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Abstract: In this work, we address the frequency estimation problem of a complex single-
tone embedded in the heavy-tailed noise. With the use of the linear prediction (LP) property 
and -norm minimization, a robust frequency estimator is developed. Since the proposed 
method employs the weighted -norm on the LP errors, it can be regarded as an extension 
of the -generalized weighted linear predictor. Computer simulations are conducted in the 
environment of -stable noise, indicating the superiority of the proposed algorithm, in 
terms of its robust to outliers and nearly optimal estimation performance. 
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1 Introduction 
Frequency estimation from a finite number of complex sinusoids is an of importance 
research topic and attract much attention, in many applications such as array processing, 
digital communications, and biomedical engineering [Chan, So and Huang (2015); Qian, 
Huang and So (2016); Kay (1993)]. Among numerous techniques developed in the 
literature, the maximum likelihood (ML) and nonlinear least squares (NLS) [Stoica 
(2005)] are most representative ones. Nevertheless, since the frequency is estimated in 
terms of excessive iterations on a nonlinear cost function, both ML and NLS suffer from 
a high computational complexity. To decrease such high complexity requirements, [So, 
Chan and Ho (2005); So and Chan (2006)] suggest generalized weighted linear predictor 
(GWLP), whose main idea is reformulating the nonlinear problem as a linear one by 
employing the linear prediction (LP) property of the complex tone, while the frequency is 
updated iteratively according to the weighted least squares (WLS) technique. Although it 
provides the optimum estimation performance for Gaussian noise, it cannot work 
properly to -stable noise, which occurs in many practical scenarios [Nikias and Shao 
(1995); Laguna-Sanchez and Lopez-Guerrero (2014); Zoubir and Koivunen (2012)]. This 
is because the LS approach in GWLP is sensitive to outliers of impulsive noise. 
To resist outliers, the generalized version of the GWLP, referred to as the -GWLP [Chen, 
Yang and Huang (2018)], is devised by replacing the WLS with the weighted -norm 
( ) [Shao and Nikias (1993)]. The iteratively reweighted least squares (IRLS) 
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[Byrd and Payne (1979)] is then utilized in GWLP to obtain the estimate of the frequency. 
However, this method cannot be applied in the case of , due to the divergence of the 
IRLS method. In this work, we address the problem of extending -GWLP with 

 to . To guarantee the convergence of IRLS algorithm, we redefine the 
reweighting matrix by adding a small constant in each diagonal elements [Wu (2018)]. 
The rest of this paper is organized as follows. The development of the -GWLP is 
presented in Section 2, where the symmetric -stable (S S) distribution is taken as an 
illustration. In Section 3, computer simulations are carried out to demonstrate the 
effectiveness of the proposed scheme. Finally, conclusions are drawn in Section 4. 

2 Proposed method 
Without loss of generality, we start with the signal model: 

                                                                                                                         (1) 
where  is the observed data vector with  being the transpose 
operator,  is the signal, and  denotes 
the noise vector whose elements are independent identically distributed (IID) complex 
isotropic S S random variable, with zero location parameter and covariation matrix . 
Here  and  denote the shape parameter and dispersion of the noise, respectively. 
In this paper, the single complex tone is considered, whose -th element has the form of 

                                                                                                    (2) 

where ,  and  are the unknown amplitude, frequency 
and phase, respectively. The task is estimating the frequency  from observations . 
Then the LP property of  is expressed as 

                                                                                                                       (3) 

where . Let  and . The LP 
error vector between  and  is 

                                                                                                                    (4) 

where . As it is discussed in Shao et al. [Shao and Nikias 
(1993)], the LP error vector  follows the same distribution with the noise vector  which 
is S S distribution with covariation matrix . According to the statistical property of S
S distribution, the  entry of , denoted by , can be expressed as 

                                                                               (5) 

where  denotes the dispersion of residual . Employing the fact that  
and  as well as [Tsakalides (1995)],  has the form of 

                                                                                                   (6) 

where  denotes the matrix inverse operator,  and 



 
 
 
l1-norm Based GWLP for Robust Frequency Estimation                                                109 
                           

                                  (7) 

With the use of LP property in (4), our task can be converted from a nonlinear problem of 
estimating  into the linear one of estimating . 
According to (6),  is dependent on , since covariation matrix is not diagonal. 
Therefore, to ensure the optimum estimation performance, the dependence on  should 
be removed by whitening transform [Kessy, Lewin and Strimmer (2015)], which is 

                                                                                                                 (8) 
where  is the whitened noise. It is worth to point out that 
after whitening process in (8), the new residual  still follows the IID S Sα  distribution 
because of the linear combination in the pre-process [Shao and Nikias (1993)] . 
Employing the -norm on (8), the estimate of, denoted by , can be obtained by 
minimizing the cost function : 

                                                                                                   (9) 

where . Based on the definition of  in (8), 
 in the vector form can be expressed as 

                                         (10) 

where  denotes the Hermitian operator and 

                                                                               (11) 

is a diagonal matrix. From (11), we can see that once the whitened residual  in  is 
zero, goes to infinity, resulting in the divergence of the IRLS method. Therefore, to 

this problem, we define  with 

                                                                                                (12) 

where  is chosen as a small positive constant. 
Substituting (4) into (10) yields 

                                                                                 (13) 

where 
                                                                                                                (14) 

With 
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                                                           (15) 

Then the -th iteration estimate of , denoted by , can be obtained by 
minimizing (9) using the IRLS [Merle and Spath (1974)], 

                                                                                                        (16) 

where 

                                                                                           (17) 

With 

                                (18) 

                                  (19) 

                                                                                                 (20) 

                                                                                                         (21) 
The steps of the proposed algorithm is summarized in Tab. 1. 

