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Abstract: Numerical analysis of unsteady heat transfer problems with complex 
geometries by the isogeometric boundary element method (IGABEM) is presented. The 
IGABEM possesses many desirable merits and features, for instance, (a) exactly 
represented arbitrarily complex geometries, and higher-order continuity due to non-
uniform rational B-splines (NURBS) shape functions; (b) using NURBS for both field 
approximation and geometric description; (c) directly utilizing geometry data from 
computer-aided design (CAD); and (d) only boundary discretization. The formulation of 
IGABEM for unsteady heat transfer is derived. The domain discretization in terms of 
IGABEM for unsteady heat transfer is required as that in traditional BEM. The internal 
values however are obtained with the analytical formula according to the values on the 
boundaries, and its computations are therefore mainly dependent on the discretization of 
the boundaries. The coordinates of internal control points are obtained with the 
coordinates of control points on the boundaries using Coons body interpolation method. 
The developed approach is tested with several numerical examples from simple to 
complicated geometries. Good agreement is gained with reference solutions derived from 
either analytical or finite element methods. 
 
Keywords: Unsteady heat transfer, BEM, isogeometric analysis, NURBS. 

1 Introduction 
Heat transfer is one of the important problems that need to be considered in many 
engineering fields, such as civil engineering, aerospace engineering, mechanical 
engineering, etc. Temperature change may produce temperature stresses, which 
consequently affects the safety of structures. For simple geometric shapes with specific 
boundary conditions, closed-form analytical solutions for the temperature field can be 
obtained. However, such closed-form analytical approaches are not suitable for problems 
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with more complex geometry and boundary conditions. In that circumstance, advanced 
numerical methods are preferable. 
Isogeometric analysis (IGA) uses the NURBS (non-uniform rational B-spline) basis 
functions in CAD for modeling geometry as shape function in finite element method 
(FEM) [Hughes, Cottrell and Bazilevs (2005); Shojaee, Valizadeh, Izadpanah et al. 
(2012)] and references therein. Compared with traditional FEM, IGA owns many 
desirable features such as exact representation of arbitrarily complex geometries, higher-
order continuity and simple mesh refinement. Due to those aforementioned desirable 
properties, IGA has received extensive attention in recent years, and it gradually becomes 
a widely used means to solve many engineering problems [Yu, Yin, Bui et al. (2017); 
Bazilevs, Calo, Zhang et al. (2006); Liu, Yu, Bui et al. (2017); Lai, Yu, Bui et al. (2017); 
Cottrell, Reali, Bazilevs et al. (2006); Nguyen, Bui, Yu et al. (2014); Lorenzis, Temizer, 
Wriggers et al. (2011); Fischer, Klassen, Mergheim et al. (2011); Cottrell, Reali, Bazilevs 
et al. (2006); Wall, Frenzel and Cyron (2008); Seo, Kim and Youn (2010)]. Garcia et al. 
[Garcia, Bartoň and Pardo (2017); Garcia, Pardo, Dalcin et al. (2017)] proposed a refined 
isogeometric analysis (rIGA) with the use of highly continuous finite element spaces 
interconnected with low continuity hyperplanes to maximize the performance of direct 
solvers, both the solution time and best approximation errors are simultaneously 
improved. At present, the isogeometric concept is mainly applied to finite element 
implementation. However, it can also be applied to other methods, and some other hybrid 
approaches have been recently developed including the extended isogeometric analysis 
[Yin, Yu, Bui et al. (2016); Yu, Bui, Yin et al. (2016)], isogeometric collocation method 
[Auricchio, Beirão DA Veiga, Hughes et al. (2017); Manni, Reali and Speleers (2015)], 
isogeometric meshless method [González, Cueto and Doblaré (2009); Valizadeh, 
Bazilevs, Chen et al. (2015)], isogeometric boundary element method [Zhou, Liu, Wang 
et al. (2017)], scaled boundary isogeometric analysis [Natarajan, Wang, Song et al. 
(2015); Li, Liu and Lin (2017)]. 
The geometry built by CAD is its boundary curves/surfaces, and the computation of 
boundary element method (BEM) is mainly performed on the boundary, which means the 
combination of IGA and BEM is a natural fit, and actually many researches have paid 
lots of attention on it. Simpson et al. [Simpson, Bordas, Lian et al. (2013); Simpson, 
Bordas, Trevelyan et al. (2012)] proposed IGABEM for 2-D elastostatic analysis. 
Subsequently IGABEM has been applied to many other fields such as 3-D potential [Gu, 
Zhang and Li (2012)], elastostatic problem [Gu, Zhang, Sheng et al. (2011)], shape 
