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Abstract: For many Internet companies, a huge amount of KPIs (e.g., server CPU usage, 
network usage, business monitoring data) will be generated every day. How to closely 
monitor various KPIs, and then quickly and accurately detect anomalies in such huge data 
for troubleshooting and recovering business is a great challenge, especially for unlabeled 
data. The generated KPIs can be detected by supervised learning with labeled data, but 
the current problem is that most KPIs are unlabeled. That is a time-consuming and 
laborious work to label anomaly for company engineers. Build an unsupervised model to 
detect unlabeled data is an urgent need at present. In this paper, unsupervised learning 
DBSCAN combined with feature extraction of data has been used, and for some KPIs, its 
best F-Score can reach about 0.9, which is quite good for solving the current problem. 
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1 Introduction 
In order to ensure the continuous operation of the business and avoid exceptions in their 
networks [Li, Cai and Xu (2018); Luo, Wang, Cai et al. (2019); Erfani, Rajesegarar, 
Karunasekera et al. (2016)], many internet companies operate huge operations and 
maintenance departments to monitor KPI (key performance indicators) data in their 
system. KPIs are time series data, measuring metrics such as Page Views, number of 
online users, and number of orders. Companies also use some auto-monitors to save 
human and material resources, such as Zabbix [Olups (2004)]. The current KPIs 
monitoring tools are still based on thresholds, and thresholds method closely dependent 
on the experience of engineers, a long-term operation expert familiar with business in an 
industry will manually summarize repeated, traceable phenomena, forming rules to set 
new thresholds. For some new services, or periodic data, the threshold is difficult to meet 
the actual needs, there will be a lot of anomalies cannot be effectively monitored. 
KPIs (Key Performance Indicators, as shown in Fig. 1) are important indicator of 
monitoring system operation [Kang, Zhao, Li et al. (2016)]. KPI anomaly detection is a 
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key technology of intelligent operation and maintenance of Internet services. Most other 
key technologies of intelligent operation and maintenance depend on the KPIs. When the 
KPIs presents abnormal situations (such as sudden increase, sudden drop, jitters, etc.), the 
situations often mean that some potential failures occur in its related applications, e.g., 
network failure, network overload, server overload, external attacks. 

