored. 
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5 Experiments and analyses 
5.1 Experimental environment 
In this study, the experiments are simulated and computed using Python and MATLAB. 
The experimental environment includes Python2.7 and Virtual Machine with Ubuntu 
16.04 and 8 GB memory, MATLAB R2017b and a server with Windows 10 and Intel 
Xeon E5-2620 CPU and 32 GB memory. 

5.2 Initializing parameters 
In this experiment, the assumption is that the attacker can launch three different attacks  

1 2 3, ,A A A  and the defender can choose one of the actions from 1 2 3, ,D D D  to defend. The 
action information of each is given in Tab. 1. 

Table 1: Set of Actions 

Attacker Defender 

1A : Reconnaissance 1D : IP Address 

2A : SQL Inject 2D : Database 

3A : Trojan 3D : Operating System 

The damages of different attacks are different, and the damage ( )nDM A  can be divided 
into three levels: high damage, medium damage and low damage. The values of the high, 
medium, and low damage are 20, 10 and 5, respectively. Based on experience, the 
degrees of damage of the SQL injection attack and Trojan attack are high, and the degree 
of damage of the reconnaissance attack is low. In addition, the effectiveness of the 
defensive actions against the attack actions can be divided into five levels 
{ }1, 2, 3, 4, 5η η η η η . When 1 0η = , the defensive action has no effect on the attack, and 

5 1η = indicates that the defensive action can completely defend against the attack, 
however, this scenario is unrealistic. Then, we assign 4η , 3η  and 2η  values of 0.75, 
0.5 and 0.25, respectively. 
The system can be in one of three states, 1 2 3{ , , }S S S S= . Each state contains all defensive actions, 
but the mutating ranges and periods are different. 1 {(  c ,10),(2 ,60),(2 ,60)}S B lass DB SYS=  
indicates that a defender can select a new IP address from the B class IP address, and the 
mutating period is 10 seconds; (2 ,60)DB indicates that the mutant element is Database 
type, the value range is 2 and its period is 60 seconds. When the defender chooses to mutate 
the operating system in state 1S , (2 ,60)SYS  indicates that two operating systems must be 
changed every 60 seconds. Analogously, 2 {(  c ,60),(4 ,30),(2 ,60)}S B lass DB SYS=  and 

3 {(  c ,60),(2 ,60),(4 ,30)}S B lass DB SYS= . It can be seen that the three states have 
different defensive priorities. 1S  mainly defends against reconnaissance attack, 2S  mainly 
defends against SQL Injection attack, and 3S  mainly defends against Trojan attack. 



 
 
 
Strategy Selection for Moving Target Defense in Incomplete Information Game         775 

Therefore, let 1 1 1 2 2 2 3 3 3( , ) ( , ) ( , ) 4A D A D A Dη η η η= = = ; the other defense efficiencies are 
determined depending on the ratio of the available resources. For example, the IP resource 
in 1S  is six times that of 2S . Therefore, the defense effect against Reconnaissance attacks 
in 1S  is also six times that of 2S , that is, 1 1 1 2 1 1( , ) 6* ( , )A D A Dη η= . Thus, the defense 
effects in different states are as presented in the following tables. 

Table 2: Defense effects in 1S  

Defensive 
actions 

Attack actions 
A1 A2 A3 

D1 0.75 0 0 
D2 0.125 0.1875 0 
D3 0.1875 0 0.1875 

Table 3: Defense effects in 2S  
Defensive 
actions 

Attack actions 
A1 A2 A3 

D1 0.125 0 0 
D2 0.5 0.75 0 
D3 0.1875 0 0.1875 

Table 4: Defense effects in 3S  
Defensive 
actions 

Attack actions 
A1 A2 A3 

D1 0.125 0 0 
D2 0.125 0.1875 0 
D3 0.75 0 0.75 

The frequency of attack actions DF  can be continuously updated through observation. As 
a result, the reward of the attacker in each confrontation process can be obtained using Eq. 
(4). Besides, the transition probability between the states also depends on the defense 
effect of the different states. The system always tends to shift to a state with a satisfactory 
defense effect. For example, when the attacker adopts nA  and the defender adopts mD , 
the defense efficiencies in the three states are 1( , )n mA Dη , 2 ( , )n mA Dη , 3 ( , )n mA Dη . 
Therefore, the transition probability can be expressed as 

3

1

( , )
( | , , )=

( , )

j n m
j i n m

c n m
c

A D
P S S A D

A D

η

η
=
∑

                                                                                   (16) 
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According to Eq. (5), the reward of a defender also depends on the observation matrix, 
and the observation matrix depends on the accuracy of the detection device, such as IDS. 
However, the detection of attacks is not the focus of this paper. The observation matrix of 

the defender is set as 
0.6 0.1 0.05
0.2 0.8 0.05
0.2 0.1 0.9

DO
 
 =  
 
 

. 

