

Computers, Materials & Continua CMC, vol.62, no.2, pp.763-786, 2020

CMC. doi:10.32604/cmc.2020.06553 www.techscience.com/journal/cmc

Strategy Selection for Moving Target Defense in Incomplete
Information Game

Huan Zhang1, Kangfeng Zheng1, *, Xiujuan Wang2, Shoushan Luo1 and Bin Wu1

Abstract: As a core component of the network, web applications have become one of the
preferred targets for attackers because the static configuration of web applications
simplifies the exploitation of vulnerabilities by attackers. Although the moving target
defense (MTD) has been proposed to increase the attack difficulty for the attackers, there
is no solo approach can cope with different attacks; in addition, it is impossible to
implement all these approaches simultaneously due to the resource limitation. Thus, the
selection of an optimal defense strategy based on MTD has become the focus of research.
In general, the confrontation of two players in the security domain is viewed as a
stochastic game, and the reward matrices are known to both players. However, in a real
security confrontation, this scenario represents an incomplete information game. Each
player can only observe the actions performed by the opponent, and the observed actions
are not completely accurate. To accurately describe the attacker’s reward function to
reach the Nash equilibrium, this work simulated and updated the strategy selection
distribution of the attacker by observing and investigating the strategy selection history of
the attacker. Next, the possible rewards of the attacker in each confrontation via the
observation matrix were corrected. On this basis, the Nash-Q learning algorithm with
reward quantification was proposed to select the optimal strategy. Moreover, the
performances of the Minimax-Q learning algorithm and Naive-Q learning algorithm were
compared and analyzed in the MTD environment. Finally, the experimental results
showed that the strategy selection algorithm can enable defenders to select a more
reasonable defensive strategy and achieve the maximum possible reward.

Keywords: Moving target defense, Nash-Q learning algorithm, optimal strategy selection,
incomplete information game, web service.

1 Introduction
With the continuous development of computer networks and systems in various fields of
daily life, the use of web applications has become the most popular way for businesses to
provide services over the Internet. Consequently, web applications are vulnerable to
various forms of exploits, such as SQL injects, XSS, Trojan. Since web applications are

1 School of CyberSpace Security, Beijing University of Posts and Telecommunications, Beijing, 100088, China.
2 College of Computer Sciences, Beijing University of Technology, Beijing, 100124, China.
* Corresponding Author: Kangfeng Zheng. Email: zkf_bupt@163.com.

764 CMC, vol.62, no.2, pp.763-786, 2020

the “front door” for many businesses, the security is of paramount importance.
To defend systems from exploits, the existing network defense techniques, for instance,
firewalls, intrusion detection systems and anti-viruses are often employed in web
applications. However, the attacks on web applications are becoming more complex, which
has made it difficult for the existing defense techniques to counter them. To reduce the cost
and information asymmetry between malicious intruders and defenders, the moving target
defense (MTD) has been proposed by the networking and information technology research
and development program (NITRD). MTD can continuously change the attack surface of
the web application and make the targeted application random, dynamic and heterogeneous,
which increases the difficulty level for the attackers. It is noted that MTD is used to
complement the existing security techniques, not to replace them.
Research on MTD has experienced tremendous growth [Sushil (2013)]. Taguinod et al.
[Taguinod, Doupe, Zhao et al. (2015)] divided web applications into different layers and
discussed the components that can be shifted in the web application layers. The authors
developed a compiler that could perform the translation from Python to PHP and a tool
that could automate the conversion or migration between MySQL and PostgreSQL.
Heydari et al. [Heydari, Kim and Yoo (2017)] presented an anti-censorship framework
using the moving target defense designed using Mobile IPv6. It assigned end-users to
random groups and provided them with an IP that the end-users can use to access the
website. The framework could enable government or private groups to prevent the public
from accessing certain types of information easily. Vikram et al. [Vikram, Yang and Gu
(2013)] presented a non-intrusive moving-target defense system that could prevent web
bots from automating web resource accesses by randomizing HTML elements without
affecting the normal users. In addition, mutating the IP address, route and proxy could
also protect web applications [Jafarian, Al-Shaer and Duan (2015); Duan, Al-Shaer and
Jafarian (2013); Jia, Sun and Stavrou (2013); Venkatesan, Albanese, Amin et al. (2016)].
Connell et al. [Connell, Menasce and Albanese (2018)] proposed a quantitative analytic
model for assessing the availability and performance of resources that are reconfigured by
an MTD. Connell et al. [Connell, Pham and Philip (2018)] proposed a method to defend
against multi-step attacks by transforming the service platform and IP address, and they
analyzed the effectiveness of the method. Some existing studies have proposed various
MTD technologies for protecting web applications. However, these MTD technologies
are aimed at defending against one specific type of attack, and they cannot defend against
other attacks.
Because different network security threatens need to explore different exploration
surfaces [Zhuang, DeLoach and Ou (2014)], there is still no sole MTD technology that
can defend the system against all possible threats. In addition, running all these mutation
technologies simultaneously is not feasible due to the limitation of host or network
resources. Therefore, facilitating effective selection of MTD technology has become
extremely important in real-time defense. Some existing studies have formulated this
problem as a game between the defender and attacker.
Vadlamudi et al. [Vadlamudi, Sengupta, Taguinod et al. (2016)] used the Bayesian
Steinberg game to formalize the attack-defense process specifically based on Web
platforms to determine an optimal mixed policy. The empirical results showed that the

