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Abstract: With the popularity of indoor wireless network, device-free indoor 
localization has attracted more and more attention. Unlike device-based localization 
where the target is required to carry an active transmitter, their frequent signal scanning 
consumes a large amount of energy, which is inconvenient for devices with limited 
energy. In this work, we propose the MFPL, device-free localization (DFL) system 
based on WiFi distance measurement. First, we combine multi-subcarrier characteristic 
of Channel State Information (CSI) with classical Fresnel reflection model to get the 
linear relationship between the change of the length of reflection path and the 
subcarrier phase difference. Then we calculate the Fresnel phase difference between 
subcarrier pairs with different spacing from CSI amplitude time series. Finally, we get 
the change of the length of the reflection path caused by target moving to achieve 
distance measurement and localization. Using a combination of subcarriers with 
different spacing to achieve distance measurement effectively broadens the maximum 
unambiguous distance of the system. To solve the complex non-linear problem of the 
intersection of two elliptic equations, we introduce Newton's method to transform the 
non-linear problem into a linear one. The effectiveness of our approach is verified 
using commodity WiFi infrastructures. The experimental results show our method 
achieves a median error of 0.87 m in actual indoor environment. 
 
Keywords: Indoor localization, WiFi, channel state information, fresnel phase difference, 
reflection path length. 

1 Introduction 
Indoor localization systems play an increasingly important role in many emerging 
applications, such as indoor navigation, body or behavioral analysis, aged care and 
unobtrusive motion tracking, etc. In past few years, many solutions to indoor localization 
have been proposed. Most of them need to carry dedicated devices, such as mobile 
phones Boonsriwai et al. [Boonsriwai and Apavatjrut (2013)] and wearable devices 
Colombo et al. [Colombo, Fontanelli, Macii et al. (2014)], which bring inconvenience or 
even inflexibility to applications in some scenarios. For example, in geriatric care, mobile 
phones or wearable devices are usually reluctant. In anti-theft and anti-terrorism tracking 
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scenarios, the target will not carry any detectable equipment. As such, in order to break 
the scene limitation of indoor localization, the need for device-free localization (DFL) is 
more urgent and has attracted research in related fields of interest. 
It is worth noting that, DFL is not entirely new, as technologies based on radar, sound, 
and computer vision have all been studied. However, radar-based systems require very 
high bandwidth and are expensive [Yang and Fathy (2007)]. Sound-based localization 
systems have a small coverage area and significantly reduced performance in a noisy 
environment, which limits its practical application [Diamantis, Greenaway, Anderson et 
al. (2018)]. Computer vision-based systems can only work in bright Line-of-sight (LOS) 
environments and the privacy of users is not protected [Zhou and Koltun (2015)]. With 
the development and maturity of WiFi technology, many families can install high-speed 
and stable WiFi infrastructures. These devices are inexpensive and have a large coverage 
area. WiFi based localization systems only need to expand their functions on existing 
commodity WiFi infrastructures without requiring additional hardware. Compared with 
other systems, WiFi based systems have better application prospects. 
In this work, our goal is to achieve accurate device-free indoor human localization with 
commodity WiFi infrastructures. And DFL with only commodity WiFi infrastructures is 
challenging. First, in a real environment, the collected Channel State Information (CSI) 
contains not only human motion information, but also many radio frequency interferences, 
we need to get a clean measurement of motion information from a noisy environment. 
Second, the representation of the motion of the human body is the mode offset of the 
received signals, how to establish an accurate mathematical relationship between the 
target position and the received signal is vitally important. Third, how to accurately solve 
the Fresnel phase difference between subcarrier pairs and fuse the calculation results 
between different combinations to improve the localization performance.  
The basic idea of our work is as follows: In indoor DFL, assuming that there is one pair 
of transceivers, the signals at receiver are superposition of dynamic path signals and static 
path signals, and the change in dynamic path reflected by the target contains the 
corresponding moving information. As shown in Fig. 1, suppose there are two paths, 
direct path 0d  and reflection path d , respectively. Therefore, according to classical 
Fresnel reflection model [Bruhl, Vermeer and Kiehn (1996); Wu, Zhang, Xu et al. 
(2016)], for moving targets in wireless area covered by transceivers, a series of 
concentric ellipses corresponding to transmitters and receivers can be used to establish 
the Fresnel model of their locations. If target passes through different Fresnel zones in 
sequence, the moving distance of target can be calculated from the phase change of CSI 
on the receivers. By combining distance measurement results of multiple groups of 
transceivers, we can realize the localization of the target. 
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Figure 1: Model description of our system 
We propose MFPL system, which can measure the change of the length of reflection path 
caused by target moving. The intuition is that CSI contains abundant subcarrier 
information, by establishing Fresnel phase model to solve the Fresnel phase difference 
between subcarriers, high precision measurement of the length of reflection path can be 
realized, and then the position of target can be determined. 
To summarize, we have made the following contributions in this work: 
(1) A distance measurement method based on multi-frequency subcarrier phase 

difference enlarges the maximum unambiguous distance of the system and improves 
the distance measurement accuracy. 