5.3 Algorithm comparisons and analyses 
The numerical results presented in this section are used to validate the effectiveness of the 
algorithm of the optimal strategy selection. In the experiments, three different policies for 
defending were adopted: the Nash-Q learning algorithm, Minimax-Q learning algorithm 
and Naive-Q learning algorithm. In each learning algorithm, the defender was trained 
against a Nash-Q learning, Minimax-Q learning, and Naive-Q learning opponent. The 
performance of different algorithms is compared and discussed in the following section. 

        
    (a)                                                                     (b)    

  
 (c) 

Figure 1: Results for different policies against the Nash-Q learning attacker with 
=0.9explor  and =0.02 =0.9α β， , for attacker and =0.02 =0.9α β，  for the Nash-Q 

defender; =1 =0.9,   0.9984decayα β =， for the Minimax-Q defender and 
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=0.02 =0.9α β， for the Naive-Q defender, (a) Accurate defense time for each defender, 
(b) Accumulated reward for each defender, (c) Accumulated reward for attacker against 
different defender 

         
   (a)                                                                (b)       

   
                                                                 (c) 

Figure 4: Results for different policies against the Minimax-Q learning attacker with 
=0.9explor  and =1 =0.9,   0.9984decayα β =，  for attacker and =0.02 =0.9α β， for the 

Nash-Q defender; =1 =0.9,   0.9984decayα β =，  for the Minimax-Q defender, 
=0.02 =0.9α β，  for the Naive-Q defender, (a) Accurate defense time for each defender, 

(b) Accumulated reward for each defender, (c) Accumulated reward for attacker against 
different defender 
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(a)                                                              (b) 

 
(c) 

Figure 5: Results for different policies against the Naive-Q learning attacker with 
=0.9explor  and =0.02 =0.9α β，  for attacker and =0.02 =0.9α β， for the Nash-Q 

defender; =1 =0.9,   0.9984decayα β =， for the Minimax-Q defender, =0.02 =0.9α β， for 
the Naive-Q defender, (a) Accurate defense time for each defender, (b) Accumulated 
reward for each defender, (c) Accumulated reward for attacker against different defender 