Strategy Selection for Moving Target Defense in Incomplete Information Game 765

technique could effectively identify the most critical vulnerabilities and most sensitive
attack types. In Steinberg game, the defender knows the attacker’s reward function, but
this is practically difficult to achieve. Sun et al. [Sun, Li, Xiong et al. (2018)] regarded
the network security as a zero-sum multi-objective game. They combined Pareto
optimization and Q-learning methods to determine the most harmful attacks and find the
best defense strategy against an attack. Manadhata [Manadhata (2013)] presented a two-
player stochastic game model to determine an optimal MTD strategy. The defender could
choose the optimal strategies to mutate using the concept of the Nash equilibrium.
Unfortunately, Manadhata just put forward the theoretical method, and there is no
experimental verification. In addition, they did not consider the accuracy of the
observation of the attacker's actions. Lei et al. [Lei, Ma and Zhang (2017)] modeled the
MTD confrontation as a Markov game (MG-MTD). In this game, the attacker and the
defender considered the cost and benefit during the strategy selection, and the cost and
benefit could be converted to change the attack surface [Manadhata and Wing (2011)]
and the exploration surface. Maleki et al. [Maleki, Valizadeh, Koch et al. (2016)]
proposed a Markov model-based framework for MTD analysis. It was proved that the
defense was effectively improved when multiple MTD schemes at different layers of the
software stack were combined. He et al. [He, Dai, Ning et al. (2015)] proposed an
algorithm that combined conventional reinforcement learning with a Bayesian-type
identification procedure for IDS configuration. A type identification was conducted by
analyzing the actions of the intruder and then updating these using Bayes’ formula. Next,
an optimal configuration was selected based on the type of intruder. The results showed
that this method can identify the intruder type with high accuracy and provide an
effective IDS configuration with a given set of reward matrices.
The discussion above indicates that certain achievements have been made in the domain
of defense strategy selection. Unfortunately, most of these studies assumed that both the
defender and the attacker have the complete information concerning the opponent. In fact,
the defenders have limited information regarding the attackers in terms of accurate intent
and reward.
Yang et al. [Yang, Niu and Peng (2017)] regarded the incomplete information game as a
blind confrontation. They established a channel model that could transform “the attacker
or the defender wins one time” to “one bit is transmitted successfully in the channel”.
Chung et al. [Chung, Kamhoua, Kwiat et al. (2016)] proposed the Q-Learning to learn the
opponent’s action and make a proper decision in cases that the defender had limited
information concerning the attacker’s reward and strategies. In terms of performance,
Naive-Q Learning outperforms the Minimax-Q Learning. He et al. [He, Dai and Ning
(2015)] proposed two algorithms in which the defender can learn and adapt faster in
unknown dynamic environments by exploiting the private local information of the
environment, which is unknown to the attacker. To accelerate the speed of convergence
and avoid the local optimum, Lin et al. [Lin, Wang, Han et al. (2009)] proposed an
improved Q-Learning algorithm that combined the Q-learning algorithm, truncated TD
estimation and simulated annealing algorithm into a military chess game. The results
show that the improved Q-learning converged faster than the simple Q-learning and that
it can avoid suboptimum and repeated learning. Sandholm [Sandholm (2015)] abstracted
the original game as a similar game. Then, the abstracted game was solved using Nash

766 CMC, vol.62, no.2, pp.763-786, 2020

equilibrium and mapped back to the original game. Nguyen et al. [Nguyen, Alpcan and
Basar (2008); Nguyen, Alpcan and Basar (2009)] viewed the security game as a fictitious
play game. The authors analyzed the convergence of the players’ strategies; however,
these strategies have not been applied yet. Hu et al. [Hu, Liu and Zhang (2018)]
transformed the uncertainty of the game characteristics between both sides of the attacker
and defender to the uncertainty of each other’s type. However, the attacker’s reward is
considered to be a fixed value in the article, and the authors did not consider the
inaccuracy of the observation.
It is common for researchers to apply the Reinforcement Learning algorithm, or an
improved method to cope with the incomplete information game. These algorithms rely
on observing the actions of the opponent. However, the accuracy of observations is
always ignored, leading to a reduction in the practicality of the proposed methods. In
addition, these methods are only applied to the general attack defense, and there is no
research on the application of the incomplete information game to MTD. In this study,
the interaction between a defender and an attacker is viewed as a two-player incomplete
game, which aims to maximize the strategic reward by selecting optimal strategies for the
defender without exceeding the limitations of resources. To solve the problem of
incompleteness, the defender simulates the distribution of the attacker’s attack strategies
through the historical knowledge, and the reward of attack is corrected through the
observation matrix, which made the optimal strategy selection more practical. In terms of
the optimal strategy selection, the Nash-Q learning algorithm is applied in MTD for the
first time. Further, the experimental results demonstrated the possibility of applying
Nash-Q learning to effectively learn an opponent’s behavior and make a proper decision.

2 Attack model
This section provides a detailed description of the two sides of the security game in Web
applications and establishes an interaction model between the attacker and the defender.
On one hand, the defensive party, usually a Web system administrator, is responsible for
managing and securing applications. On the other hand, the attacker is a malicious
opponent who attempts to compromise the Web application and obtain sensitive data
available in the servers.
In the attack model, Web applications have different attack surfaces. Therefore, the
attacker can use different attacks to attack the targets.
As shown in Fig. 1, attackers can reach different targets through different types of attack.
On the defensive side, the defender can choose different system configurations to change
according to the attack types. It should be noted that the chosen defense method is not
only capable of defending against one type of attack. It may be able to defend against
different attacks, and it may have different defense effect. For example, changing the
database can protect against reconnaissance attacks, as well as SQL injection attacks, but
it is more effective for SQL injection attacks. Therefore, the defender needs to select the
most effective mutation element to transform according to the type of attack.

Strategy Selection for Moving Target Defense in Incomplete Information Game 767

Malicious
Attacker

SQL Inject

DDoS

Reconnaissance

XSS

IP1, IP2, IP3, …, IPn

Command Inject

File Upload

System
Information

System Resource

Sensitive Data

Defender

Port1, Port2, Port3, …, Portn

Proxy1, Proxy2, Proxy3, …, Proxyn

MySQL, Oracle, …, Access

PHP, JAVA, C++, …, ASP

Windows, MAC, Unix, …, Linux

MAC1, MAC2, MAC3, …, MACn

Instruction Set1, Set2,… , Setn

Attack TypeSystem Configuration

Figure 1: Mapping relationship between the attacker and defender in Web applications

In the context of attackers, a Web attack is any type of offensive maneuver that targets
databases, infrastructures or networks. Web attacks mainly include SQL injections, XSS,
Trojan Horses, reconnaissance, DDoS and so on. These attacks attempt to expose, alter,
disable, destroy, steal or gain unauthorized access to a WEB application. For example, a
Distributed Denial of Service (DDoS) attack poses a constant threat to Web services as they
may critically deteriorate the service performance or cause the complete shutting down of a
website, even if for a brief time. The purpose of DDoS is to consume the target’s bandwidth,
CPU or service resources. The SQL injection is a code injection technique that inserts
nefarious SQL statements into an entry field for execution (e.g., to dump the database
contents to the attacker). An XSS enables attackers to inject client-side scripts into web
pages viewed by other users; subsequently the attacker can gain session cookies maintained
by the browser on behalf of the user. Currently, some sophisticated technologies exist
[Boyd, Kc, Locasto et al. (2010); Faghani and Nguyen (2013); Simpson, Shirazi,
Marnerides et al. (2018)] to detect and defend against these attacks. However, the use of
these technologies is limited and they cannot defend against unknown attacks.
In contrast with the monogamous and passive attributes of traditional defense methods,
MTD keeps transforming the resource vulnerabilities of the protected systems by
randomly shifting the configuration and the status of network components to deceive and
confuse the attackers.
There are many configurations that can be shifted by the defender, such as the IP address,
port, databases, MAC, and operating system. Different configurations can prevent
different attacks. For example, the use of random IP addresses and ports can disrupt the
reconnaissance activities; they can also defend against DDoS attacks and provide certain
defense against worm attacks. Replacing one or more proxies and remapping clients to
proxies can mitigate DDoS and reconnaissance attacks. When the defender mutates the
database and the implementation language, the efforts of the attackers may increase
considerably to launch successful SQL inject attacks. It can be seen that a configuration