(2) Empirical mode decomposition (EMD) method is used to realize adaptive de-noising 
of subcarrier data stream. And Newton's method is introduced to solve the non-linear 
iterative problem of the intersection of elliptic equations.  

(3) We conduct comprehensive field studies to evaluate the performance of MFPL. 
Experimental results show that using two receivers MFPL achieves a median 
localization error of 0.87 m in actual indoor environment. 

The rest of the paper is organized as follows. Section 2 gives the related work. Section 3 
describes the system design. Section 4 validates system’s performance with the 
experimental evaluations. The conclusion is drawn in Section 5. 

2 Related work 
In this work, we use commodity WiFi infrastructures to achieve distance tracking and 
target localization. We will discuss the related work in following two groups: distance 
measurement based on path loss model and distance measurement based on precise 
time measurement. 

2.1 Distance measurement based on path loss model 
The distance measurement method based on path propagation model is a typical distance 
measurement method, which is represented by RSSI-based propagation loss model, such 
systems [Blumrosen, Hod, Anker et al. (2013); Hong and Ohtsuki (2015); Youssef and 
Agrawala (2008)] calculate the signal propagation distance by receiving RSSI values. 
Therefore, a precise calibration is necessary to translate power measurements into 
corresponding distance between each pair of nodes. However, in indoor environments, 
reflection, multipath propagation, and environmental noise interference may affect 
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propagation loss, causing the result to deviate significantly from true value. 

2.2 Distance measurement based on precise time measurement 
Techniques that use precise time measurements typically include measurements of 
propagation delay differences and absolute time-of-flight (ToF) measurements, which 
require additional hardware and require hardware devices to synchronize time to 
nanoseconds. ToneTrack [Xiong, Sundaresan and Jamieson (2015)] improve time 
resolution by frequency agility technology. It can calculate flight time difference to 
obtain distance measurement results, but the implementation process is complex and 
requires deployment of multiple Access Point (AP). Because of the advantages of 
bandwidth, many early distance measurement technologies adopted UWB-based 
technology [Sarigiannidis, Karapistoli and Economides (2015); Tian, Wang and Salcic 
(2018); Gezici, Tian, Giannakis et al. (2005)], but the cost of a single UWB device is 
high and the transmission distance is limited. If we want to achieve a wide coverage 
system, the cost will be unbearable. Chronos [Vasisht, Kumar and Katabi (2016)] 
combines WiFi bandwidth with frequency hopping technology to obtain absolute ToF, 
while it acquires phase information at subcarrier 0, it is very difficult to implement the 
underlying modification technology of commodity Network Interface Card (NIC). 

3 System design 
In this section, we present detailed design of our DFL system. We first give an overview 
of the system architecture and then describe each major functional component in detail. 
As shown in Fig. 2, our system is composed of two main components, namely Pre-
processing and parameter calculation. Once we get the distance measurement on multi-
access point (AP), we can locate the target by finding the intersection of multiple ellipses. 

 

Figure 2: System architecture of our system MFPL 
We use the CSI collected by commodity NIC to measure the change in length of the 
reflection path caused by device-free target movement. Firstly, we introduce single 
frequency phase to realize distance measurement. Then, in order to improve the distance 
measurement accuracy and introduce statistical methods to optimize the results, we 
propose to use Fresnel phase difference between CSI subcarrier pairs with different 
spacing sizes to achieve high-precision measurement of the length of reflection path. 
Considering the complex noise in the original data, the EMD algorithm is employed to 
achieve signal de-noising. 

https://baike.baidu.com/item/Access%20Point
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3.1 Distance measurement based on single frequency Fresnel phase 
The target appearing in free space will change the length of the reflection path formed by 
transceiver, and the phase of received signal will change accordingly. The signal at 
receiver is superposition of multipath signals in the environment [Wang, Liu, Shahzad et 
al. (2015)], which can be regarded as superposition of all static path signals and dynamic 
path signals. Then the CSI can be expressed as: 

