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Abstract: It is well known that Newton and quasi-Newton algorithms are effective to small 
and medium scale smooth problems because they take full use of corresponding gradient 
function’s information but fail to solve nonsmooth problems. The perfect algorithm stems 
from concept of ‘bundle’ successfully addresses both smooth and nonsmooth complex 
problems, but it is regrettable that it is merely effective to small and medium optimization 
models since it needs to store and update relevant information of parameter’s bundle. The 
conjugate gradient algorithm is effective both large-scale smooth and nonsmooth 
optimization model since its simplicity that utilizes objective function’s information and the 
technique of Moreau-Yosida regularization. Thus, a modified three-term conjugate gradient 
algorithm was proposed, and it has a sufficiently descent property and a trust region 
character. At the same time, it possesses the global convergence under mild assumptions 
and numerical test proves it is efficient than similar optimization algorithms. 
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1 Introduction 
Optimization model is one of the most important problems since it was widely used in all 
aspects [Liu, Yong, Gao et al. (2018); Liu, Chen, Ji et al. (2017); Melro and Jensen 
(2017)], where the nonsmooth mathematical model is more and more famous since it 
influences various fields and is a urgent as well as complex problem [Bonettini, Loris and 
Porta (2015); Li, Li and Yang et al. (2017); Shi, Tuan, Su et al. (2017); Zhang, Wu and 
Nguyen (2014)]. Writes and scholars paid much attention to this optimization program 
and obtained fruitful achievements. In Birge et al. [Birge, Qi and Wei (1998)], an 
algorithm on the basis of a classical proximal point was proposed and numeral test proves 
it is an effective algorithm because proximal point is helpful to simplify the process of 
calculating objective function’s value. Sagara et al. [Sagara and Fukushima (2017)] and 
Yuan et al. [Yuan, Wei and Wang (2013)] proposed a trust region algorithm that mainly 
consider the search region and radius by relevant parameters. The concept of ‘bundle’ 
was proposed, and scholars introduced bundle algorithm into solving optimization model. 
The bundle algorithm sufficiently takes full use the bundle’s information of the limiting 
variable conditions and has wide applications [Albaali, Spedicato and Maggioni (2014); 
Hall, Zimbro, Maduro et al. (2017); Luo, Tang and Zhou (2008); Kim, Um, Suh et al. 
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(2016); Xu, Zhang, Du et al. (2016)]. To small and medium scale smooth and nonsmooth 
problems, bundle algorithm is effective but fails to solve large-scale problems. Conjugate 
gradient algorithm is more and more popular because of its simplicity and high efficiency 
[Dai,  Liu,  Zhang et al. (2017); Fasi, Langou and Robert (2016); Li, Zhang and Dong 
(2016); Wang and Zhu (2016); Yuan and Sheng (2017); Yuan, Meng and Li (2016); 
Yuan and Zhang (2015); Yuan, Wei and Li (2014); Yuan (2009); Yuan and Lu (2009)] 
and wide applications (see Baggio et al. [Baggio,  Franceschini,  Spiezia et al. (2017);  
Bernaschi,  Bisson,  Fantozzi et al. (2016); Janna (2016); Liu and Weng (2016); Sarkar 
(2016); Tarzanagh, Nazari and Peyghami (2016); Zhang and Liu (2016)]). For general 
conjugate gradient algorithm, it divides into two parts: one is inexactly or exactly line 
technique, the other is search direction, thus conjugate gradient algorithm is various since 
different formulas of search technique and search direction. Conjugate gradient algorithm 
addresses not only small and medium scale smooth and nonsmooth problems, but also 
solves large scale optimization model, which avoids calculating and store complex 
matrices and information of limiting variable boundary. 
On the basis of above discussion, this paper proposes a new three-term conjugate gradient 
algorithm to solve large-scale nonsmooth optimization models. Objective algorithm has 
following perfect properties: 
1. Proposed algorithm combines steepest descent method with conjugate gradient 

algorithm by introducing a parameter into search direction. 
2. The search direction not only possesses a descent character but also has a trust 

region trait. 
3. The objective algorithm has the ability of obtaining the global convergence. 
4. The numeral test expresses the objective algorithm is superior than relevant 

optimization algorithms. 
In this paper, next section expresses the model of nonsmooth convex optimization. The 
objective algorithm was introduced in Section 3 and its outstanding characters were 
expressed in Section 4. Numeral results were introduced in Section 5 and relevant 
references were listed in Section 6. 