768 CMC, vol.62, no.2, pp.763-786, 2020

can defeat a variety of attacks, but the defense effects are different. The simplest way to
ensure service security is to transform all configurations at the same time; however, this
strategy is unrealistic owing to the limited system resources. As a result, the defender
must select an optimal defense configuration according to the attack type.

3 MTD confrontation model based on game theory
Game theory is the study of mathematical models of conflict between intelligent rational
decision-makers. Game theory describes a game by specifying the players involved in the
game, the order in which the players take actions, the possible actions of the players, each
player’s knowledge of the previous actions taken and each player’s knowledge about the
reward function [Liang and Xiao (2013)]. In game theory, a player’s strategy is any of the
actions the player can choose in a setting in which the reward depends on not only the
player’s own actions but also the action of the opponent. A player’s strategy will
determine the action that the player may adopt at any stage of the game.
During an attack process, a malicious intruder chooses an action among a set of possible
actions at each internal step of the process. Likewise, the defender needs to arrange some
plans to thwart the attack. In practical cases, the security resources of the system are
limited. These limited resources must be allocated and scheduled efficiently to avoid
predictability. Fortunately, computational game theory can build decision-aids for
realizing the allocation of efficient security resources.
In this study, the interactions between an attacker and a defender are modeled as a two-
player stochastic game. It is noted that the game theory assumes that each player is
rational. This means that each player aims to choose the best strategy that can bring the
greatest benefit. As shown in Fig. 2, the game is played in a sequence of stages. At the
beginning of each stage, the game is in an initial state nS . The players select actions
from the defend set and attack set, and each player receives a reward that depends on the
current state and the chosen actions. Next, the game moves to a new state +1nS . The
procedure is repeated at the new state and continues for a finite or infinite number of
stages. The total reward for a player is often taken to be the discounted sum of the stage
rewards or the limit inferior of the averages of the stage rewards.

Figure 2: MTD confrontation model

Strategy Selection for Moving Target Defense in Incomplete Information Game 769

In the MTD confrontation model, the game can be constructed as follows:
Definition: The MTD confrontation model based on a game is a seven-
tuple, , , , , , , N S A D RA RD P< > ; these terms are the basic elements used to describe a game.

(1) { }= ,A DN N N is the player set in the MTD confrontation model, which is assumed to
contain only two players; the malicious intruder AN and the defender DN .

(2) { }1 2 3, , ..., kA A A A A= is the action set of the attackers. It includes k types of attacks.
In each state, attackers can select one action from A to launch. These attacks are
independent of each other.
(3) { }1 2 3, , ..., lD D D D D= is the action set of defenders. There are l types of defending
methods. In this MTD confrontation model, different defensive actions represent different
MTD techniques. Each MTD technology can defend against one or more attacks with
different defense effects. For example, the MTD technology based on proxy mutation can
defend against scanning attacks and DDoS attacks, and the proxy mutation provides
better defense against the scanning attacks than against the DDoS attacks. In addition,
due to different resource allocations, the same defensive action has different defensive
effects in different states.
(4) { }1 2 n, ,...,S S S S= is the set of system states. Each state contains all the defensive
actions, but the defense focus of these states is different. The system resources allocated for
defense actions in different states are different. This implies that different states are targeted
for different attacks. For example, the defense focuses of state nS is a DDoS attack and
that of state 1nS + is an SQL injection attack. In state nS , the system allocates a large
number of port resources for defense, and in state 1nS + , the system allocates a large amount
of database resources for defense. In contrast, state nS has a better defense against DDoS
attacks than state 1nS + , while state 1nS + is more effective against SQL injection attacks.
Although each state can defend against all attacks, the effectiveness of the defense is not
the same. Due to the limited resources, defenders can only choose one defensive action in
each state. Therefore, the defender should choose the appropriate state and defense action.
Further, the state transforms constantly according to the confrontation of the defender and
intruder with a certain probability.
(5) RA represents the reward function for the attackers. After the attacker has taken action
in the game, he/she will receive a negative or a positive return, and this return is his/her
reward. However, in an actual scenario, both sides of the MTD confrontation model are
not aware of the reward matrix of the other side. This study focuses on methods to
determine the reward of the attacker.
(6) RD represents the revenue of the defensive side. When a defender performs an action,
the action may benefit the defender. From the above introduction, the damages caused by
the same attack may be different in different system states. Hence, the benefit of the same
defense method is different in different system states. It is worth noting that the benefit of
the defender will be different even in the same state.

770 CMC, vol.62, no.2, pp.763-786, 2020

(7) { }()(| , ,) , , ,j i k l i j k lP P S S A D S S S A A D D= ∈ ∈ ∈ is the system state transition

probability, where (| , ,)j i k lP S S A D denotes the possibility of system state transition from

iS to jS when the defender takes action kA and attackers launch lD . The transition of
the network state occurs in the process of occurrence of different confrontation phases.
Based on the MTD confrontation model, the selection algorithm is designed as described
in the following section.

4 Optimal strategy selection algorithm
In an offensive and defensive game, both sides of the game are rational, and players will
choose strategies in response to other players’ strategies to maximize their reward. In
order to solve this security game, the Nash-Q learning algorithm was used to learn and
decide the optimal policy of the defenders.