( ) ( ) ( ) ( ) ( )
( )2

, , ,
l

d

d t
j

S d S l
l P

H f t H f H f t H f f t e
π
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−

∈

= + = + ∑                      (1) 

where ( )SH f  is a static constant vector, which represents the sum of all static paths, 

( ),dH f t  is the sum of dynamic path vectors caused by target movement, ( ),l f tα  

represents the attenuation and initial phase shift of the lth dynamic path, ( )2 ld tπ
λ

 

represents phase shift caused by the lth dynamic path change, and dP  represents the set of 
dynamic paths. 
The propagation of electromagnetic signals will form an elliptical electromagnetic 
induction zone, also known as Fresnel zone [Bruhl, Vermeer and Kiehn (1996); Wu, 
Zhang, Xu et al. (2016)]. When target passes through the Fresnel zone in sequence, the 
signal power at receiver changes like a sinusoidal waveform [Wu, Zhang, Xu et al. 
(2016); Wang, Liu, Shahzad et al. (2015)]. Therefore, the received signal power can be 
expressed as: 

( ) ( ) ( ) ( ) ( )2 2 2
, 2 cosS d S dH f t H f H f H f H f ρ= + +                 (2) 

where ρ  is the phase difference between static vector sum and dynamic vector sum, 
which also called the Fresnel phase difference. 
For a single subcarrier with wavelength λ , if the length of LOS path and reflection path 
are 0d  and d , the phase shift after propagation can be expressed as: 

( ) ( ) ( )0 02 2
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d
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π π
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where f  is subcarrier frequency, C  represents the speed of light, and γ  represents the 
unknown phase deviation introduced by multipath propagation and ambient noise. As 
discussed in above formulas, the length of reflection path can be calculated when the 
LOS distance is known, so we have: 

( )( )
0

,
2
d C

d d
f

ρ λ γ
π
−

= +                    (4) 

3.2 Distance measurement based on multi-frequency Fresnel phase difference 
3.2.1 The basic principle of distance estimation 
Due to the uncertainties of additional phase deviation in single-frequency Fresnel phase 
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and the susceptibility of measurement results to interference, a distance measurement 
scheme based on multi-frequency Fresnel phase difference is introduced. For a more 
general statement, there are two subcarriers whose central subcarrier frequencies are 1f  

and ( )2 2 1f f f> . When they produce same phase shift, the subcarrier with larger 
frequency has a shorter reflection path and the subcarrier with smaller frequency has a 
longer one. That is, if the target is located somewhere in space where the length of 
reflection path is qd , according to Eq. (3), subcarriers with different frequencies will 
produce different phase shifts. We define the peak sample point difference n∆  as the 
sampling point difference between the peak points corresponding to the two subcarrier 
amplitude time series. By measuring phase difference between two different subcarriers, 
we can get the length of reflection path of moving target. For two subcarriers with center 
frequencies 1f  and 2f , we have the Fresnel phase difference: 

( ) ( )( ) ( )0 0 1 2 0 12
1 2

1 12 2 / 2 /q q qd d d d f f C d d f Cρ π π π
λ λ

 
∆ = − − = − − = − ∆ 

 
            (5) 

where λ  represents the wavelength corresponding to f , 12f∆  is the subcarrier frequency 
spacing. The length of reflection path qd  can be estimated from phase difference 
observed at two frequencies: 

0
122q
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In real measurements, the phase difference ρ∆  is a periodic function with 2π  radians 
while measured phase value by the receiver is ρ∆  mod ( 2π ) [Vasisht, Kumar and 
Katabi (2016)], causing the phase observations are wrapped within the range of [ ]0,2π , 
it yields range ambiguity problem. Thus, the true phase difference can be expressed as: 

= +2mρ ρ π∆ ∆                   (7) 

where m  is an unknown integer. 
Therefore, the distance estimate considering the phase ambiguity limit is expressed as: 
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Obviously, when there is no range ambiguity, 2ρ π∆ = . At this time, we have a distance 

1
max 0

2

C
f

D d
∆

= + , which called the maximum unambiguous reflection path length. 

Of course, we must consider the distance error errord  caused by the extra phase deviation, 
so Eq.  (8) is transformed into: 
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where errord  represents the distance error, which can be obtained by the average of the 
difference between the true distance and the measured one from a large number of 
offline measurements. 