2 The model of nonsmooth convex functions 
Consider general nonsmooth optimization model 

( )min
nx R

v x
∈

                                                                                                               (1) 

where ( )v x  sometimes does not satisfy the property of smooth. It means that Newton 
and quasi-Newton algorithms fail to solve it because of the nonsmooth property. Thus, a 
perfect technique was named ‘Moreau-Yosida’ regularization introduce this paper into 
solving the projective model, where the main idea of ‘Moreau-Yosida’ regularization is 
objective model exchanges a new constant with the variable, so objective model is 
translated into a smooth mathematical convex model. In general, the model’s formula of 
‘Moreau-Yosida’ regularization is 
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( ) ( )
2

min
2

t xMv x v t
nt R ϕ

 − = +
 ∈                                                                                  (2)                                                                                           

where ϕ  is a positive constant, \|.\| presents the Euclidean norm. This paper denotes 
( )M

v x  as the ‘Moreau-Yosida’ regularization of objective model and similar papers 
proved it is outstanding [Wang and Zhu (2016)]. 
This paper assumes objective functions of (1) are convex and the objective model’s 
regularization has solution of ( ) ( )arg min M

tx vω = . On the basis of the mathematic 
knowledge, then obtain 

( ) ( )M x x
v x

ω
ϕ
−

∇ =                                                                                               (3) 

where ( )Mv x∇  is the objective function’s gradient function. In virtue of relevant papers, 

the ( )Mv x∇  not only satisfies the smooth property, but also its gradient function is 
Lipschitz continuous. It is easy to find that (1) and (2) are equivalent because they have 
identical solution, thus this paper mainly considers the model of (2) since it is an 
optimization model that has perfect properties.  

3 Three-term conjugate gradient algorithm 
It is well known that a wonderful optimization algorithm not only has a perfect search 
direction but also outstanding exactly or inexactly line search technique. The three-term 
conjugate gradient algorithm has seen extensive study and obtained extremely good 
theoretical results. In view of Albaali et al. [Albaali (1985); Gilbert and Nocedal (1990); 
Touati-Ahmed and Storey (1990)] on conjugate gradient methods, the sufficient descent 
condition and trust region character are crucial to the global convergence. From this, a 
famous formula for the search direction 1kd +  is expressed as follows: Zhang et al. [Zhang, 
Zhou and Li (2006)] proposed the following formula: 

1 1
1

1

1

1

0

k

T T
k k k k k

k T
k k k

k

g y d d g y
g k

d g g
g k

+ +
+

+

+

 −
− + ≥= 

 − =

                                             (4)                            

where 1k k ky g g+= − . In Nazareth [Nazareth (1977)], Nazareth proposed another search 
formula that is computed by 

1
1 1

1 1

T T
k k k k

k k k kT T
k k k k

y y y yd y d d
y d y d

−
+ −

− −

= − + + ,                                                                     (5) 

where 1yk k kg g+= − , kg is the gradient function value at the point kx and 0 1 0d d−= = . 
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3.2 Objective algorithm 
In virtue of above discussion, this paper proposes a new three-term conjugate gradient 
algorithm and the formula is 

( )
( )( ) ( )( )

{ } ( )
( )

1 1
1 1 2 2

1 2 3 1

1

max ,

TM T M
k k k k k kM

k M
k k k k k

M
k

v x y d d v x y
v x

d d y y v x

v x

β
β β

+ +
+

+ +

+

 ∇ − ∇
− ∇ += +∇


−∇

                         (6) 

where 0, 1, 2,3i iβ > =  are positive constant.  At the same time, we propose an inexactly 
line search technique of  

( ) ( ) ( )
( )[ ]2/,min 2

1

1

kkk

T

k
M

k

k

T

k
M

kk
M

k
M

ddxv

dxvxvxv

λαλα

λα

∇−+

∇+≤+
                                                              (7) 

where ( ) ( )λλγλ ,0,1,0, 1 ∈∈ , kα is the largest number of { },2,1,0| =kkγ . 

Then we list the specific algorithm (denoted as Algorithm 2.1)  
Step 1: (Initiation) Choose an initial point  

( ) ( ) ( )3,2,1,0,,0,1,0,, 10 =>∈∈ ix iβλλλγ , 

 positive constants ( )1,0∈ε . Let ( )00,0 xvdk M−∇== . 