Table 1: Summary of proposed algorithm 

(i) Find the initial estimation  as ; 

(ii) Compute  using (17)-(21); 

(iii) Update ( )ˆ kρ using (16); 

(iv) 
Repeat Steps (ii)--(iii) until the relative error 

 with  being the tolerance; 

(v) 
Obtain the frequency estimate, denoted by , 
using , where  is the angle in 
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3 Simulation results 
Computer simulations have been conducted to assess the estimation performance of the 
proposed scheme. The mean square error (MSE) and bias of ω̂  are employed as the 
performance metrics, defining as { }2ˆ( )E ω ω−  and { }ˆEω ω− , respectively. The Cramer-
Rao lower bound (CRLB) [Kozick and Sadler (2016)] for ω̂  is included as the 
benchmark while the comparison with the GWLP, and -GWLP are also provided with 

1.4p =  [Chen and So (2016)]. The proposed method, GWLP and -GWLP employ the 
same stopping criterion when the tolerance 610ε −=  is reached. The signal is generated 
according to (2) with 1A = , 1.25ω =  and 0.5θ = . It is worth pointing out that since 
the second-order power of the S Sα  model diverges, the geometric SNR (GSNR) 
[Gonzalez and Gonzalez (2006)] is employed to produce different values of γ . The 
GSNR is defined as. 

2

1 1

g

AGSNR
Cασ

−
=                (22) 

 

Figure 1: Relative error vs. iteration number at GSNR=15 dB 
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Figure 2: Relative error vs. iteration number at α =1 

where 1.78gC ≈  and 
1
ασ γ=  All our results are averages of 5000 Monte Carlo trials 

with a data length of N=50. 
First of all, the convergence of the proposed algorithm and the other two methods are 
investigated. Fig. 1 shows the relative error vs. iteration number for different values of α  
at GSNR=15 dB, while those in Figs. 2 and 3 study the environments of different GSNR 
and different p  with 1α = , respectively. It is indicated in Figs. 1, 2 and 3 that the 
proposed method always converges and it has a faster convergence rate, when GSNR, α  
and p  becomes larger. 

 

Figure 3: Relative error vs. iterations at α =1 and GSNR=15 dB  
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Second, we study the frequency estimation performance for different GSNR conditions 
with 1α = . Fig. 4 plots the MSE of ω̂  vs. GSNR. It is seen that in the presence of S Sα  
noise, the -GWLP significantly outperforms the GWLP and -GWLP methods due to 
the smaller gap between the MSE of ω̂  and CRLB. In the case of the lower GSNR, say, 
GSNR<10 dB, the proposed method performs better than the other two schemes. In Fig. 5, 
the corresponding frequency biases are shown. It can be observed that the biases of the -
GWLP, GWLP and -GWLP were negligible at sufficiently high GSNRs, i.e., GSNR>15 
dB, indicating that the unbiasedness of all three frequency estimation methods. 
Finally, we study the performance for different α  and data length. 

 

Figure 4: MSE of estimated frequency vs. GSNR at α =1 

 

Figure 5: Bias of frequency vs. GSNR  
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The MSEs of frequency vs. α  are plotted in Fig. 6, where the parameters are same with the 
previous test with GNSR=15 dB. It is observed that the -GWLP performs best among the 
GWLP and -GWLP, indicating the robustness of our algorithm. Fig. 7 shows the MSE of 
ω̂  vs. data length at GSNR=15 dB. It is seen that the -GWLP is again superior to the 
other two algorithms. Furthermore, the GWLP method is not stable even in large data 
length, verifying its sensitivity to outliers. Note that the corresponding bias of frequency is 
not included here because they were similar to those in the second test. 

 

Figure 6: MSE of estimated frequency vs. α  at GSNR=15 dB  

 

Figure 7: MSE of estimated frequency vs. N  at GSNR=15 dB  

In summary, in the scenarios of different α , the -GWLP is robust and nearly optimal. 
At the lower GSNR or smaller data length, the proposed method still performs better than 
all other estimators. Moreover, simulation results indicate that our algorithm is not very 
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sensitive to the estimated value of α . 

4 Conclusion 
In this paper, with the use of the -norm minimization on the whitened linear prediction 
errors, a robust and nearly optimal frequency estimator, namely, -GWLP, is devised, 
for the single complex sinusoid in the presence of the S Sα  noise. Simulation results 
indicate that the -GWLP can resist outliers and is superior to the original GWLP, and 

-GWLP estimators. It is worth to point out that although the single complex tone is 
taken as an illustration in this paper, our method can also be extended to the multiple 
complex-valued and real-valued scenarios. 
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