optimization [Lian, Kerfriden and Bordas (2016); Sun, Yu, Nguyen et al. (2018)], elasto-
plastic inclusion problems [Beer, Marussig, Zechner et al. (2016); Bee, Mallardo, Ruocco 
et al. (2017)], gradient elasticity [Fischer, Klassen, Mergheim et al. (2011)], crack 
problems [Nguyen, Tran, Anitescu et al. (2016)], and Helmholtz problems [Peake, 
Trevelyan and Coates (2013); Coox, Atak, Vandepitte et al. (2014)]. Scott et al. [Scott, 
Simpson, Evans et al. (2013)] coupled IGABEM and T-spline to reduce the number of 
NURBS patches and improve their smoothness. In order to reduce the computational 
complexity and computational time, Takahasha and Matsumoto introduced fast multipole 
method into IGABEM for two-dimnesional Laplace equation [Takahashi and Matsumoto 
(2012)]. Marussig et al. applied fast IGABEM to elasticity [Marussig, Zechner, Beeret al. 
(2015)], and Campos et al. [Campos, Albuquerque and Wrobel (2017)] applied the 
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boundary conditions on control points, further improving the applicability of the method. 
Simpson et al. [Simpson and Liu (2016)] employed a black-box FMM and T-spline to 
accelerate computation. Beer et al. [Beer, Marussig, Zechner et al. (2014); Wang, Benson 
and Nagy (2015)] introduced trimmed NURBS technique into IGABEM. Gong et al. 
[Gong, Dong and Bai (2017)] solved nearly singular integral problems using exponential 
transformation. 
The main objective of the present contribution is to study unsteady heat transfer problems 
by an effective computational method. In general, the numerical implementation of 
transient heat transfer is more challenging than that of the steady heat problems. Different 
from the steady heat transfer [An, Yu, Bui et al. (2018)], the transient heat transfer, which 
is studied here, has the following features: (1) since the transient temperature problem is 
time-dependent, the time domain has to be discretized while considering the spatial 
domain; (2) the differential equation possesses a time derivative term, dealing with the 
temperature in domain interior is required, i.e., the domain interior is also discretized, 
while only the boundaries are discretized for the steady heat problem; (3) an exponential 
integral function is included in the fundamental solution, and special method is required 
to deal with the computation of the exponential integral function. 
Due to the inherent features of NURBS, the boundary and domain of geometry can be 
represented exactly by data in CAD. This method retains the advantage of mesh 
refinement on parameter space in IGA. It is important to point out that, for the steady heat 
transfer using the IGABEM, the discretization is performed only on the boundary, 
whereas the discretization of domain is still required for unsteady heat transfer as that in 
traditional BEM. In the IGABEM, the internal values are obtained with the analytical 
formula according to the values on the boundaries, and the computations mainly focus on 
the discretized calculations on the boundaries. The coordinates of internal control points 
are obtained with the coordinates of control points on the boundary using Coons body 
interpolation method.   
The body of this paper is structured as follows. Section 2 briefly presents transient heat 
transfer problem. In Section 3, the IGABEM formulation for solving transient heat 
conduction problem is derived in detail. Numerical examples are presented and discussed 
in Section 4, in which the obtained results are compared with analytical solutions or other 
methods such as FEM. Some conclusions are drawn in Section 5. 

2 Formulation of transient heat transfer analysis 
According to the theory of heat transfer, the differential equation of unsteady heat 
transfer problem in 2-D isotropic solid is given by Yu et al. [Yu, Yao and Gao (2014)] 

2 Tk T f
t

∂
∇ + =

∂
  in Ω                                                                                                   (1a) 

with 

k
c
λ
ρ

= , 
wf
cρ

=                                                                                                            (1b) 
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where Ω  is the domain of geometry, T  is the transient temperature, λ  the thermal 
conductivity coefficient, w  the heat source, ρ  the material density, c  the specific heat 
capacity, t  the time, 2∇  Laplace operator.  
The initial condition and the boundary conditions are expressed as follows: 

0 0tT T= =  in Ω                                                                                                                 (2a) 

T T=    on 1Γ : Dirichlet boundary                                                                                (2b) 