Step 2: If ( ) ε≤∇ k
M xv , then stop. 

Step 3: Calculation kα  in virtue of (7). 

Step 4: Set new iteration point of  kkkk dxx α+=+1 . 

Step 5: Update the search direction by (6). 

Step 6: If ( ) ε≤∇ +1k
M xv  holds, the algorithm stops, otherwise go to next step. 

Step 7: Let 1+= kk  and go to Step 2. 

4 Important characteristics and global convergence 
Now we list the search direction has a trust region trait and a sufficient descent character 
without any conditions and this section lists them and expresses relevant proof. 

 Lemma 2.1:  If the search direction kd  is generated by (6), then have 

( )( ) ( ) 2

1 k
M

k

T

k
M xdxv ∇−=∇ β                                                                                 (8) 

and 
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( )k
M

k xvd ∇







+≤

2

1

2
β

β                                                                                       (9) 

holds. 
To save space, we merely list but omit its proof. The formulas of (8) and (9) express the 
algorithm has a sufficient descent character and a trust region trait. 
In the rest of this section, we express the specific process of proposed algorithm (algorithm 
2.1) and prove the existence and necessity of step length kα  in inexactly line search. 

Theorem 4.1. If Assumption (i-ii) are true, then has a constant kα  that satisfy the 
formula of (7). 
proof: To prove relevant conclusion, we introduce following function 
( ) ( ) ( ) ( )

( )[ ]2/,min 2

1 kk

T

k
M

k

T

k
M

k
M

kk
M

ddxv

dxvxvdxvv

λαλα

λααα

∇−−

∇−−+=
 

Considering sufficiently small parameter α , then has 

( ) ( ) ( ) ( )
( )[ ]

( ) ( ) ( ) 01

2/,min

1

2

1

<+∇−+=

∇−−

∇−−+=

αολλα
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kk
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dxv
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It means that exists a constant 10 0 <<α  satisfies the formula of ( ) 00 <αv . At the 

same time, the formula of ( ) 00 =v  holds. On the basis of the property of objective 
functions, we safely arrive a conclusion that exist a constant 1α  satisfies following formula: 

( ) ( ) ( ) ( )
( )[ ] 02/,min 111

111

<∇−−

∇−−+=

k
T
kkk

M

k

T

k
M

k
M

kk
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dddxv
dxvxvdxvv

λαλα
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thus the formula of 

( ) ( ) ( )
( )[ ]2/,min 111

11

k
T
kkk

M

k

T

k
M

k
M

kk
M

dddxv
dxvxvdxv
λαλα

λαα
∇−+

∇+<+
 

holds, it means that modified Armijo line search technique is well defined. 
From above discussion, the Algorithm 2.1 has a sufficient descent trait and a trust region 
character and the line search technique is reasonable and necessary, thus we express the 
theorem of global convergence. 
Assumption: 

i) the level set ( ) ( ){ }0| xvxvx MM ≤=π  is bounded. 
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ii) function ( ) 2CxvM ∈ , is bounded from below. 

In virtue of the technique of ‘Moreau-Yosida’ regularization, we arrive a conclusion that 
function ( )xvM∇  is Lipschitz continuous. It means that exists a positive constant κ   
satisfy the formula of 

( ) ( ) yxyvxv MM −≤∇−∇ κ                                                                              (10) 

Theorem 4.2. If relevant assumptions hold, the relative sequences 
{ } { }{ } ( ){ }k

M
kkk xvdx ,,, α  are generated in virtue of the Algorithm 2.1, then we obtain 

that 

( ) 0lim =∇
∞→ k

M

k
xv                                                                                                       (11) 

proof: We will prove it by contradiction. Suppose above conclusion does not hold, it 
means that exist a constant *ε  and a corresponding index *k , which satisfies 

( ) ** , kkxv k
M >∀≥∇ ε .                                                                                          (12) 

On the basis of line search technique (7), we have 

( ) ( ) ( )
( )[ ]

( ) ( ) ( ) k

T

k
M

kk
M

kkk

T

k
M

k

k

T

k
M

kk
M

kkk
M

dxvxv

ddxv

dxvxvdxv

∇−+≤

∇−+

∇+≤+

αλλ

λαλα

λαα

1

2

1 2/,min  

Then we sum above inequalities from k 0=  to k = ∞  and obtain 

( ) ( ) ( ) ( )1 0
0

k
TM M M

k k k
k

v x d v x v xλ λ α
=∞

∞
=

− ∇ ≤ − < ∞∑                                                 (13) 