3.2.2 Extracting Fresnel phase difference between subcarriers 
With the multi-subcarrier characteristics of CSI, we can realize high-precision distance 
measurement. We find that the core of the problem is to determine Fresnel phase difference 
between subcarriers, so, we describe how to get Fresnel phase difference between 
subcarriers from the received CSI. For better description, we divide the calculation of 
Fresnel phase difference between subcarriers into three steps: 1) calculation of the peak 
sample point difference n∆  between subcarriers; 2) calculation of time period T reflected 
by subcarrier waveforms; 3) determination of Fresnel phase difference between subcarriers. 
Fig. 3 describes how we can get the peak sample point difference. 

 
Figure 3: Calculate the peak sample point difference 

In order to make sample point difference between subcarriers and corresponding period 
calculation result more reliable, we use the idea of sliding window to realize the 
segmentation of CSI amplitude time series. With the inspiration of the method of 
calculating the time difference between waveforms in harmonic oscillation [Barker, 
Candan, Hakioglu et al. (2000)], we find that peak sample point difference can be 
obtained by estimating the similarity of time series between subcarriers. Suppose there 
are time series of two subcarriers whose wavelengths are aλ  and bλ , respectively. The 
sampling rate of the data is sF . If their peak sample point difference and corresponding 
period are n∆  and T, the two CSI amplitude time series can be expressed as ( ),a aH λ ϕ  

and ( ),b bH λ ϕ . 
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                       (10) 

where ( ),s λ ϕ  represents subcarrier original signal, ( )i in λ  represents independent 

Gaussian white noise, and ( ),H λ ϕ  represents the true received subcarrier signal. The 
cross-correlation function between two subcarriers is expressed as: 

( ) ( ) ( )( )E , , / /ab a a b a sR H H n F Tϕ λ ϕ λ ϕ ϕ ∆ = − ∆ − ∆            (11) 

Since subcarrier original signal ( ),s λ ϕ  and noise ( )i in λ  are uncorrelated and noises are 
not related to each other, the cross-correlation function between two subcarriers can be 
simplified as: 
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( ) ( ) ( )( ) ( )E , , / / / /ab a a b a s s sR s s n F T R n F Tϕ λ ϕ λ ϕ ϕ ϕ ∆ = − ∆ − ∆ = ∆ − ∆               (12) 

From the properties of cross-correlation function, when ( )/ / 0sn F Tϕ∆ − ∆ = , ( )abR ϕ∆  

achieves the maximum value, so peak sample point difference between two signals can 
be obtained by peak detection of ( )abR ϕ∆ . It is worth noting that the value we get here is 
the integer sampling point difference n∆  of the two subcarriers, which need to be 
converted into a real phase difference with sampling rate sF  and period T. In practical 

applications, we use the Fourier transform of cross-correlation function to get ( )abR ϕ∆ . 

( ) ( ) 2j f
ab abR G f e dfπ τϕ

+∞

−∞
∆ = ∫                (13) 

where ( )abG f represents the cross power spectrum between ( ),a aH λ ϕ  and 

( ),b bH λ ϕ . ( )abG f  can be presented as: 

( ) ( ){ } ( ){ }( ), * ,ab a a b bG f H conj Hλ ϕ λ ϕ= ⋅                          (14) 

where {}⋅  represents the Fourier transform of signal and ( )conj ⋅  represents 
conjugation operation. 
We have been able to calculate the peak sample point difference between two subcarrier 
signals. Next, we need to calculate the corresponding period T of time series. We choose 
discrete Fourier transform (DFT) to get T. In DFT, the frequency corresponding to 
highest amplitude has the greatest influence on period. Therefore, it is only necessary to 
find the frequency corresponding to highest amplitude term after Fourier transform to 
obtain the period abT . When the corresponding point difference abn∆  and period abT  
between the two subcarriers are obtained, the corresponding Fresnel phase difference is: 

( )/ /ab ab s abn F Tρ∆ = ∆                  (15) 