2
T qλ ∂ =
∂n

 on 2Γ : Neumann boundary                                                                          (2c) 

where 0T  is the initial temperature in the domain; T  is prescribed temperature, 2q  is 
prescribed heat flux, while n  is the normal vector pointing outward of boundary.    
Using Eqs.(1) and (2), we can obtain the following weighted residual equation: 

( )
0 0 1

0 2

*
2 *

*2

1

=0

f f

f

t t

t t

t

t

w T TT T d dt T T d dt
k t n

qT T d dt

λ

λ

Ω Γ

Γ

∂ ∂ ∇ + − Ω + − Γ ∂ ∂ 
∂ − − Γ ∂ 

∫ ∫∫ ∫ ∫

∫ ∫ n

                                      (3) 

where *T  is an arbitrary function, 0t  and ft  are two time values.  

Integration by parts about Laplace operator item twice, and time derivative item once, and 
applying the Green formula and boundary conditions, Eq. (3) will be written as [Wu (2008)]  
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0
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f
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tt t t

t

t

T w TT Td dt T d dt TT d T d dt
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n

λΩ Ω Ω Γ

Γ

 ∂ ∂
∇ + Ω Ω − Ω + Γ ∂ ∂ 
∂

− Γ =
∂

∫ ∫∫ ∫ ∫∫ ∫∫ ∫ ∫

∫ ∫

                  (4) 

In this paper, the heat source will not be considered for simplicity, i.e., 0w = , so Eq. (4) 
can be rewritten as  

00 0 0

* *
2 * * *1 1 0|f f fft t tt

tt t t

T T TT Td dt TT d T d dt T d dt
k t k n nΩ Ω Γ Γ

 ∂ ∂ ∂
∇ + Ω − Ω + Γ − Γ = ∂ ∂ ∂ 

∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫         (5) 

3 IGABEM for unsteady temperature field 
3.1 Brief on NURBS basis functions 

The knot vector ( ) { }1 + +1= =0,..., ,..., 1 T
i n pξ ξ ξ ξ =k is defined as a set of non-decreasing 

numbers that are between zero and one. Here, i is the knot index, iξ  is the ith knot, n is 
the number of basis functions, and p is the polynomial order. The NURBS basis function 

, ( )i pR ξ  is a weighted average of the B-spline basis functions, is defined as [Hughes, 
Cottrell and Bazilevs (2005)] 
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where ( )0 1i iw w< ≤  is the weight, ( )i ,pN ξ  is the ith B-spline basis function of degree 
p, which is defined recursively as [Hughes, Cottrell and Bazilevs (2005)] 
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The two-dimensional NURBS basis functions can be constructed by taking the tensor 
product of two one-dimensional B-spline basis functions as [Hughes, Cottrell and 
Bazilevs (2005)]  
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                                                                       (8) 

where ,i jw  are the two-dimensional weights; , ( )i pN ξ  and , ( )j qN η  are the B-spline 
basis functions of order p  in the ξ  direction and order q  in the η  direction, 

respectively; , ( )j qN η  follows the recursive formula in Eq. (7) with knot vector ( )ηk . 

The definition of ( )ηk  is the same as that of ( )ξk . 

By using the NURBS basis functions, a NURBS curve of order p can be constructed as  

( ) ( ),
0

n

i p i
i

Rξ ξ
=

=∑x P                                                                                                       (9) 

where iP  are the coordinates of control point i. 

 

 

3.2 IGABEM for unsteady temperature field 

Taking *T as the fundamental solution of 2 + =0Tk T
t

∂
∇

∂
, yields [Jiang (2008)] 
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where ′x  and ft  are regarded as the source point of space and time respectively, x  and 

t  are field point of space and time, r ′= x - x  is the distance between source point and 
field point. 