4.1 Reward quantification
4.1.1 Reward of attacker
In a security game, if the reward matrix of both players is known to each other, players
can compute the set of Nash equilibria of the game and play one of these strategies to
maximize their expected gain. However, this assumption is generally not practical.
Although it is impossible to determine the opponent’s reward matrix in advance, it is
possible to observe the actions performed by the opponent. Therefore, the rewards of the
opponent can be evaluated based on the observed actions.
Let ()iv j indicate the Boolean value corresponding to the attacker performing action i in
state jS . If the attacker takes action i in state j , then ()iv j is equal to 1; otherwise

()iv j is equal to 0. Hence the frequency of attack action i observed after t confrontation
times can be expressed as:

0
() (()) /

t

i
j

q i v j t
=

= ∑ (1)

where
0

())
t

i
j

v j
=
∑ represents the number of times action i is executed in the previous t

states. The observed frequency depends on the observation of the attacker’s actions.
However, these observations are not perfect, since a false positive probability always exists.
We define DO as the observation matrix of the defender, this matrix represents the
probability that a defender recognizes attack action m as attack action n , and it satisfies

1
k

m
n

m
o =∑ .

Strategy Selection for Moving Target Defense in Incomplete Information Game 771

1 1 1
1 2
2 2 2
1 2

1 2

k

k
D

k k k
k

o o o
o o o

O

o o o

 =

Let () () () ()1 , 2 , 3 , ,DF q q q q k= be the observed frequency of the defender and

() () () ()= 1 , 2 , 3 , ,DF q q q q k

 be the empirical frequency. The correspondence

between DF and DF can be expressed as

D D DF O F= ∗ (2)
Hence, the empirical frequency can be computed by

-1
D D DF O F= ∗

 (3)
By counting the empirical frequency of the attacker’s actions, it can be considered that a
higher action frequency corresponds to a greater reward for the action. This is because
the attacker always chooses the action that can maximize the reward to attack. The
reward of the attacker depends on the damage of attack and the action taken by the
defender. The damage of nA is defined as ()nDM A . Different types of attacks lead to
different damage to the target. For example, the scan attack obtains only the information
of the target, while the SQL injection attack can obtain the administrator's username and
password, or even the administrator privileges. The damage of SQL injection attack is
greater than that of the scan attack, that is, () ()DM Scan DM SQLI< . As described in the
previous section, different configurations have different defense effects against different
attacks in different states. Let (),j m nD Aη represent the defense effect of defense action

mD against attack nA in state j . When the attack is completely blocked, (), 1j m nD Aη = .

When the defense is completely invalid, (), 0j m nD Aη = , and in other cases,

()0 , 1j m nD Aη< < . Note that it is unrealistic to completely block an attack; the goal is to
improve the defense as much as possible. Thus, the attacker’s reward in a different state
can be expressed as:

(), , () * ()*(1 (,))j n m n j n mRA S A D DM A q n A Dη= − (4)

where ()q n represents the empirical frequency of the attack nA , and 1 (,)j n mA Dη−
represents the proportion of benefit that the attacker can obtain.

4.1.2 Reward of defender
The reward of the defender depends on the type of attack and the state. However, the
defender’s observation of the attack is inaccurate. Thus, the reward of the defender in
state j can be expressed as

772 CMC, vol.62, no.2, pp.763-786, 2020

(), , () * * (,)n
j n m n n j n mRD S A D DM A o A Dη= (5)

where ()nDM A represents the hazard of the observed attack. n
no is the element on the

diagonal in the observation matrix DO , which indicates the probability that the defender
accurately identifies the attack nA . (,)j n mA Dη represents the defense effect of mD on

nA in state j .

4.2 Nash-Q learning algorithm
In the Nash-Q learning algorithm, the Q-function for any individual player becomes

(, ,)Q S D A rather than the single-agent Q-function (,)Q S A or (,)Q S D . Therefore, the
optimal quality function for the defender is defined as

1

1 1 +1 +1(, ,) (, ,) (| , ,) (, ,)
j

D A D
j n m j n m j j n m j j j

S S
QD S A D RD S A D P S S A D V Sβ π π

+

+ +
∈

= + ∗ ∗∑ (6)

where (, ,)j n mQD S A D represents the total expected discounted reward for the defender

when the defender takes action mD and the attacker takes action nA in state jS and all
players follow the Nash equilibrium from then on. β represents the discount factor.

+1
A
jπ and +1

D
jπ represent the Nash equilibrium strategy of the attacker and defender in state

+1jS , respectively. 1 +1 +1(, ,)A D
j j jVD S π π+ represents the optimal value function for the

defender in the next state 1jS + and it can be represented as

1 +1 +1 1 1(, ,) ((, ,), (, ,))A D D
j j j j jVD S NASH QD S A D QA S A Dπ π+ + ∗ ∗ + ∗ ∗= (7)

where ((), ())DNASH QD QA in Eq. (7) represents the reward of the defender under the
Nash equilibrium. D∗ and A∗ represent the actions taken by both sides of the game under
the condition of Nash equilibrium.
Similar to the defender, the optimal quality function (, ,)j n mQA S A D and value function

1 1 1(, ,)A D
j j jVA S π π+ + + for the attacker are defined as

1

1 1 1 1(, ,) (, ,) (| , ,) (, ,)
j

A D
j n m j n m j j n m j j j

S S
QA S A D RA S A D P S S A D VA Sβ π π

+

+ + + +
∈

= + ∗ ∗∑ (8)

1 1 1(, ,) ((, ,), (, ,))A D A
j j jVA S NASH QD S A D QA S A Dπ π+ ∗ ∗ + ∗ ∗ + ∗ ∗= (9)

Next, the Nash equilibrium strategies A
jπ and D

jπ can be written as

arg ((, ,), (, ,))D D
j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗= (10)

and
arg ((, ,), (, ,))A A

j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗= (11)

It is apparent that if a defender wants to choose a defense strategy that is consistent with the

Strategy Selection for Moving Target Defense in Incomplete Information Game 773

Nash equilibrium, the defender must know not only his/her quality function, but also the
quality function of attacker. Therefore, after each confrontation, the state transfers from jS
to +1jS , and both sides of the game need to update their quality functions based on the
observed actions and rewards respectively. Thus, the updated quality functions become

1 1 1

'(, ,) (, ,) *[(, ,)

 * (, ,) (, ,)]
j n m j n m j n m

A D
j j j j n m

QD S A D QD S A D RD S A D

VD S QD S A D

α

β π π+ + +

= + +

−
 (12)

1 1 1

'(, ,) (, ,) *[(, ,)

 * (, ,) (, ,)]
j n m j n m j n m

A D
j j j j n m

QA S A D QA S A D RA S A D

VA S QA S A D

α

β π π+ + +

= + +

−
 (13)

where α represents the learning rate. The updated strategies then become

' arg ('(, ,), '(, ,))D D
j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗= (14)

' arg ('(,), '(,))A A
j j jNASH QD S A D QA S A Dπ ∗ ∗ ∗ ∗= (15)

A completely specific version of the algorithm is given as follows.
Algorithm 1: Algorithm of Optimal Defense Strategy Selection
Input: Attack action A , Empirical frequency DF , Defense action D

Output: optimal defense strategy π
1. Initialization:
2. Let 0QA = , 0QD = , 0VD = , 0VA = , 0j ←

3. Initialize(state 0S)

4. Choose Action:
5. if random() < explor then

6. return Random
7. return D

jπ

8. end if
9. Learn:
10. Update(DF),Update(RA)

11. System State 1j jS S+ ←

12. Update ('QD), Update('QA), Update('Djπ),Update('Ajπ)

13. 1j j+ ←

In this algorithm, parameter explor controls how often the agent will deviate from its
current policy to ensure that the state space is adequately explored.

774 CMC, vol.62, no.2, pp.763-786, 2020

5 Experiments and analyses
5.1 Experimental environment
In this study, the experiments are simulated and computed using Python and MATLAB.
The experimental environment includes Python2.7 and Virtual Machine with Ubuntu
16.04 and 8 GB memory, MATLAB R2017b and a server with Windows 10 and Intel
Xeon E5-2620 CPU and 32 GB memory.

5.2 Initializing parameters
In this experiment, the assumption is that the attacker can launch three different attacks

1 2 3, ,A A A and the defender can choose one of the actions from 1 2 3, ,D D D to defend. The
action information of each is given in Tab. 1.

Table 1: Set of Actions

Attacker Defender

1A : Reconnaissance 1D : IP Address

2A : SQL Inject 2D : Database

3A : Trojan 3D : Operating System

The damages of different attacks are different, and the damage ()nDM A can be divided
into three levels: high damage, medium damage and low damage. The values of the high,
medium, and low damage are 20, 10 and 5, respectively. Based on experience, the
degrees of damage of the SQL injection attack and Trojan attack are high, and the degree
of damage of the reconnaissance attack is low. In addition, the effectiveness of the
defensive actions against the attack actions can be divided into five levels
{ }1, 2, 3, 4, 5η η η η η . When 1 0η = , the defensive action has no effect on the attack, and

5 1η = indicates that the defensive action can completely defend against the attack,
however, this scenario is unrealistic. Then, we assign 4η , 3η and 2η values of 0.75,
0.5 and 0.25, respectively.
The system can be in one of three states, 1 2 3{ , , }S S S S= . Each state contains all defensive actions,
but the mutating ranges and periods are different. 1 {(c ,10),(2 ,60),(2 ,60)}S B lass DB SYS=
indicates that a defender can select a new IP address from the B class IP address, and the
mutating period is 10 seconds; (2 ,60)DB indicates that the mutant element is Database
type, the value range is 2 and its period is 60 seconds. When the defender chooses to mutate
the operating system in state 1S , (2 ,60)SYS indicates that two operating systems must be
changed every 60 seconds. Analogously, 2 {(c ,60),(4 ,30),(2 ,60)}S B lass DB SYS= and

3 {(c ,60),(2 ,60),(4 ,30)}S B lass DB SYS= . It can be seen that the three states have
different defensive priorities. 1S mainly defends against reconnaissance attack, 2S mainly
defends against SQL Injection attack, and 3S mainly defends against Trojan attack.

Strategy Selection for Moving Target Defense in Incomplete Information Game 775

Therefore, let 1 1 1 2 2 2 3 3 3(,) (,) (,) 4A D A D A Dη η η η= = = ; the other defense efficiencies are
determined depending on the ratio of the available resources. For example, the IP resource
in 1S is six times that of 2S . Therefore, the defense effect against Reconnaissance attacks
in 1S is also six times that of 2S , that is, 1 1 1 2 1 1(,) 6* (,)A D A Dη η= . Thus, the defense
effects in different states are as presented in the following tables.

Table 2: Defense effects in 1S

Defensive
actions

Attack actions
A1 A2 A3

D1 0.75 0 0
D2 0.125 0.1875 0
D3 0.1875 0 0.1875

Table 3: Defense effects in 2S
Defensive
actions

Attack actions
A1 A2 A3

D1 0.125 0 0
D2 0.5 0.75 0
D3 0.1875 0 0.1875

Table 4: Defense effects in 3S
Defensive
actions

Attack actions
A1 A2 A3

D1 0.125 0 0
D2 0.125 0.1875 0
D3 0.75 0 0.75

The frequency of attack actions DF can be continuously updated through observation. As
a result, the reward of the attacker in each confrontation process can be obtained using Eq.
(4). Besides, the transition probability between the states also depends on the defense
effect of the different states. The system always tends to shift to a state with a satisfactory
defense effect. For example, when the attacker adopts nA and the defender adopts mD ,
the defense efficiencies in the three states are 1(,)n mA Dη , 2 (,)n mA Dη , 3 (,)n mA Dη .
Therefore, the transition probability can be expressed as

3

1

(,)
(| , ,)=

(,)

j n m
j i n m

c n m
c

A D
P S S A D

A D

η

η
=
∑

 (16)

776 CMC, vol.62, no.2, pp.763-786, 2020

According to Eq. (5), the reward of a defender also depends on the observation matrix,
and the observation matrix depends on the accuracy of the detection device, such as IDS.
However, the detection of attacks is not the focus of this paper. The observation matrix of

the defender is set as
0.6 0.1 0.05
0.2 0.8 0.05
0.2 0.1 0.9

DO

 =

.

5.3 Algorithm comparisons and analyses
The numerical results presented in this section are used to validate the effectiveness of the
algorithm of the optimal strategy selection. In the experiments, three different policies for
defending were adopted: the Nash-Q learning algorithm, Minimax-Q learning algorithm
and Naive-Q learning algorithm. In each learning algorithm, the defender was trained
against a Nash-Q learning, Minimax-Q learning, and Naive-Q learning opponent. The
performance of different algorithms is compared and discussed in the following section.