 
Figure 1: Different trends of KPIs 

In the current academic world, lots of methods have been proposed on KPI anomalies 
detecting [An and Cho (2015); Park, Hoshi and Kemp (2018); Park, Erickson, 
Bhattacharjee et al. (2016); Bodin, Malik, Ek et al. (2017); Laptev, Amizadeh and Flint 
(2016)]. Intelligent anomaly detecting emphasizes that the machine learning algorithm 
automatically learns from the massive KPIs (including the event and the manual 
processing logs of the operators) and constantly refines and summarizes the rules. In 
order to detect the anomaly of the system, machine learning algorithms are used 
excessively dependent on labels. That is unrealistic to manually labeled huge quantities 
of KPIs to detect abnormal situations [Chandola, Banerjee and Kumar (2009)]. In 
addition, the supervised methods cannot effectively detect the new anomalies because of 
their labels cannot labeled timely. 
In this paper, we propose an unsupervised learning method to effectively monitor KPI 
and detect short-term jitters in persistent KPI, which is different from normal KPI. The 
main contributions of this paper can be summarized as follows: 
1. The detection algorithm is weakly dependent on the label, and it can detect the 
abnormal data in the extreme situation without label. 
2. It can effectively detect new anomalies. In supervised models, the existing anomalies 
in the training samples can be detected, but it is insensitive to the new anomalies. 
However, in unsupervised models, new anomalies can be effectively detected. 
3. The universality of the method can detect anomalies in different KPIs. 
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2 Related works 
Traditional statistical models. In industries, lots of anomaly detection methods based on 
traditional statistical models are widely used to detect abnormal situation in their systems 
or web applications. But traditional statistical models are overly dependent on expert to 
pick a suitable detector for a given KPI. It is well known that a large number of KPIs 
with different trends mean that it is not possible to select a suitable detector for each KPI. 
The choice of multiple detectors will consume a lot of work effort, which is also a huge 
waste of resources for the company. Therefore, these detectors do not look satisfactory. 
Supervised ensemble approaches. To circumvent the hassle of algorithm/parameter 
tuning for traditional statistical anomaly detectors, supervised ensemble approaches 
[Fontugne, Borgnat, Abry et al. (2010)], EGADS [Laptev, Amizadeh and Flint (2015)] 
and Opprentice [Liu, Zhao, Xu et al. (2015)] were proposed. They train anomaly 
classifiers using the user feedbacks as labels and using anomaly scores output by 
traditional detectors as features. Both EGADS and Opprentice showed promising results, 
but they heavily rely on good labels (much more than the anecdotal labels accumulated in 
our context), which is generally not feasible in large scale applications. Furthermore, 
running multiple traditional detectors to extract features during detection introduces lots 
of computational costs, which is a practical concern.  
Unsupervised approaches and deep generative models. Recently, there is a rising 
trend of adopting unsupervised machine learning algorithms for anomaly detection, e.g., 
one-class SVM [Sarah, Sutharshan, Shanika et al. (2016)], clustering based methods [ Fu, 
Hu and Tan (2005)] like K-Means [Münz, Li and Carle (2007)] and VAE [Xu, Chen, 
Zhao et al. (2018)] and DBSCAN [Harisinghaney, Dixit, Gupta et al. (2014)]. The main 
idea is based on normal data rather than abnormal data: because the main component of 
KPI is positive data, models can be readily trained even without labels. Roughly speaking, 
these models all first identify the normal region in KPI, and then distinguish anomalies 
by measuring the distance from the normal region. 
Along the direction we discussed above, we are interested in DBSCAN models for the 
following reasons. First, KPIs are unlabeled data, and we aimed at detecting anomalies in 
data according to the normal pattern of KPIs. Learning normal patterns of KPIs can be 
seen as learning the distribution of training data. Second, DBSCAN model is widely used 
for clustering arbitrary shape dense data sets. Third, in some KPIs, DBSCAN model can 
get very good anomaly detection results, and f-score is significantly higher than other 
models (as shown in §4). Fourth, simply adopting much more complex models [Sölch, 
Bayer, Ludersdorfer et al. (2016)] based on VRNN shows long training time and poor 
performance in our experiments. Fifth, DBSCAN algorithm is not affected by abnormal 
samples unlike k-means, it can automatically detect abnormal samples. 

3 Problems and solutions 
In this section, we first describe some of the problems that exist in the field of anomaly 
detection, and then introduce the methods we used in solving the problem. Finally, 
based on these methods, an effective unsupervised detection method is proposed to 
solve the above problems. 
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3.1 Problems 
In summary, the existing anomaly detection algorithms have some problems, such as 
algorithm selection/parameter adjustment, high dependence on tags, poor performance 
and/or lack of theoretical basis. The existing methods are either supervised or 
unsupervised, and the detection efficiency of the unsupervised models are not very 
satisfactory in some situations. However, in our article, we effectively extract static 
features from a data window, and select unsupervised model, which can effectively 
monitor anomalies without relying on labels, and achieve better results. 
The problems of this article are stated as follows. We aim at using an unsupervised 
anomaly detection algorithm to detect anomalies in KPIs with less labels or without 
labels, and this method achieves satisfactory results. Because of the good performance of 
DBSCAN method in a variety of unsupervised methods, we chose to start our work. 

3.2 Solutions 
3.2.1 Data pre-processing 
Windowed data. Anomaly detection of KPIs requires timeliness. Abnormal data are 
detected in a certain period of time can be applied to actual production. Therefore, 
window transformation is used in this paper. Sliding KPI data from beginning to the end, 
time series data are transformed into windowed sequence data [Sun, Ge, Huang et al. 
(2019)]. The exception condition of a window indicates that there is an exception in this 
window. The appropriate window size can effectively report the exception within a 
limited certain time. 
Extract KPI’s static feature. In the application of models, the static characteristics of 
data are used to predict. The statistical characteristics of each window are extracted, such 
as variance and mean. Then, the features in a window represent the features of each point 
as input to the DBSCAN algorithm. In most cases, outliers are different from normal 
points (such as sudden increase and sudden decrease), and their combination features 
correspond to those far away from most normal points. So, outliers can be detected. The 
outlier samples in the algorithm output correspond to the outliers in KPI. 