Considering ( )* ,lim
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From Eq. (12), we can find that we can easily get the temperature at points ′∈Ωx  at 

time ft  when ( ),T tx  and 
( ),T t
n

∂
∂

x
 are known on all the boundaries. In order to obtain 

all the unknown temperature and heat flux on the boundary, source point ′x  should be 
placed on the boundary, thus a term ( )C ′x  appears and the boundary integral equation 
of a point on the boundary is 
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                        (14) 

where the term of domain integral represents the influence of initial condition and ( )C ′x  
is the same as that in steady heat transfer problem [An, Yu, Bui et al. (2018); Wu (2008)], 
which is related to the shape of boundary. 
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The boundaries are discretized into n non-overlapping elements  

1
, 0,

eN

e i j
e

i j
=

Γ = Γ Γ ∩Γ = ≠∑                                                                                  (16) 

The boundary variables are interpolated with shape functions. Time domain is uniformly 
divided into f steps. In each step T∆ , T  and q  are considered as be constant, in time 

step ( )1,i it t− , Eq. (14) can be rewritten as  
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Integrating *T  and *q  over the time domain, we can get [Wu (2008)] 
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where ( )pE b  is an exponential integral function, which can be calculated by the series 
method, shown as follows: 
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1
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where c  is the Euler constant. 

For 0 1b≤ ≤ , ( )pE b  can be calculated using the first few terms of the series shown in 
Eq. (19a). In this study, we use the first 10 terms of the series. For 1b > , the method of 
series is not good, and ( )pE b  can be calculated with the following formula: 



 
 
 
936                                                                             CMC, vol.62, no.2, pp.929-962, 2020 

( )=p b

AE b
Bbe

                                                                                                               (20) 

with  
4 3 2= 8.57332874 18.05901697 8.6376089 0.26777373A b b b b+ + + +                  (21a) 

4 3 29.57332234 25.63295614 21.09965308 3.96849692B b b b b= + + + +           (21b) 

Substituting *
iT  and *

iq  into Eq. (17) and changing the integral on physical space to the 
integral on parent element, yield 
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where m  is the number of nodes in each element, l  is node number, 
l

eN  is the 

corresponding local shape function at node l  in element e , while 
l

eT  and 
l

eq are 

temperature and heat flux at node l  in element e , [ ]ˆ -1,1ξ ∈  is local coordinates, ( )ˆeJ ξ  

is the Jacobian transformation. 
NURBS basis function possesses the property of local support [Piegl and Tiller (1997)], 
so the temperature and heat flux on the boundary can be written as 
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Substituting Eq. (23) into Eq. (22), yields 
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where ξ̂ ′  is local coordinate of source point, e′  the element where source point located 

in, and the Jacobian of transformation ( )ˆeJ ξ  is given by 
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2 2

2 1ˆ
ˆ 2

e dx dyJ
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where 1ξ  and 2ξ  are the coordinate of the start and end point of element in parameter 
space respectively. 
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In terms of the IGABEM, the nodal points (i.e., control points) may not be situated on the 
boundary, the collocation points are hence defined as [Johnson (2005)]: 

1 2 ...i i i p
i p

ξ ξ ξ
ξ + + ++ + +′ =  1, 2,..., 1i n= −                                                                   (26) 

Applying the source point to the discrete nodes, Eq. (24) can be written in matrix form 
as follows: 

1i i i i i i−= +H T G q B T                                                                                                     (27) 

where iT  is the temperature vector of boundary nodes at time it , iq  the heat flux vector 

of boundary nodes at time it , 1i−T  the temperature of domain at time 1it − . iH , iG  and 
iB  are square matrixes, and their components are the integral of *

iT , *
iq  on boundary and 

*T  in domain respectively. Since the time step 1i it t t −∆ = −  used are spanned equally, 
iH , iG  and iB  are the same in each time step, that means iH , iG  and iB  can be only 

calculated once, but we need get iT  and iq  in each step, and then calculate the 
temperature of the domain for next step.  
The unknown values on the boundary at time it  can be obtained by solving Eq. (27), and 
then the temperature of interior points at time it  can also be calculated by Eq. (14). Thus, 
there is no need to match the meshes in the domain with the boundary meshes. 

 3.3 Numerical integration 

When the source point is situated in the integral element, strongly singular integral in iH  
and weakly singular integral in iG  will exist. In general, the singularity subtraction 
technique (SST) [Guiggiani and Casalini (1987); Yao and Wang (2010)] is used to 
evaluate strongly singular integral and the transformation approach proposed [Telles 
(1987)] is used to evaluate weakly singular integral.   
There is a domain integral term in boundary integral equation Eq. (24), thus the mesh of 
domain is inevitable. Using Coons body interpolation method [Long and Zhang (2017)], 
the coordinates of internal control points can be obtained with the coordinates of control 
points on the boundary, see the Appendix A. The mesh of domain can be obtained 
according to the internal control points. In this way, there is a question that how we can 
get the real temperature at control points of domain. In IGA, the value of control points 
for computing is a coefficient, not the real temperature. The value of internal control 
points is the real temperature using Eq. (24). In order to evaluate the domain integral in 
Eq. (24), it is required that extracting the coordinates of Gaussian integral points for 
domain integral and their corresponding weights, thus the temperature on the Gaussian 
integral points at time it  can be calculated by Eq. (24). The term of domain integral in Eq. 
(24) can be written as follows: 
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       (28) 
where eM  is the number of elements in domain, p  and q  are the degree in direction  