3.3 Selection of subcarrier pairs 
We aim to use multi-frequency Fresnel phase difference to achieve distance measurement. 
Although CSI contains abundant subcarrier information and can provide us up to 30 
subcarrier signals, the problem of how to select the appropriate subcarrier pairs is not so 
arbitrary. There are many noise and multipath interference in real indoor environment, 
the phase difference calculated by only one pair of subcarriers is often unreliable [Wu, 
Zhang, Xu et al. (2016)]. Moreover, if we can make full use of multi-subcarrier 
characteristics of CSI and creatively combine subcarrier pairs with different spacing, we 
can improve the robustness of algorithm while introducing mathematical statistics to 
optimize our calculation results. We clearly know that once two subcarriers are selected, 
a longer reflection path will result in a larger phase difference. And phase difference is 
only related to the spacing of two frequencies, not subcarrier itself. Therefore, once the 
position of moving target is fixed, there is a large phase difference between the two 
subcarriers with a large frequency spacing. This information enables us to choose most 
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suitable subcarrier pairs flexibly. 
From Eq. (8), the maximum unambiguous distance is inversely proportional to the 
subcarrier frequency spacing. Selecting a suitable combination of subcarrier pairs, the 
range of the maximum unambiguous distance can be effectively increased, thereby 
satisfying the requirement of the ideal measurable distance. Among the 30 subcarriers 
collected in Intel 5300, the frequency spacing between adjacent subcarriers is 1.25 MHz, 
and the maximum frequency spacing is 1.25 29 36.25 MHz× = , if the LOS distance 0d  is 
determined, the range of the reflection path corresponding to 08.276 d+  and 0240 d+ . In 
this work, we do not specifically discuss how to solve the unknown integer m, because 
we can select some combinations of subcarrier pairs according to the ideal measurable 
distance, so that the smallest unambiguous distance exceeds our ranging range. 
We can calculate the length of the reflection path within these selected combinations, and 
ideally the distance measurement value should be stable when the frequency spacing is 
determined. However, due to the measurement error and the imperfection of hardware, it 
is considered to introduce Kalman filter [Kalman (1960)] to optimize the phase difference 
measurement value under each frequency spacing, as shown in Fig. 4. And we use the 
distance value corresponding to the optimized median phase difference as the distance 
measurement result under the combination. We can now use standard linear least square 
method to fit the linear relationship between these phase differences and extract the slope, 
as shown in Fig. 5, which contains distance information of moving target. 

  

Figure 4: Using Kalman filtering Figure 5: Fitting to get the slope 

3.4 Data sanitization 
The CSI streams provided by commodity WiFi infrastructures are extremely noisy [Wang, 
Liu, Shahzad et al. (2015)]. Fig. 6 plots a noisy CSI stream that we collected from a 
subcarrier at a sampling rate of 1 kHz. The noise sources of CSI streams are mainly come 
from hardware imperfections and rich multipath reflections. These factors result in high 
amplitude impulse and burst noises in CSI streams.  
EMD has been introduced by Huang et al. [Huang, Shen, Long et al. (1998)] and has 
been successfully used in many applications in various disciplines ranging from 
metrology to image analysis [Duffy (2004)]. EMD method is a data analysis method 
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suitable for non-linear and non-stationary processes. Compared with traditional time-
frequency analysis methods, EMD is derived from the decomposition itself and is 
obtained directly from the original object. By decomposing data into a series of intrinsic 
mode function (IMF), it can truly realize adaptive decomposition based on the data itself. 
In this work, we introduce EMD decomposition into the de-noising of CSI stream. Fig. 
7(a) plots the waveforms of original signal and each order IMF after EMD decomposition. 
We carefully choose some IMF to achieve de-noising. We take the Fourier transform of 
the IMF and find that we can use the broad-spectrum properties of the RF interference 
spectrum to find out where the RF interference is located, and then take the average 
amplitude aveA  and standard deviation σ  of the interference IMF, when the amplitude of 
the interference is higher than the threshold value aveA kσ+ , the amplitude of this part is 
set to 0, k is usually 2 to 5. Fig. 7(b) plots the signal waveforms before and after EMD 
decomposition on a subcarrier. The result shows that the noise in subcarrier data stream is 
effectively removed after EMD decomposition, and the waveform has no deviation from 
the time axis, which does not affect the operation of solving the peak sample point 
difference between subcarriers described in Section 3.2. 