 (a) (b)

 (c)

Figure 1: Results for different policies against the Nash-Q learning attacker with
=0.9explor and =0.02 =0.9α β， , for attacker and =0.02 =0.9α β， for the Nash-Q

defender; =1 =0.9, 0.9984decayα β =， for the Minimax-Q defender and

Strategy Selection for Moving Target Defense in Incomplete Information Game 777

=0.02 =0.9α β， for the Naive-Q defender, (a) Accurate defense time for each defender,
(b) Accumulated reward for each defender, (c) Accumulated reward for attacker against
different defender

 (a) (b)

 (c)

Figure 4: Results for different policies against the Minimax-Q learning attacker with
=0.9explor and =1 =0.9, 0.9984decayα β =， for attacker and =0.02 =0.9α β， for the

Nash-Q defender; =1 =0.9, 0.9984decayα β =， for the Minimax-Q defender,
=0.02 =0.9α β， for the Naive-Q defender, (a) Accurate defense time for each defender,

(b) Accumulated reward for each defender, (c) Accumulated reward for attacker against
different defender

778 CMC, vol.62, no.2, pp.763-786, 2020

(a) (b)

(c)

Figure 5: Results for different policies against the Naive-Q learning attacker with
=0.9explor and =0.02 =0.9α β， for attacker and =0.02 =0.9α β， for the Nash-Q

defender; =1 =0.9, 0.9984decayα β =， for the Minimax-Q defender, =0.02 =0.9α β， for
the Naive-Q defender, (a) Accurate defense time for each defender, (b) Accumulated
reward for each defender, (c) Accumulated reward for attacker against different defender

Fig. 3(a) showed the accurate defense time when the attacker was trained via the Nash-Q
learning and the defender was trained using different policies. An accurate defense
indicated a situation in which the defender selected the best defense strategy. For
example, when the attack was a SQL injection attack, the defender chose the database to
make a mutation. When the attack was a Trojan attack, the defender should choose the
operating system to perform a mutation. It could be clearly seen from Fig. 3(a) that when
the defender adopted the Nash-Q learning strategy, the time required to attain the
accurate defense was the maximum. When the defenders adopted Minimax-Q learning
and Naive-Q learning, the results corresponding to the defense were inferior to those of
Nash-Q learning, and the results for the Naive-Q learning were the worst.
This situation can be explained as follows: When a defender adopted the Nash-Q learning
algorithm, the defender maintained a model of the attacker’s Q-function and used this

Strategy Selection for Moving Target Defense in Incomplete Information Game 779

information to update his/her own Q-function. Both the attacker and defender acted based
on the equilibrium in each state. Moreover, the attacker’s Q-function depended on the
actions of the attack, as observed by the defender. When the defender was trained by the
Minimax-Q learning algorithm, the defender endeavored to maximize his/her reward
while the attacker strived to minimize it. Consequently, the defender’s minimum
expected reward should be as large as possible. Nevertheless, when the attacker was
trained by the Nash-Q learning algorithm, the actual action chosen by the attacker might
not have been the action that could minimize the reward of the defender. Since Minimax
mainly solved the strategic problems of a dynamic game, the defender only obtained the
information concerning his/her action and the minimum reward that he/she could acquire.
The defender’s strategy was a probability distribution over the actions. In contrast to the
one trained by Minimax-Q learning, the defender trained by Nash-Q learning can obtain
more accurate information of the attacker’s actions and take more accurate defense
measures; thus, their result was more accurate. However, if the defender was trained by
the Naive-Q learning algorithm, the accurate defense time of convergence was less than
10 times. This was because the Nash-Q learning algorithm can provide more information
about the attacker than the Naive-Q learning algorithm can, leading to the formulation of
a more accurate confrontation model. Naive-Q Learning cannot provide the information
about the attacker that is required to formulate a complete confrontation model, and the
defender adopts defensive strategies depending on his/her own past actions.
Consequently, when the Naive defender defended a rational attacker such as a Nash-Q
defender, Naive-Q learning may misguide the defender to blindly learn the worst-case
policy and thus lead to performance loss.
Fig. 3(b) and Fig. 3(c) demonstrated the accumulated rewards of the defenders and
attackers in every 100 confrontations, respectively. The defense reward and attack reward
correspond to the time of accurate defense. As the accurate defense time increased, the
defender’s reward increased and the attacker’s reward decreased, and, vice versa.
Fig. 4 and Fig. 5 showed the results corresponding to the attackers trained by the
Minimax-Q learning algorithm and the Naive-Q learning algorithm. Fig. 4 that the
defensive result was the best when the defender adopted the Nash-Q learning algorithm.
In Fig. 4(b), when the timeslot was greater than 2,000, the defender’s reward gradually
decreases. This was because of the presence of uncertainty in the learning process, and
because defenders could not ensure that every defensive effect was better than the
previous one. In particular, the accumulated defense of the Naive-Q was similar to the
Minimax-Q, but the accumulated attack reward obtained during the entire confrontation
was less than that for Minimax-Q. This was because the attacker’s goal was to maximize
his/her reward as a feature of Minimax.
When the attacker was a Naive-Q learner, the defenders can perform effective defense
when the defenders adopted Nash-Q learning. With the increased in the number of
confrontations, the Nash-Q learning defender achieved a higher reward and this would
reduce the attacker’s reward to the lowest. When the defender also adopted the Naive-Q
algorithm, the average accurate defense time was the highest, but the defender’s defense
reward was lower than that for a Nash-Q learning defender. By observing the specific
experimental process, it was found that although Naive-Q learning had a higher defense

780 CMC, vol.62, no.2, pp.763-786, 2020

success rate, it was not in the most appropriate state. For example, when an attacker
launched a Trojan attack, the defender choosed to change the operating system, but the
current state was instead of. Therefore, despite the success of the defense, the defender gets
less reward than the Nash-Q learning defender. Besides, when the defender adopted
Minimax-Q learning, the number of accurate defenses was the least and the defense reward
was the least; however, the attacker received a lower reward than the Naive-Q learner did.
The experimental process showed that the attacker always performed a reconnaissance
attack in this confrontation, and the reconnaissance attack had the lowest damage.
To illustrate the effectiveness of return simulation, we calculated the reward of attack
without simulation. Similar to Hu et al. [Hu, Liu and Zhang (2018)], the rewards became
some fixed value. Then Eq. (4) becomed

(), , () * (1 (,))j n m n j n mRA S A D DM A A Dη= − (17)

The results of the comparison between the without simulation and the method presented
in this paper are as follows:

(a) (b)

 (c)

Figure 6: Results for different policies against the Nash-Q learning attacker with
=0.9explor and =0.02 =0.9α β， for attacker and =0.02 =0.9α β， for the Nash-Q