and η , l  and m  are control points number, ( ), 1
ine

l m iT t −  is the temperature of control point 

at thl  in direction ξ  and thm  in η , in element ine  at time 1it − , ,l mR  is the two-
dimensional NURBS basis function calculated by Eq. (8), ngp  is the number of 
Gaussian points in each element, gp  is the Gaussian point number, gpw  the 

corresponding weights of Gaussian points, ineJ  the Jacobian transformation mapping 
from the parent element to the physical space. 

ine d d dJ
dd d

= =
x x ξ

ξξ ξ 

                                                                                                      (29) 

It is worth noting that if the boundary condition is a constant, the boundary condition can 
be directly added to the control points. If the boundary condition is a function distribution, 
this method cannot work due to its particularities. In IGA, Lagrange multiplier method, 
penalty method, and Nitsche’s method [Nguyen, Kerfriden, Brino et al. (2014); Gu, Yu, 
Lich et al. (2018)] can be adopted to solve this problem, and the L2 projection method 
and collocation method are used in IGABEM [Lian, Kerfriden and Bordas (2016)]. 
Actually, in IGABEM, for the boundary with known boundary condition, we can 
immediately integrate it by boundary integral equation and only discrete the unknown 
value of this boundary, thereby avoiding the error caused by applying boundary condition. 
In the calculation of transient temperature field, BEM does not adopt finite difference 
approximation for time domain discretization, the integral can be obtained precisely with 
analytical method by considering the fundamental solution including the time effect in 
the equation. 

3.4 Numerical implementation 
Using the above theory and techniques, we summarize the entire process of calculation 
and show it as follows: 
(1) Read CAD input data including control points, knot vector of both boundary and domain. 
(2) Read material parameter, and determine time step. 
(3) Create boundary elements and domain elements.  
(4) Extract the Gaussian integration points of the domain integral and corresponding weights. 
(5) Create collocation points. 
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(6) Set collocation points as source points, loop over collocation points and elements of 
boundary. (a) If the boundary contains the collocation points, use SST for strong 
singularity and Tells scheme for weakly singularity. Use Gauss Legendre quadrature for 
non-singular integral. (b) Generate the global matrices iH  and iG . 
(7) Loop over source points (collocation points), and field points (internal Gaussian 
integration points), and generate iB  for calculating unknown values on collocation points. 
(8) Set internal Gaussian points as source points. 
(9) Loop over source points (internal Gaussian points), and field points (also internal 
Gaussian points), and generate iB  for calculating unknown values on internal Gaussian 
points at next time. 
(10) Loop over time.  
(11) Apply boundary conditions. 
(12) Use the temperature of domain at previous time step to calculate the unknown values 
on boundary at current time step. 
(13) Use the values of the boundary got from Step 12 and the temperature of domain at 
previous time step to calculate the inner temperature at current time step. 

4 Numerical results and discussions 
We perform several numerical examples for 2D transient heat transfer problems and 
discuss their computed results in this section. To show the applicability and effectiveness 
of the developed IGABEM, examples with both simple and complex geometries are 
considered. Unless stated otherwise the quadratic order NURBS basis functions are taken 
for all the implementation. For the numerical integration, 10 Gaussian quadrature points 
are used for each element, which is determined according to the numerical test. 