Fig. 3(a) showed the accurate defense time when the attacker was trained via the Nash-Q 
learning and the defender was trained using different policies. An accurate defense 
indicated a situation in which the defender selected the best defense strategy. For 
example, when the attack was a SQL injection attack, the defender chose the database to 
make a mutation. When the attack was a Trojan attack, the defender should choose the 
operating system to perform a mutation. It could be clearly seen from Fig. 3(a) that when 
the defender adopted the Nash-Q learning strategy, the time required to attain the 
accurate defense was the maximum. When the defenders adopted Minimax-Q learning 
and Naive-Q learning, the results corresponding to the defense were inferior to those of 
Nash-Q learning, and the results for the Naive-Q learning were the worst.  
This situation can be explained as follows: When a defender adopted the Nash-Q learning 
algorithm, the defender maintained a model of the attacker’s Q-function and used this 
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information to update his/her own Q-function. Both the attacker and defender acted based 
on the equilibrium in each state. Moreover, the attacker’s Q-function depended on the 
actions of the attack, as observed by the defender. When the defender was trained by the 
Minimax-Q learning algorithm, the defender endeavored to maximize his/her reward 
while the attacker strived to minimize it. Consequently, the defender’s minimum 
expected reward should be as large as possible. Nevertheless, when the attacker was 
trained by the Nash-Q learning algorithm, the actual action chosen by the attacker might 
not have been the action that could minimize the reward of the defender. Since Minimax 
mainly solved the strategic problems of a dynamic game, the defender only obtained the 
information concerning his/her action and the minimum reward that he/she could acquire. 
The defender’s strategy was a probability distribution over the actions. In contrast to the 
one trained by Minimax-Q learning, the defender trained by Nash-Q learning can obtain 
more accurate information of the attacker’s actions and take more accurate defense 
measures; thus, their result was more accurate. However, if the defender was trained by 
the Naive-Q learning algorithm, the accurate defense time of convergence was less than 
10 times. This was because the Nash-Q learning algorithm can provide more information 
about the attacker than the Naive-Q learning algorithm can, leading to the formulation of 
a more accurate confrontation model. Naive-Q Learning cannot provide the information 
about the attacker that is required to formulate a complete confrontation model, and the 
defender adopts defensive strategies depending on his/her own past actions. 
Consequently, when the Naive defender defended a rational attacker such as a Nash-Q 
defender, Naive-Q learning may misguide the defender to blindly learn the worst-case 
policy and thus lead to performance loss. 
Fig. 3(b) and Fig. 3(c) demonstrated the accumulated rewards of the defenders and 
attackers in every 100 confrontations, respectively. The defense reward and attack reward 
correspond to the time of accurate defense. As the accurate defense time increased, the 
defender’s reward increased and the attacker’s reward decreased, and, vice versa.  
Fig. 4 and Fig. 5 showed the results corresponding to the attackers trained by the 
Minimax-Q learning algorithm and the Naive-Q learning algorithm. Fig. 4 that the 
defensive result was the best when the defender adopted the Nash-Q learning algorithm. 
In Fig. 4(b), when the timeslot was greater than 2,000, the defender’s reward gradually 
decreases. This was because of the presence of uncertainty in the learning process, and 
because defenders could not ensure that every defensive effect was better than the 
previous one. In particular, the accumulated defense of the Naive-Q was similar to the 
Minimax-Q, but the accumulated attack reward obtained during the entire confrontation 
was less than that for Minimax-Q. This was because the attacker’s goal was to maximize 
his/her reward as a feature of Minimax.  
When the attacker was a Naive-Q learner, the defenders can perform effective defense 
when the defenders adopted Nash-Q learning. With the increased in the number of 
confrontations, the Nash-Q learning defender achieved a higher reward and this would 
reduce the attacker’s reward to the lowest. When the defender also adopted the Naive-Q 
algorithm, the average accurate defense time was the highest, but the defender’s defense 
reward was lower than that for a Nash-Q learning defender. By observing the specific 
experimental process, it was found that although Naive-Q learning had a higher defense 
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success rate, it was not in the most appropriate state. For example, when an attacker 
launched a Trojan attack, the defender choosed to change the operating system, but the 
current state was instead of. Therefore, despite the success of the defense, the defender gets 
less reward than the Nash-Q learning defender. Besides, when the defender adopted 
Minimax-Q learning, the number of accurate defenses was the least and the defense reward 
was the least; however, the attacker received a lower reward than the Naive-Q learner did. 
The experimental process showed that the attacker always performed a reconnaissance 
attack in this confrontation, and the reconnaissance attack had the lowest damage. 
To illustrate the effectiveness of return simulation, we calculated the reward of attack 
without simulation. Similar to Hu et al. [Hu, Liu and Zhang (2018)], the rewards became 
some fixed value.  Then Eq. (4) becomed  

( ), , ( ) * (1 ( , ))j n m n j n mRA S A D DM A A Dη= −                                                                   (17) 

The results of the comparison between the without simulation and the method presented 
in this paper are as follows: 

    
(a)                                                             (b) 

 
                                        (c) 

Figure 6: Results for different policies against the Nash-Q learning attacker with 
=0.9explor  and =0.02 =0.9α β，  for attacker and =0.02 =0.9α β， for the Nash-Q 
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defender with reward simulation, =0.02 =0.9α β， for the Nash-Q defender without 
reward simulation;  (a) Accurate defense time for each defender, (b) Accumulated reward 
for each defender, (c) Accumulated reward for attacker against different defender 

Fig. 6(a) showed the accurate defense time when the attacker was trained via the Nash-Q 
learning and the defender was trained via different Nash-Q learning. It can be seen from 
the experimental results that although defenders all used Nash -q algorithm to select 
defense strategies, the method proposed in this paper can select more accurate defense 
strategies in the defense process. This was because it is inaccurate to determine the 
attacker’s reward only by the observed actions. As described in Section 4.1.1, due to the 
presence of false positives, the defender often has errors in the observation of the 
attacker's actions. In addition, the attacker's reward will also be affected by the previous 
attack experience. The more times an attack type was selected, the higher the reward of 
this attack may be. On the contrary, if the number of times selected was very small, the 
reward of the attack will be very low. When the number of confrontations exceeded 1000, 
the accurate defenses time was reduced. This was caused by the uncertainty of the 
NASH-Q algorithm in the learning process. As can be seen from the results, although the 
accurate defenses time decreases, the defense effect was still better than that when the 
attack rewards were not simulated. Fig. 6(b) and Fig. 6(c) showed the return of defenders 
and attackers, respectively.  The comparison results showed that the proposed method in 
this paper can make the defender get higher reward while effectively limiting the 
attacker's reward. 
Through the above experiments, it could be concluded that Nash-Q Learning performs 
well against irrational attackers and proved that it was necessary to select defense 
methods by simulating the reward of attackers in the incomplete information game. 