3.2.2 Prediction model construction 
DBSCAN (Density-based spatial clustering of applications with noise) Viswanath et al. 
[Viswanath and Babu (2009); Li and Chen (2018); Tran, Drab and Daszykowski (2013); 
Birant and Kut (2007)] DBSCAN algorithm is a density based unsupervised clustering 
algorithm, also, DBSCAN is a very efficient and effective clustering algorithm [Januzaj, 
Kriegel and Pfeifle (2003)]. The algorithm divides the closely linked samples into one class, 
thus forming different categories. The advantage of this algorithm is that it is insensitive to 
outliers and can find outliers in samples. Unlike K-means [Kanungo, Mount, Netanyahu et 
al. (2002)] clustering, initial values need to be set to determine how many classes to classify, 
DBSCAN algorithm automatically classifies samples into different categories by adjusting 
distance of parameters ɛ and neighborhood sample number threshold MinPts. 
The DBSCAN Algorithm is shown as follows: 
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Input: 
1: D: a data set containing n object 
2: ɛ: the radius parameter 
3: MinPts: the neighborhood density threshold 

Output:  
a set of density-based clusters 

Algorithm start 
1: make all objects as unvisited 
2: while there are objects that are not visited do 
3:  randomly select an unvisited object p 
4:  mark p as visited 
5:  if the ɛ-neighborhood of p has at least MinPts then 
6:   create a new cluster C, and add p to C 
7:   let N be the set of objects in the ɛ-neighborhood of p 
8:    for each point p in N do 
9:    if p is unvisited then 
10:          mark p as visited 
11:            if the ɛ-neighborhood of p has at least MinPts points then 
12:     mark those points to N 
13:           end if 
14:           if p is not yet a member of any cluster then 
15:     add p to C 
16:           end if 
17:    end if 
18:   end for 
19:   Output C 
20:  else 
21:   mark p as noise 
22:  end if 
23: end while 

4 Experiments 
4.1 Data process and feature extraction 
Data sets in our experiment come from the data sets provided in Xu et al. [Xu, Chen and 
Zhao (2018)] and the data sets provided by the anomaly detection contest. These data 
generated by the actual monitoring of Internet companies. It is of practical significance to 
detect anomalies from them. All KPIs have an interval of 1 minute or 5 minutes between 
two observations. Each KPI has three record values: time stamp, value and label, in 
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which label is the value (0, means abnormal/1, means normal) of each moment. Labels 
are tagged by engineers who maintain the normal operation of the machine and have rich 
experience in their business, which can help us to evaluate the results in our test phase. In 
our paper, we choose 3 data sets, denoted as A, B, C, so we can evaluate the methodology 
for noises at different levels. 

Table 1: Data sets of A, B, C. Each sliding window has a size window size=5 
Data Sets A B C 
Total points 20000  17568 17568 

Missing points  308/1.54%  0 0 

Anomaly points 769/3.85% 209/1.19% 67/0.38% 

Total windows  20304  17564  17564 

Abnormal windows  769/3.79% 209/1.19% 67/0.38% 

After testing, we set window size=5, and we compensate 0 for missing data directly. The 
feature of each window only extracts the feature of variance (marked as var) and 
difference (marked as diff) combination. Calculate the variance var of the window, the 
first order difference diff of each point, and then get the value combination feature: 
var*diff*window size. So, each point is converted into a combined feature as input to the 
algorithm. Transformed KPI sequences can be used easily in our model. After 
transformation, the features of outliers are obviously different from those normal points, 
which is also very helpful for clustering algorithm to distinguish outliers in the next step. 
It will be discussed in detail in fifth chapter 

4.2 Algorithm application and result analysis 
Features extracted from data pre-process step can be used easily as input of DBSCAN 
algorithm. After clustering, different clusters can be obtained. The anomaly samples are 
divided into one cluster and used as the result of anomaly detection. After adjusting 
parameters ɛ and MinPts, we can achieve a better result and have a certain generalization 
ability when we set ɛ=0.05 and MinPts=20. We use the same evaluation index F-score 
that used in Xu et al. [Xu, Chen, Zhao et al. (2018)]. F-score of A (one KPI), B (CPU4), 
C (server) are 0.971, 0.932, 0.937. As you can see, the algorithm performs very well on 
the three data sets. Generally speaking, after a lot of experiments, we find that this 
algorithm works almost the same on some data sets as the VAE-based algorithm [Xu, 
Chen, Zhao et al. (2018)], and even performs better on some data sets. 