4.1 A square plate 
4.1.1 Zero initial temperature 
A square plate with width a=1 m as shown in Fig. 1 is considered. The problem 
conditions are set as follows: the Dirichlet boundary conditions =1T C  on the top side, 
and =0T C  on the bottom side; the Neumann boundary conditions 20q W m=  on the 
other sides, and the initial temperature of domain is 0 =0T C . =1λ , 1c = , 1ρ = , and 

=1k  are used. The analytical solution of these particular geometric and boundary 

conditions is ( ) ( ) ( ) 2 2

1

cos2, sin n t

n

n
T y t y n y e

n
α ππ

π
π

∞
−

=

= + ×∑  [Mansur, Vasconcellos, 

Zambrozuski et al. (2009)]. 
The initial knot vector for constructing the geometry of the considered problem is 

{ }= 0,0,0,1 4,1 4,1 2,1 2,3 4,3 4,1,1,1k  with the weights { }1,1,1,1,1,1,1,1=w . Fig. 
2 shows the NURBS and control points of boundary, collocation points and element edge, 
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and NURBS basic functions, and there are 10 elements on each side after refinement. The 
mesh of domain and related control points are represented in Fig. 3. 

 
Figure 1: Geometry schematic of a square plate with its Dirichlet and Neumann 
boundary conditions 

  
(a) Control points                          (b) Elements and collocation points 
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(c) NURBS basis functions 

Figure 2: Mesh and basis functions 

 
Figure 3: Mesh and control points of domain  

Fig. 4 represents the comparison between the obtained numerical results and analytical 
solution at different time and with different time step of t∆ . Interestingly, the developed 
IGABEM offers acceptable solutions as all the computed results are in good agreement 
with the exact solutions. It is clear from the results that the smaller the time step t∆  is, 
the higher accuracy is obtained by the IGABEM.  
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(a) t∆ =0.001 s                                      (b) t∆ =0.005 s 

          

 
(c) t∆ =0.01 s 

Figure 4: Comparision between the exact solution and IGABEM solutions 

Next, the effects of the boundary conditions on the transient response are analyzed. The 
boundary conditions of the square plate are modified as its change is then shown in Fig. 5. 
They are, for instance, ( )sinT xπ=  is applied on the top side and =0T C  is applied on 

the other sides. The initial temperature of domain is 0 =0T C . 

It should be noticed in this example that, since the temperatures at the corners of square are 
known, but the values of heat conduction are unknown, special corner treatment is required, 
which is reported in Walker et al. [Walker and Fenner (1989)], and see the Appendix B. 
The knot vector, weights and collocation points, elements, control points of boundary, 
mesh and control points of domain, all of them are the same as those in the above 
example. The time step t∆ =0.001 s is used. The distribution of temperature in the 
domain obtained by the developed IGABEM is compared with that derived from FEM 
(ANSYS) with 15×15 quadratic elements. As expected, a good agreement between both 
solutions is obtained.  
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In the present study, the time step is constant, too large time step may induce large error, 
while too small time step will lead to inaccurate calculation of exponential integral 
function. The suitable time step is determined according to the numerical test. When the 
boundary mesh gets finer, larger time step may be used.  

 

Figure 5: Geometry schematic of a square plate with its Dirichlet boundary conditions 

 

       
IGABEM                                                                     FEM 

(a) t=0.01 s 
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IGABEM                                                     FEM 

(b) t=0.05 s 

       
IGABEM                                                     FEM 

(c) t=0.10 s 

Figure 6: The comparison of the temperature distribution between the developed 
IGABEM and FEM 

4.1.2 Nonzero initial temperature 

Consider a square plate with width = ma π illustrated in Fig. 7. 0T C=   is applied on all 
the boundaries, and different from the previous study, the initial temperature of domain is 
set to be ( ) ( ) ( ), ,0 10sin sinT x y x y= . The exact solution of this particular problem is 
available and reported in Nguyen et al. [Nguyen, Bui, Truong et al. (2016)] as 
( ) ( ) ( ) 2, , 10sin sin tT x y t x y e−= , which is used for our comparison purpose. 



 
 
 
Analysis of Unsteady Heat Transfer Problems with Complex Geometries                     945 

 

Figure 7: Geometry of square plate and boundary conditions 

The number of elements on each side of plate after refinement is 10, the time step 
t∆ =0.02 s is taken for this analysis. Two points for instance, ( )0.5 ,0.5A π π  and 

( )0.25 ,0.25B π π , are selected to be the key points for the analysis, Fig. 8 depicts the 
temperature of two selected points at different time showing the comparison between the 
IGABEM results and analytical solution. Not surprisingly, the present method offers 
remarkable solutions in comparison with the exact formulation. Because the temperatures 
at all the edges are zero, the temperature at one point in the domain varies from the initial 
temperature to zero which is the final temperature with increasing the time, e.g., the 
initial temperatures are 10 C  and 5 C  at point A and B, respectively, so the temperature 
at point A and B reduces from 10 C  and 5 C  to zero with increasing the time, as shown 
in Fig. 8. 