Strategy Selection for Moving Target Defense in Incomplete Information Game 781

defender with reward simulation, =0.02 =0.9α β， for the Nash-Q defender without
reward simulation; (a) Accurate defense time for each defender, (b) Accumulated reward
for each defender, (c) Accumulated reward for attacker against different defender

Fig. 6(a) showed the accurate defense time when the attacker was trained via the Nash-Q
learning and the defender was trained via different Nash-Q learning. It can be seen from
the experimental results that although defenders all used Nash -q algorithm to select
defense strategies, the method proposed in this paper can select more accurate defense
strategies in the defense process. This was because it is inaccurate to determine the
attacker’s reward only by the observed actions. As described in Section 4.1.1, due to the
presence of false positives, the defender often has errors in the observation of the
attacker's actions. In addition, the attacker's reward will also be affected by the previous
attack experience. The more times an attack type was selected, the higher the reward of
this attack may be. On the contrary, if the number of times selected was very small, the
reward of the attack will be very low. When the number of confrontations exceeded 1000,
the accurate defenses time was reduced. This was caused by the uncertainty of the
NASH-Q algorithm in the learning process. As can be seen from the results, although the
accurate defenses time decreases, the defense effect was still better than that when the
attack rewards were not simulated. Fig. 6(b) and Fig. 6(c) showed the return of defenders
and attackers, respectively. The comparison results showed that the proposed method in
this paper can make the defender get higher reward while effectively limiting the
attacker's reward.
Through the above experiments, it could be concluded that Nash-Q Learning performs
well against irrational attackers and proved that it was necessary to select defense
methods by simulating the reward of attackers in the incomplete information game.

5.4 Complexity analyses
For the Nash-Q Learning algorithm, the main operation was traversing the Nash matrix
and updating the empirical frequency of the attacker’s action. The size of the matrix
depended on the number of defender actions and attacker actions. Therefore, the
complexity of the Nash-Q learning in each confrontation was (*)O K L , where L
indicated the number of actions of the defender and K indicated the number of actions of
the attacker. The complexity of the entire process was (* *)O N K L , where N denoted
the number of confrontations. For the Naive-Q learning algorithm, the main operation
was traversed and updated the quality function of each player, its complexity was also

(* *)O N K L . When the defender adopts the Minimax-Q learning algorithm, the main
operation was to solve the linear programming problem, and the complexity of this
algorithm in each confrontation is (2)LO . The complexity of the entire process was

(*2)LO N . It could be concluded that the complexity of the Minimax-Q learning
algorithm was higher than that of the other two algorithms.

5.5 Burden analyses
In the experiments mentioned above, only one mutation element was selected for each

782 CMC, vol.62, no.2, pp.763-786, 2020

confrontation due to the limited resources of the system. However, the case in which
defenders chose multiple mutation elements simultaneously must be evaluated. If
multiple elements were mutated at the same time, the system may be more secure, but the
burden on the system increased accordingly. The experiment discussed in the following
paragraph was performed to investigate the relationship between the system burden and
the number of mutant elements. In this experiment, both the defender and the attacker
adopted the Nash-Q learning to choose their own strategies.
An Apache server was set up in a laboratory environment. This server may suffer from
reconnaissance attacks, SQL injection attacks and Trojan attacks. The attacks could be
prevented by changing the IP address, database type, and operating system type. Further,
the page loading time (PLT) was measured to examine the time overhead of web
applications when the server changes these elements. PLT was the time interval needed to
load the complete page on the browser.

Figure 7: Reward of the defender when the defender selects single element and
combinatorial-elements

Figure 8: PLT when the defender selects single element and combinatorial-elements Tables

Strategy Selection for Moving Target Defense in Incomplete Information Game 783

Fig. 7 showed the rewards that a defender could achieve while using single-element
mutation and combinatorial mutation. The reward of the defender was set the same as
that defined above. It is apparent that the reward obtained using the combinatorial-
elements achieved higher defensive benefits than the single element did. The average
reward when using a single element was 276, and that using the combinatorial-elements
was 456, which represented an improvement of 65%.
In this experiment, it was assumed that the transformation periods of the different elements
were the same. Fig. 8 depicted the PLT of a user accessing a web service in different defense
scenarios throughout the confrontation process. Each point in the graph represented the
average PLT against 100 runs. It could be clearly seen from the results that when an attacker
adopted combinatorial-elements, the value of PLT was greater than the PLT of the defender
using a single transformation element. The statistics showed that when the defender changed
a single transformation element, the average PLT during the entire confrontation process
was 463 ms, and the average PLT of combinatorial-elements was 655 ms.
These results indicated that although the combinatorial-elements mutation increased the
security of the system, it induced an extra average time burden of 41%. Moreover, the
page loading time will be doubled or extended even longer, which may lead to an
unpleasant user experience. In an actual defense, the transition period of different
elements was different, thus the PLT in the experiment was higher than the PLT in an
actual defense scenario; however, the overall trend was the same. The user still needed to
spend more time to load the complete page when the defender changed the
combinatorial-elements. Therefore, it was more reasonable to use a single element for
mutation to ensure the quality of user experience in the case of limited resources.

6 Conclusions
As a revolutionary defense method, MTD can reduce the information asymmetry between
an attacker and defender. Choosing the right mutation element is the key to defend
against various attacks. To solve the problem of incomplete information in the game
model, the attacker’s reward matrix was simulated by observing the attacker's action
frequency. The Nash-Q learning algorithm was used to select an optimal defense strategy.
To illustrate the effectiveness of the selected method, Nash-Q learning was compared
with Minimax-Q learning and Naive-Q learning. The results showed that when the
defender got trained by Nash-Q learning, the defensive performance was the best.
Regardless of the type of attacker, Nash-Q learning can maximize the reward of the
defender and minimize the reward of the attacker. This indicates that the theory of Nash
can reflect actual scenarios better than other theories. Furthermore, the results of the
experiments showed that when multiple mutation elements were changed simultaneously,
the performance of defense will be enhanced, but an unpleasant user experience ensues.
This study assumed that web applications will only suffer from one type of attack each
time. Thus, to the future research will address the selection of the best defense strategy to
defend against multiple types of attacks simultaneously.