 
Figure 2: Abnormal detection results of data set C. The red dots represent the outliers 
detected 
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Figure 3: Original data sequence of data set C. The red dots denote abnormal data points 

In contrast to Fig. 2 and Fig. 3, we can see that the algorithm has successfully detected 
most of the outliers. According to the evaluation method in paper, as long as the first 
anomaly point is detected within a small delay for a continuous anomaly interval, then 
this section is considered to be successful in detecting all the anomaly points. 

4.3 Impact of ε and MinPts 
Parameter ɛ and MinPts plays an important role. The ɛ means maximum distance between 
two samples for them to be considered as in the same neighborhood, and the MinPts 
means the number of samples (or total weight) in a neighborhood for a point to be 
considered as a core point, which determine the effect of clustering. Too large or too 
small would probably cause bad results. In Fig. 4 and Fig. 5, we present the F-score with 
different ɛ and MinPts on data set A, B and C.  
It can be seen from Fig. 4 and Fig. 5 that parameters europium makes a great influence on 
the results, and the overall performance in the region [0.03, 0.10] is relatively stable and 
good, especially, when the parameter MinPts>1.0. At the same time, through a lot of 
experiments, we find that parameter ɛ∈[0.03, 0.10] and MinPts∈[10, 100] both can get a 
better result in different data sets, which shows that the algorithm has a certain 
generalization performance. For a fixed parameter, it can perform well on most data sets. 
This is very important in practice, because parameters could not be adjusted for each KPI. 

 
Figure 4: The F-score with different ɛ on dataset A, B, C. set MinPts=20 
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Figure 5: The F-score with different MinPts on dataset A, B, C. set ɛ=0.1 

5 Analysis and discussion 
Why the methods in the paper have a surprising effect on many KPIs such as data set A, B 
and C? We compared the characteristics of the original data after transformation in Fig. 6. 
As you can see, after transformation, the features of outliers are obviously different from 
those of normal points, which is very helpful for the clustering algorithm to distinguish 
outliers, because clustering algorithms tend to group data with the same characteristics. 

  
Figure 6: The original KPI sequence (above) and the transformed variance difference 
combination feature sequence (below). Red dots denote abnormal points 

In fact, we found that most exceptions in KPIs are due to jitters after a lot of observation 
and experiments. Data jitters means that data suddenly rises or falls. We believe that the 
reason these data points are marked as abnormal is that such data jitters deviates from 
most data, which means something unusual must have happened at the current moment. 
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Therefore, it is very necessary and useful to detect the exception for the actual business 
analysis. When we extract variances and differences and form combined features, the 
distance between abnormal data and normal data is actually amplified because of the data 
jitters, so a good result can be obtained when clustering.  
There are some drawbacks to this approach [Khan, Rehman, Aziz et al. (2014)]. Not all 
KPIs achieve good results, although many KPIs do. Because there are some normal jitters 
in data, such as periodic jitters, they are not considered abnormal. This method does not 
take into account the global characteristics of the data and cannot distinguish normal jitter 
from abnormal jitters. And the extraction and combination of features may highlight 
features of normal data points so much that they are classified as exception classes. As we 
all know, finding a method that works for all KPIs is difficult. In addition to these, this 
algorithm is very memory intensive due to the establishment of the KD-Tree during the 
optimization process when there is a lot of data. That leaves us with future work.  

6 Conclusion 
In current research, supervised and unsupervised machine learning methods are widely 
used in various fields [Liu, Liu, Liu et al. (2019); Tan, Liu, Wang et al. (2019); Tan, Liu, 
Xie et al. (2019)]. This paper proposes an unsupervised anomaly detection algorithm 
independent of labels for KPIs (time series data). Firstly, KPIs are transformed into data 
that contains original features and is convenient for model use by using window data and 
feature-specific acquisition method. Then, DBSCAN unsupervised algorithm is used to 
detect jitters in KPI and detect anomaly. DBSCAN algorithm tends to detect jitters 
anomalies (sudden increase and sudden decrease) that do not take into account global 
data characteristics. Of course, the algorithm process has some shortcomings in periodic 
anomaly detection, which can be further improved in the future. At the same time, we are 
also working on efficient operation of the algorithm on edge terminal devices, which can 
quickly detect system anomalies [Liu, Guo, Cai et al. (2019); Liu, Tang, Li et al. (2019); 
Liu, Cai, Xu et al. (2015)]. 
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