It is notable that the formula of (13) express 

( ) 0lim =∇
∞→ k

T

k
M

kk
dxvα   

In virtue of (8), we obtain 

( ) 0lim 2

1 =∇−
∞→ k

M
kk

xvαβ                                                                                    (14) 

Then we divide above conclusion into two parts: 

If 0lim =
∞→ kk
α  , it means that exist an infinity index set M , such that 

0lim
,

=
∞→∈ kkMk
α                                                                                                               (15) 

In virtue of the algorithm’s process, the constant 
γ
α k  does not satisfies (7), it means that 
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( ) ( ) ( )
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dxv
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∇−+
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Considering the formulas of (8) and (9), we obtain 

( ) ( )k
M

kk
M xvdxv ∇








+≤≤∇

2

11

2
β

ββ                                                         (16) 

Thus has a positive constant 1
* λλ <  such that 

( ) ( ) ( ) ( ) 2* // k
M

kk
M

kkk
M xvxvdxv ∇−−>−+ γαλλγα  

On the basis of the mean-value theorem, the property of descent and objective function's 
continuity, there has a positive ( )1,0∈kτ  meets the demand of 

( ) ( ) ( )
( ) ( ) ( )[ ]

( ) ( ) 222

1 //

//

///

kkkk
M

k

k

T

k
M

kkkk
M

k
M

k

k
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kkkk
M

kk
M

kkk
M

dxv

dxvdxvxv

ddxvxvdxv

γακτγαβ

γατγα

γατγαγα

+∇−≤

∇−+∇+∇=

+∇=−+

Compare with above formulas, we have 

 ( )
( )21

2*
1

2
2

ββκτ
βλλβγ

α
+
−−

≥
k

k
. 

It is obvious that above conclusion contradicts with 0lim =
∞→ kk
α , thus end up with first 

part’s proof. 

If 0lim >
∞→ kk
α , then have ( ) 0lim =∇

∞→ k
M

k
xv , which contradicts with (12). Thus 

original conclusion holds, we complete the proof. 

5 Numerical results of nonsmooth functions 
Related content is presented in this section and consists of two parts: test problems and 
corresponding numerical results. To measure the algorithm’s efficiency, we compare 
Algorithm 2.1 with algorithm 1 in terms of NI, NF, and CPU on the test problems listed 
in Tab. 1, where NI, NF, and CPU express the number of iterations, the calculation’s 
frequency of the objective function, and the calculation time needed to solve various test 
problems (in seconds), respectively. Algorithm 1 is different from the objective algorithm 
in the formula of 1+kd  that was determined by (4), and the remainder of algorithm 1 is 
identical to Algorithm 2.1. 

Stopping rule: If the formula of ( ) ε≤∇ kxv  holds, the whole iteration number is 
greater than 10000 and the interior iteration frequency of step length $\alpha_k$ is 
greater than 5, then the algorithm stops. 
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Initiation: 71 −= eε , 9.0=γ , 95.0=λ  , 1.01 =λ  , 6.11 =β , 01.02 =β , 

001.03 =β . 

Dimension: 30000, 60000, 90000, 120000, 150000, 180000, 210000. 
Calculation environment: The calculation environment is a computer with 2 GB of 
memory, a Pentium(R) Dual-Core CPU E5800@3.20 GHz, the 64-bit Windows 7 
operation system and the software of FORTRAN 90. 
Other case: The uppercase letter of ‘F’ means the relative algorithm fails to solve 
corresponding problem. 
The numerical results with the corresponding problem’s index are listed in Tab. 2. Then, 
on the basis of the technique in Dolan [Dolan (2001)], plots of the corresponding figures 
are presented for two discussed algorithms. 