784 CMC, vol.62, no.2, pp.763-786, 2020

Acknowledgement: Thanks for the valuable review comments of every expert and editor.
This paper is supported by the National Key R&D Program of China (2017YFB0802703),
the National Nature Science Foundation of China (61602052).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Boyd, S. W.; Kc, G. S.; Locasto, M. E.; Keromytis, A. D.; Prevelakis, V. (2010): On
the general applicability of instruction-set randomization. IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 3, pp. 255-270.
Chung, K.; Kamhoua, C. A.; Kwiat, K. A.; Kalbarczyk, Z. T.; Iyer, R. K. (2016):
Game theory with learning for cyber security monitoring. IEEE 17th International
Symposium on High Assurance Systems Engineering, pp. 1-8.
Duan, Q.; Al-Shaer, E.; Jafarian, H. (2013): Efficient random route mutation
considering flow and network constraints. IEEE Conference on Communications and
Network Security, pp. 260-268.
Faghani, M. R.; Nguyen, U. T. (2013): A study of XSS worm propagation and detection
mechanisms in online social networks. IEEE Transactions on Information Forensics and
Security, vol. 8, no. 11, pp. 1815-1826.
He, X.; Dai, H.; Ning, P.; Dutta, R. (2015): Dynamic IDS configuration in the presence
of intruder type uncertainty. IEEE Global Communications Conference, pp. 1-6.
He, X.; Dai, H.; Ning, P. (2015): Improving learning and adaptation in security games by
exploiting information asymmetry. IEEE Conference on Computer Communications, pp.
1787-1795.
Heydari, V.; Kim, S. I.; Yoo, S. M. (2017): Scalable anti-censorship framework using
moving target defense for Web servers. IEEE Transactions on Information Forensics and
Security, vol. 12, no. 5, pp. 1113-1124.
Jafarian, J. H.; Al-Shaer, E.; Duan, Q. (2015): An effective address mutation approach
for disrupting reconnaissance attacks. IEEE Transactions on Information Forensics and
Security, vol. 10, no. 12, pp. 2562-2577.
Jia, Q.; Sun, K.; Stavrou, A. (2013): Motag: moving target defense against internet
denial of service attacks. 22nd International Conference on Computer Communication
and Networks, pp. 1-9.
Venkatesan, S.; Albanese, M.; Amin, K.; Jajodia, S.; Wright, M. (2016): A moving
target defense approach to mitigate DDoS attacks against proxy-based architectures.
IEEE Conference on Communications and Network Security, pp. 198-206.
Connell, W.; Menasce, D. A.; Albanese, M. (2018): Performance modeling of moving
target defenses with reconfiguration limits. IEEE Transactions on Dependable and
Secure Computing, no. 99, pp. 1.
Connell, W.; Pham, L. H.; Philip, S. (2018): Analysis of concurrent moving target
defenses. Proceedings of the 5th ACM Workshop on Moving Target Defense, pp. 21-30.

Strategy Selection for Moving Target Defense in Incomplete Information Game 785

Lei, C.; Ma, D. H.; Zhang, H. Q. (2017): Optimal strategy selection for moving target
defense based on Markov game. IEEE Access, vol. 5, pp. 156-169.
Liang, X.; Xiao, Y. (2013): Game theory for network security. IEEE Communications
Surveys & Tutorials, vol. 15, no. 1, pp. 472-486.
Lin, J.; Wang, X.; Han, L.; Zhang, J.; Xu, X. (2009): The improvement of Q-learning
applied to imperfect information game. IEEE International Conference on Systems, Man
and Cybernetics, pp. 1562-1567.
Maleki, H.; Valizadeh, S.; Koch, W.; Bestavros, A.; van Dijk, M. (2016): Markov
modeling of moving target defense games. Proceedings of the 2016 ACM Workshop on
Moving Target Defense, pp. 81-92.
Manadhata, P. K. (2013): Game Theoretic Approaches to Attack Surface Shifting.
Moving Target Defense II. Springer, London.
Manadhata, P. K.; Wing, J. M. (2011): An attack surface metric. IEEE Transactions on
Software Engineering, vol. 37, no. 3, pp. 371-386.
Nguyen, K. C.; Alpcan, T.; Basar, T. (2009): Security games with incomplete
information. IEEE International Conference on Communications, pp. 1-6.
Nguyen, K. C.; Alpcan, T.; Basar, T. (2008): Fictitious play with imperfect
observations for network intrusion detection. Preprints of the 13th International
Symposium on Dynamic Games and Applications.
Hu, H.; Liu, Y. L.; Zhang, H. Q.; Pan, R. X. (2018): Optimal network defense strategy
selection based on incomplete information evolutionary game. IEEE Access, vol. 6, pp.
29806-29821.
Sandholm, T. (2015): Solving imperfect-information games. Science, vol. 347, no. 6218,
pp. 122-123.
Simpson, S.; Shirazi, S. N.; Marnerides, A.; Jouet, S.; Pezaros, D. et al. (2018): An
inter-domain collaboration scheme to remedy DDoS attacks in computer networks. IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp. 879-893.
Sun, Y.; Li, Y.; Xiong, W.; Yao, Z. H.; Moniz, K. et al. (2018): Pareto optimal
solutions for network defense strategy selection simulator in multi-objective
reinforcement learning. Applied Sciences, vol. 8, no. 18, pp. 136.
Sushil, J. (2013): Application of Game Theory and Adversarial Modeling. Moving Target
Defense II. Springer, London.
Taguinod, M.; Doupe, A.; Zhao, Z.; Ahn, G. J. (2015): Toward a moving target defense
for web applications. IEEE International Conference on Information Reuse and Integration,
pp. 510-517.
Vadlamudi, S. G.; Sengupta, S.; Taguinod, M.; Zhao, Z. M.; Doupé, A. et al. (2016):
Moving target defense for web applications using bayesian stackelberg games.
Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent
Systems, pp. 1377-1378.
Vikram, S.; Yang, C.; Gu, G. F. (2013): Nomad: towards non-intrusive moving-target
defense against web bots. IEEE Conference on Communications and Network Security,
pp. 55-63.

786 CMC, vol.62, no.2, pp.763-786, 2020

Yang, Y.; Niu, X.; Peng, H. (2017): Games based study of nonblind confrontation.
Mathematical Problems in Engineering, vol. 2017, no. 2, pp. 1-11.
Zhuang, R.; DeLoach, S. A.; Ou, X. (2014): Towards a theory of moving target defense.
Proceedings of the First ACM Workshop on Moving Target Defense, pp. 31-40.

	Strategy Selection for Moving Target Defense in Incomplete Information Game
	Huan Zhang0F , Kangfeng Zheng1, *, Xiujuan Wang2, Shoushan Luo1 and Bin Wu1

	References