 
Figure 6: Original CSI stream on a subcarrier 

  

 (a) Each order IMF and its spectrum (b) Waveforms before and after EMD 

Figure 7: We perform the EMD on a subcarrier and plot the related waveforms 
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3.5 Target localization 
Based on Fresnel phase difference distance measurement method, with only two pairs of 
transceivers can be arranged in the environment to determine the location of target. By 
finding the intersection area between two Fresnel zone rings produced by two pairs of 
WiFi transceivers, moving object’s position can be located. 
On the basis of calculating the length of reflection path corresponding to target by two 
receivers, two sets of elliptic equations can be obtained by means of general expression 
of elliptic equation. If we directly find the intersection of two equations, the solving 
process will be very complicated, because it is a binary quadratic non-linear equation. 
However, in actual demand of localization, as long as the data fluctuation of location 
information is within a reasonable accuracy error range, it can be considered that target 
point has best location estimation. Fortunately, we can often transform non-linear 
problem into a linear one. We introduce the Newton’s iteration method [Meza (2011)] to 
find approximate root of our non-linear equation. 
Since LOS distance 0d  between each pair of transceiver is known, without loss of generality, 
we denote the locations of transmitter, receiver A, receiver B and target as ( )0,0xt = , 

( )0 ,0Ar d= , ( )00,Br d=  and ( ),p x y= , respectively. It is assumed that the lengths of the 

reflection path at receiver A and receiver B as  Ad ,  Bd . To find elliptic intersection point, 
we introduce Newton’s method to solve the non-linear problem as Eq. (16). We summarize 
detailed algorithm how one can obtain the position of target in Algorithm 1. 

( ) ( ) ( )
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2
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2

1 2 2 2
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2
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2 2 22
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2 1
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d d d

  −  
  = + −

 −


  −    = + −
 −

               (16) 

Algorithm 1: Target localization algorithm 
Inputs：Distance measurement results at APs, LOS distance between transceivers 
Outputs：Location of the target 

1: for each  ( )  ( ),  ,  1A Bd i d i i n∈ →  do 

2:  for 1 10iteration∈ →  do 
3:  Establish a binary quadratic equation as shown in Eq. (16) 
4:   Solving the partial derivatives and establishing the corresponding 

Jacobian matrix 
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5:  Run Newton’s iteration 
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6:  end for  
7: Obtain an approximate solution ( ),i ix y  

8: end for 
9: outputs all estimated position point coordinates 

4 Experimental evaluation 
In this section, we evaluate the performance of our MFPL system for DFL. We first 
describe the system implementation and experimental setup. We then present detailed 
experimental results covering overall distance measurement performance and localization 
performance, as well as the comparisons with other typical systems. 

4.1 Experiment methodology 
4.1.1 Implementation 
We employ miniPCs equipped with Intel 5300 NIC as transmitters and receivers. The 
transmitter has one antenna and broadcasts packets into air. The receiver also has one 
antenna. We install the CSI toolkit [Halperin, Hu, Sheth et al. (2011)] developed by 
Halperin on these miniPCs to obtain CSI information for each received packet. The CSI 
toolkit provides CSI information on 30 subcarriers. Consider reducing interference and 
obtaining fine-grained Fresnel phase difference between subcarriers in the building, our 
experiments are conducted in 5 GHz frequency band with 40 MHz bandwidth. 
Specifically, devices are set to work with monitor mode, on channel 149 at 5.745 GHz. 
The transmission rate of packets is set to 1 kHz. The processing computer is an ordinary 
Dell laptop, and processes CSI data using MATLAB. 

4.1.2 Evaluation setup 
We evaluate the performance of system from two levels, including simulation and actual 
measurement. In simulation experiment, we simulate target moving to evaluate the distance 
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measurement ability of the algorithm in different directions, including 30 degrees, 45 
degrees, and 60 degrees. To verify the performance of system in real environment, we 
choose a meeting room with a size of 9 7.7 m m× , which is a typical indoor multipath 
environment. In this scenario, we let a person carry a steel plate moving in a straight line 
from the origin along all predetermined directions to verify the actual performance of our 
algorithm. Fig. 8(a) shows the geometrical structure of the testbed and Fig. 8(b) shows the 
picture of this scene. We make people walking along those predetermined trajectories, so 
the ground truth is easy to get. We use the absolute difference between the measured value 
and the real one as an indication of error evaluation.   

  
(a) The geometrical structure (b) The real shot of the scene 

Figure 8: The geometrical structure and real shot of the meeting room 

4.2 System performance 
4.2.1 Distance measurement accuracy 
We use cumulative distribution function (CDF) to show the error, Fig. 9(a) shows simulation 
distance measurement results under different directions. Overall, MFPL performs well in all 
directions. Using only a pair of transceivers, MFPL achieves 0.17 m average median error 
for simulation data with noise, as shown in Fig. 9(b). We can find that in group with smaller 
initial bistatic angles, the results climbed faster, which is consistent with the properties of 
classical bistatic Doppler radar [Tsao, Slamani, Varshney et al. (1997)]. 