Table 1: The test problems 
No. Problem No Problem 
1 Chained LQ 5 Chained Mifflin 2 
2 Chained CB3 6 Chained crescent 2 
3 Chained CB3 2 7 Generalization of MAXQ 
4 Chained crescent 8 Number of active faces 

9. Nonsmooth generalization of Brown function 2 

Table 2: Numeral results 

No. Dim 
Algorithm 2.1 Algorithm 1 

NI NF CPU NI NF CPU 

1 30000 32 81 0.184750  36 108 0.227750  

2 30000 4 43 0.091375  F F F 

3 30000 18 68 0.137625  F F F 

4 30000 31 81 0.171813  39 171 0.271875  

5 30000 32 81 0.203563  36 108 0.221438  

6 30000 3 9 0.015313  4 12 0.018438  

7 30000 23 429 0.454750  243 5067 5.206563  

8 30000 32 176 0.574000  101 1581 4.106250  

9 30000 33 84 1.953688  37 111 2.396875  

1 60000 47 112 0.527188  51 139 0.641000  

2 60000 4 43 0.209938  F F F 

3 60000 18 68 0.321000  F F F 

4 60000 46 112 0.584125  54 202 0.906750  

5 60000 47 112 0.598688  51 139 0.709688  
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6 60000 4 11 0.051188  4 12 0.059500  

7 60000 24 450 0.939125  254 5298 12.881630  

8 60000 33 179 1.301687  106 1686 10.241310  

9 60000 47 112 5.320000  66 170 7.524125  

1 90000 47 112 0.702000  66 170 0.966875  

2 90000 4 43 0.308875  F F F 

3 90000 18 68 0.507375  F F F 

4 90000 46 112 0.761750  54 202 1.173063  

5 90000 47 112 0.868938  52 142 0.988250  

6 90000 5 14 0.086125  5 15 0.100188  

7 90000 24 450 1.541687  260 5424 17.023250  

8 90000 33 183 1.866562  110 1752 15.112440  

9 90000 48 114 8.018375  81 201 13.118440  

1 120000 47 112 0.920563  64 166 1.231375  

2 120000 4 43 0.389688  F F F 

3 120000 18 68 0.605063  F F F 

4 120000 47 114 1.017250  55 205 1.589687  

5 120000 48 114 1.130062  66 170 1.547562  

6 120000 3 9 0.069625  4 12 0.094938  

7 120000 24 450 1.934188  265 5529 23.471190  

8 120000 34 188 2.491688  113 1815 20.853120  

9 120000 63 145 13.644500  81 201 17.501560  

1 150000 48 114 1.196125  67 173 1.673750  

2 150000 4 43 0.512813  F F F 

3 150000 18 68 0.813188  F F F 

4 150000 47 114 1.263875  55 205 2.048750  

5 150000 48 114 1.407938  67 173 2.013375  

6 150000 3 9 0.086250  4 12 0.126875  

7 150000 25 471 2.608250  268 5592 30.071310  

8 150000 34 188 3.216687  114 1836 26.802130  

9 150000 63 145 17.122940  82 204 22.271810  

1 180000 48 114 1.407938  81 201 2.144063  

2 180000 4 43 0.585688  F F F 
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3 180000 18 68 1.010750  F F F 

4 180000 47 114 1.515875  69 233 2.718875  

5 180000 48 114 1.676563  81 201 2.642313  

6 180000 3 9 0.112250  5 15 0.188125  

7 180000 25 471 3.063563  271 5655 36.615120  

8 180000 34 200 3.907125  116 1878 32.505370  

9 180000 63 145 20.321870  93 225 29.400560  

1 210000 63 145 1.942188  81 201 2.502875  

2 210000 4 43 0.730875  F F F 

3 210000 18 68 1.123500  F F F 

4 210000 48 117 1.776500  69 233 3.152000  

5 210000 49 117 1.904750  81 201 3.137625  

6 210000 3 9 0.112063  5 15 0.217750  

7 210000 25 471 3.309000  273 5697 42.916940  

8 210000 34 200 4.745500  117 1899 38.607690  

9 210000 63 145 23.970500  96 232 35.303310  
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Figure 1: The iteration number of two algorithms 
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Figure 2: The calculation’s frequency of objective function 
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Figure 3: The calculation’s time of two algorithms  

On the basis of numeral tests, it is obvious that discussed algorithms successfully address 
large scale nonsmooth problems and are valuable in addressing complex problems. In 
Figs. 1- 3, the red curve of proposed algorithm (Algorithm 2.1) is above the others since 
the iteration number (NI), the calculation frequency (NF), and calculation time (CPU) in 
solving problems are outstanding than the others. The initial points in three Figures are 
close to 1.0, which denotes the proposed algorithm is effective in solving challenging 
problems. It is noted that the red curve increases rapidly and is very smooth, which is 
important for a good optimization algorithm. Proposed algorithm avoids the denominator 
of the formula for search direction is 0, thus proposed algorithm enables efficiently to 
solve more complex problems. 
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