 

Figure 8: Variation of the temperature of two key points at different time 
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4.2 A square plate with a circular hole 
We now show the applicability of the present approach to solve problems with more 
complicated geometries. By accomplishing it, we consider a square plate of 
0.2 m  0.2 m×  square plate with a circular hole in the center of the plate. The radius of 
the circular hole is set to be r=0.05 m. The material parameters are: the conductivity 

15k W m C=  , specific heat =125  c J kg Cρ
 and density 3 = 7800  kg mρ . 

=200T C  is applied on circular hole, and the initial temperature of domain is 

0 50T C=  . Due to its symmetry, a quarter of the model shown in Fig. 9 is considered 
and calculated. 
The knot vector of initial geometry in this case is 

{ }= 0,  0,  0,  1/ 9,  1/ 9,  1/ 3,  1/ 3,  2 / 3,  2 / 3,  7 / 9,  7 / 9,  1,  1,  1k , the weights are  

{ }11,1,1, ,1,1,1,1,1,1,1
2

=w . Two points A and B are taken into account for 

comparison with the results obtained by ANSYS FEM. Fig. 10 sketches the collocation 
points, control points and NURBS basis function of initial geometry. The mesh and 
control points on the boundary and in the domain are shown in Fig. 11. The mesh of 173 
quadratic elements in the FEM analysis is depicted in Fig. 12. The computed results of 

t∆ = 5 s are then shown in Fig. 13. In addition, the distribution of temperature at time 
200s derived from both the IGABEM and FEM are plotted in Fig. 14, respectively. A 
good agreement is obtained between the IGABEM result and the FEM result. 
As shown in Fig. 13, it is interesting to see that a similar variation of the temperature in 
the plate at two points A and B is obtained. The developed IGABEM, once again, offers 
good solutions and all the computed results agree well with the reference FEM solutions.  
The temperature at one point in the domain varies from the initial temperature (50oC) to 
the specified final temperature (200oC) with increasing the time. Because the distance is 
different between one point and the hole boundary, the temperature at one point is hence 
different at one time. The temperature in the area closer to the face (boundary) with the 
highest temperature will approach faster to the maximum temperature than those areas 
that are far from the particular boundary, e.g., the location of Point A to the hole 
boundary is closer than that of Point B, so the temperature at Point A is bigger than that 
of Point B until the same temperature is achieved at last, as shown in Fig. 13. 
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Figure 9: A quarter of geometry 

 

      
(a) Collocation points and elements                  (b) Control points of boundary 



 
 
 
948                                                                             CMC, vol.62, no.2, pp.929-962, 2020 

 
(c) NURBS basis functions 

Figure 10: Mesh and basis functions 

      
          (a) Control points                                         (b) Mesh and collocation points  
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(c) NURBS basis functions 

 
       (d) Mesh and control points of domain 

Figure 11: Mesh and control points after refinement 
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Figure 12: The FEM mesh 

 
Figure 13: Comparison of temperature variation between the IGABEM and FEM 

 

     
(a) IGABEM                                                     (b) FEM 

Figure 14: Distribution of temperature at time 100 s 



 
 
 
Analysis of Unsteady Heat Transfer Problems with Complex Geometries                     951 

4.3 Heat convection in a complex domain 
In the last example, the problem of multi-boundary with complicated geometry is 
considered. The geometry and boundary condition of considered structure are shown in 
Fig. 15, in which the unmarked boundaries are regarded as adiabatic boundaries. The 
properties of material are as follows: thermal conductivity is 391 W m C , density is 
8940 3kg m , and specific heat is 385.2 J kg C . The outer boundary and the inner 
boundary are built respectively, and it is noted that the outer boundary is constructed in a 
counterclockwise way, different from the inner boundary which is built in a clockwise 
way. Fig. 16 represents the control points, collocation points and NURBS basis function  
of the initial geometric boundaries. The Gaussian integration points for domain integral 
are extracted by IGA, and the initial elements and control points of domain are shown in 
Fig. 17. 