  
(a) Simulation results    (b) Distance measurement error  

Figure 9: Distance measurement results and corresponding errors along different 
directions in the simulation environment 



 
 
 
874                                                                              CMC, vol.62, no.2, pp.861-876, 2020 

4.2.2 Localization accuracy 
Fig. 10(a) gives the average distance measurement performance of our system. We also 
compare our system with the state-of-the-art DFL systems LiFS [Wang, Jiang, Xiong et 
al. (2016)] and DynamicMUSIC [Li, Li, Zhang et al. (2016)]. As shown in Fig. 10(b), we 
can see MFPL achieves 0.87 m median error, which is comparable to the other two 
systems. MFPL has a longer tail because of the limited number of transceivers, when 
target is far away from the AP, the signal-to-noise ratio (SNR) drops rapidly. Although 
LiFS performs slightly better, it requires at least 11 groups of transceivers. The accuracy 
of DynamicMUSIC is far superior to the other two, because it declares to be able to 
estimate the precise AoA of reflection path, more importantly, it ignores the inherent 
error of 0.5 m caused by human body itself. 

  

(a) Distance measurement results of 
the true and measured 

(b) CDFs of error of localization 

Figure 10: Distance measurement results and corresponding localization errors in real test 

5 Conclusion 
In this work, we explore the use of commodity WiFi infrastructures to achieve DFL 
based on distance measurement. Using linear relationship between the Fresnel phase 
difference and the change of the length of reflection path, we obtain the length of 
reflection path of target by fitting the phase difference between subcarrier pairs with 
different spacing. The simulation result shows with only one pair of transceivers, the 
median distance measurement error is 0.17 m. In real indoor multipath environment of 70 

2m , the median localization error is 0.87 m. Our system is based on OFDM modulation 
and can be applied to health monitoring and 5G IoT communication. 
 
Acknowledgment: This work is supported in part by National Natural Science 
Foundation of China (61771083, 61704015), the Program for Changjiang Scholars and 
Innovative Research Team in University (IRT1299), Fundamental and Frontier Research 
Project of Chongqing (Nos. cstc2017jcyjAX0380, cstc2015jcyjBX0065), 
Sichuan Science and Technology Program (2018GZ0184), and University Outstanding 



 
 
 
MFPL: Multi-Frequency Phase Difference Combination                                     875 

Achievement Transformation Project of Chongqing (No. KJZH17117). 
 
Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 

References 
Barker, L.; Candan, Ç.; Hakioglu, T.; Kutay, M. A.; Ozaktas, H. M. (2000): The 
discrete harmonic oscillator, harper’s equation, and the discrete fractional fourier 
transform. Journal of Physics A General Physics, vol. 33, no. 11, pp. 2209-2222. 
Blumrosen, G.; Hod, B.; Anker, T.; Dolev, D.; Rubinsky, B. (2013): Enhanced 
calibration technique for RSSI-based ranging in body area networks. Ad Hoc Networks, 
vol. 11, no. 1, pp. 555-569. 
Boonsriwai, S.; Apavatjrut, A. (2013): Indoor WIFI localization on mobile devices. 
10th International Conference on Electrical Engineering/Electronics, Computer, 
Telecommunications and Information Technology, pp. 1-5.  
Bruhl, M.; Vermeer, G. J.; Kiehn, M. (1996): Fresnel zones for broadband data. 
Geophysics, vol. 61, no. 2, pp. 600-604. 
Colombo, A.; Fontanelli, D.; Macii, D.; Palopoli, L. (2014): Flexible indoor 
localization and tracking based on a wearable platform and sensor data fusion. IEEE 
Transactions on Instrumentation and Measurement, vol. 63, no. 4, pp. 864-876. 
Diamantis, K.; Greenaway, A. H.; Anderson, T.; Jensen, J. A.; Dalgarno, P. A. et al. 
(2018): Super-resolution axial localization of ultrasound scatter using multi-focal 
imaging. IEEE Transactions on Biomedical Engineering, vol. 65, no. 8, pp. 1840-1851. 
Duffy, D. G. (2004): The application of Hilbert-huang transforms to meteorological 
datasets. Journal of Atmospheric and Oceanic Technology, vol. 21, no. 4, pp. 599-611. 
Gezici, S.; Tian, Z.; Giannakis, G. B.; Kobayashi, H.; Molisch, A. F. et al. (2005): 
Localization via ultra-wideband radios: a look at positioning aspects for future sensor 
networks. IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70-84. 
Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. (2011): Tool release: gathering 802.11n 
traces with channel state information. ACM Sigcomm Computer Communication Review, 
vol. 41, no. 1, pp. 53. 
Hong, J.; Ohtsuki, T. (2015): Signal eigenvector-based device-free passive localization using 
array sensor. IEEE Transactions on Vehicular Technology, vol. 64, no. 4, pp. 1354-1363. 
Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H. et al. (1998): The 
empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary 
time series analysis. Proceedings Mathematical Physical & Engineering Sciences, vol. 
454, no. 1971, pp. 903-995. 
Kalman, R. E. (1960): A new approach to linear filtering and prediction problems. 
Journal of Basic Engineering Transactions, vol. 82, no. 1, pp. 35-45. 