5.4 Complexity analyses 
For the Nash-Q Learning algorithm, the main operation was traversing the Nash matrix 
and updating the empirical frequency of the attacker’s action. The size of the matrix 
depended on the number of defender actions and attacker actions. Therefore, the 
complexity of the Nash-Q learning in each confrontation was ( * )O K L , where L  
indicated the number of actions of the defender and K  indicated the number of actions of 
the attacker. The complexity of the entire process was ( * * )O N K L , where N  denoted 
the number of confrontations. For the Naive-Q learning algorithm, the main operation 
was traversed and updated the quality function of each player, its complexity was also 

( * * )O N K L . When the defender adopts the Minimax-Q learning algorithm, the main 
operation was to solve the linear programming problem, and the complexity of this 
algorithm in each confrontation is (2 )LO . The complexity of the entire process was 

( *2 )LO N . It could be concluded that the complexity of the Minimax-Q learning 
algorithm was higher than that of the other two algorithms. 

5.5 Burden analyses 
In the experiments mentioned above, only one mutation element was selected for each 
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confrontation due to the limited resources of the system. However, the case in which 
defenders chose multiple mutation elements simultaneously must be evaluated. If 
multiple elements were mutated at the same time, the system may be more secure, but the 
burden on the system increased accordingly. The experiment discussed in the following 
paragraph was performed to investigate the relationship between the system burden and 
the number of mutant elements. In this experiment, both the defender and the attacker 
adopted the Nash-Q learning to choose their own strategies. 
An Apache server was set up in a laboratory environment. This server may suffer from 
reconnaissance attacks, SQL injection attacks and Trojan attacks. The attacks could be 
prevented by changing the IP address, database type, and operating system type. Further, 
the page loading time (PLT) was measured to examine the time overhead of web 
applications when the server changes these elements. PLT was the time interval needed to 
load the complete page on the browser. 

 
Figure 7: Reward of the defender when the defender selects single element and 
combinatorial-elements 

 

Figure 8: PLT when the defender selects single element and combinatorial-elements Tables 
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Fig. 7 showed the rewards that a defender could achieve while using single-element 
mutation and combinatorial mutation. The reward of the defender was set the same as 
that defined above. It is apparent that the reward obtained using the combinatorial-
elements achieved higher defensive benefits than the single element did. The average 
reward when using a single element was 276, and that using the combinatorial-elements 
was 456, which represented an improvement of 65%. 
In this experiment, it was assumed that the transformation periods of the different elements 
were the same. Fig. 8 depicted the PLT of a user accessing a web service in different defense 
scenarios throughout the confrontation process. Each point in the graph represented the 
average PLT against 100 runs. It could be clearly seen from the results that when an attacker 
adopted combinatorial-elements, the value of PLT was greater than the PLT of the defender 
using a single transformation element. The statistics showed that when the defender changed 
a single transformation element, the average PLT during the entire confrontation process 
was 463 ms, and the average PLT of combinatorial-elements was 655 ms. 
These results indicated that although the combinatorial-elements mutation increased the 
security of the system, it induced an extra average time burden of 41%. Moreover, the 
page loading time will be doubled or extended even longer, which may lead to an 
unpleasant user experience. In an actual defense, the transition period of different 
elements was different, thus the PLT in the experiment was higher than the PLT in an 
actual defense scenario; however, the overall trend was the same. The user still needed to 
spend more time to load the complete page when the defender changed the 
combinatorial-elements. Therefore, it was more reasonable to use a single element for 
mutation to ensure the quality of user experience in the case of limited resources. 

6 Conclusions 
As a revolutionary defense method, MTD can reduce the information asymmetry between 
an attacker and defender. Choosing the right mutation element is the key to defend 
against various attacks. To solve the problem of incomplete information in the game 
model, the attacker’s reward matrix was simulated by observing the attacker's action 
frequency. The Nash-Q learning algorithm was used to select an optimal defense strategy. 
To illustrate the effectiveness of the selected method, Nash-Q learning was compared 
with Minimax-Q learning and Naive-Q learning. The results showed that when the 
defender got trained by Nash-Q learning, the defensive performance was the best. 
Regardless of the type of attacker, Nash-Q learning can maximize the reward of the 
defender and minimize the reward of the attacker. This indicates that the theory of Nash 
can reflect actual scenarios better than other theories. Furthermore, the results of the 
experiments showed that when multiple mutation elements were changed simultaneously, 
the performance of defense will be enhanced, but an unpleasant user experience ensues. 
This study assumed that web applications will only suffer from one type of attack each 
time. Thus, to the future research will address the selection of the best defense strategy to 
defend against multiple types of attacks simultaneously. 
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