 

Figure 15: Geometry and boundary conditions 
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(a) Control points of boundary              (b) Collocation points and element 

 
(c) NURBS basis function of outer boundary 
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(d) NURBS basis function of inner boundary 

Figure 16: Control points and basis function of the boundary 

 

Figure 17: Control points and mesh of domain 

In order to enhance the accuracy of the solution, or a better result, the original elements are 
refined into 10 new elements, which are shown in Fig. 18. In this problem, the time step is 

t∆ =500 s. Also, Fig. 19 shows the mesh of FEM (1228 quadratic elements). The 
temperature distributions estimated at different time by the present IGABEM are compared 
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with the result computed by ANSYS FEM. The comparison results are hence plotted in Fig. 
20. As expected, the IGABEM results match well with the FEM reference solutions. 

   
(a)Mesh of boundary                         (b) Mesh of domain 

Figure 18: The refined mesh and collocation points 

 

Figure 19: Mesh of FEM 
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(a) IGABEM at t=5000 s                  (b) FEM at t=5000 s 

 
(c) IGABEM at t=10000 s                  (d) FEM at t=10000 s 

 
(e) IGABEM at t=20000 s                  (f) FEM at t=20000 s 

Figure 20: Comparison of the distribution of temperature at different time between the 
IGABEM and ANSYS FEM 

5 Conclusion and outlook 
In this paper, two-dimensional unsteady heat transfer problems have been solved with the 
IGABEM, in which the NURBS basis functions are used to approximate the geometry 
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and temperature fields. Arbitrarily complex geometries can be exactly represented and 
higher-order continuity is obtained. In IGABEM, the discretization of domain is required 
for unsteady heat transfer problem. This is different from the steady heat transfer problem, 
in which the discretization of domain is avoided. However, the internal values are 
obtained with the analytical formula according to the values on the boundaries, so the 
computations mainly focus on the discretized calculations on the boundaries. Through 
numerical examples, the obtained results and validated results with reference solutions 
show good performance and high accuracy of the proposed method. One interesting 
problem that left behind this contribution would be prefer to 3-D cases, which however 
has been scheduled for our future works.  
NURBS-based IGA only works well for quadrilateral domains. For the complex domain 
problems, there are two ways to deal with them to some extent, i.e., subdividing the 
design domain of complex topology into multiple quadrilateral patches [Manh, Evgrafov, 
Gersborg et al. (2011); Qian and Sigmund (2011)] and using trimmed surfaces [Seo, Kim, 
and Youn (2010)]. How to automatically construct NURBS parameterization of a 
complex design domain remains an open issue.  
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Appendix A 
The main idea of Coons body interpolation method is given. Assume that a domain is 
surrounded by four boundary curves, i.e., ( ),0C u , ( ),1C u , ( )0,C v , and ( )1,C v ; then 

the surface ( ),C u v  in the domain can be interpolated as [Long and Zhang (2017)]: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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                    (A.1) 

where ( )uα  and ( )vβ  are parameter functions which satisfy the following conditions: 

( ) ( )0 0 0α β= =                                                                                                         (A.2) 

( ) ( )1 1 1α β= =                                                                                                           (A.3) 

With the same interpolation method, we can use the control point on the boundary curves 
to obtain the internal control points. The control points on the boundary of region are 
denoted as ,i jP  ( 1, 2,...,i l= , and 1, 2,...,j m= ), where l  is the number of control 
points in the u  direction and m  is the number of control points in the v  direction. Set 

( ) ( )0 1 1u i l= − − , 1 01u u= − , ( ) ( )0 1 1v j m= − − , and 1 01v v= − ; the control points 
in the domain are obtained with the following interpolation formula:  
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, 1 0 1 0 1 0

, , ,1 , 0

, , ,j i m
i j

l j i m l l m
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                                   (A.4) 

Appendix B 
For geometry with corners, we put two overlap points with the same temperature but 
different heat conductions of both sides on the corner. If the temperature at corner is 
known, but the heat conductions on both sides of the corner are unknown, we can first 
calculate the heat conduction on one side, and then calculate the other side. The formula 
for calculating the heat conduction at corner is as follows [Walker and Fenner (1989)]: 

( )1 cos
sinu u vq T Tθ

θ
′ ′= −                                                                                            (B.1) 

( )1 cos
sinv u vq T T θ

θ
′ ′= −                                                                                             (B.2) 

where uT ′  and vT ′  are lengthwise gradient vectors which can be calculated with boundary 
temperature, uq  and vq  are normal gradient vectors shown in Fig. B1. 
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Figure B1: Lengthwise and normal gradient vector at a corner 
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