 
 
 
876                                                                              CMC, vol.62, no.2, pp.861-876, 2020 

Li, X.; Li, S.; Zhang, D.; Xiong, J.; Wang, Y. et al. (2016): Dynamic-MUSIC: accurate 
device-free indoor localization. Proceedings of the 2016 ACM International Joint 
Conference on Pervasive and Ubiquitous Computing, pp. 196-207. 
Meza, J. C. (2011): Newton’s method. Wiley Interdisciplinary Reviews: Computational 
Statistics, vol. 3, no. 1, pp.75-78. 
Sarigiannidis, P. G.; Karapistoli, E. D.; Economides, A. A. (2015): Detecting Sybil 
attacks in wireless sensor networks using UWB ranging-based information. Expert 
Systems with Applications, vol. 42, no. 21, pp. 7560-7572. 
Tian, Q.; Wang, I. K.; Salcic, Z. (2018): Human body shadowing effect on UWB-based 
ranging system for pedestrian tracking. IEEE Transactions on Instrumentation and 
Measurement, pp. 1-10.  
Tsao, T.; Slamani, M.; Varshney, P.; Weiner, D. D.; Schwarzlander, H. et al. (1997): 
Ambiguity function for a bistatic radar. IEEE Transactions on Aerospace and Electronic 
Systems, vol. 33, no. 3, pp. 1041-1051. 
Vasisht, D.; Kumar, S.; Katabi, D. (2016): Decimeter-level localization with a single 
WiFi access point. Proceedings of the 13th Usenix Conference on Networked Systems 
Design and Implementation, pp. 165-178. 
Wang, J.; Jiang, H.; Xiong, J.; Jamieson, K.; Chen, X. et al. (2016): LiFS: low 
human-effort, device-free localization with fine-grained subcarrier information. 
Proceedings of the 22nd Annual International Conference on Mobile Computing and 
Networking, pp. 243-256. 
Wang, W.; Liu, A. X.; Shahzad, M.; Ling, K.; Lu, S. (2015): Understanding and 
modeling of wifi signal based human activity recognition. Proceedings of the 21st Annual 
International Conference on Mobile Computing and Networking, pp. 65-76. 
Wu, D.; Zhang, D.; Xu, C.; Wang, Y.; Wang, H. (2016): WiDir: walking direction 
estimation using wireless signals. Proceedings of the 2016 ACM International Joint 
Conference on Pervasive and Ubiquitous Computing, pp. 351-362. 
Xiong, J.; Sundaresan, K.; Jamieson, K. (2015): ToneTrack: leveraging frequency-
agile radios for time-based indoor wireless localization. Proceedings of the 21st Annual 
International Conference on Mobile Computing and Networking, pp. 537-549. 
Yang, Y.; Fathy, A. E. (2007): Design and Implementation of a low-cost real-time ultra-
wide band see-through-wall imaging radar system. IEEE/MTT-S International 
Microwave Symposium, pp. 1467-1470.  
Youssef, M.; Agrawala, A. K. (2008): The Horus location determination system. 
Wireless Networks, vol. 14, no. 3, pp. 357-374. 
Zhou, Q.; Koltun, V. (2015): Depth camera tracking with contour cues. IEEE 
Conference on Computer Vision and Pattern Recognition, vol. 5, pp. 632-638.  


	MFPL: Multi-Frequency Phase Difference Combination Based Device-Free Localization
	Zengshan Tian0F , Weiqin Yang1, Yue Jin1, Liangbo Xie1, * and Zhengwen Huang2

	References

