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Abstract: This paper proposes a strategy for machine learning in the ciphertext domain. 
The data to be trained in the linear regression equation is encrypted by SHE homomorphic 
encryption, and then trained in the ciphertext domain. At the same time, it is guaranteed 
that the error of the training results between the ciphertext domain and the plaintext domain 
is in a controllable range. After the training, the ciphertext can be decrypted and restored to 
the original plaintext training data. 
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1 Introduction 
As one of the artificial intelligence technologies, machine learning has been rapidly 
developed in recent years and widely used in medicine [Bonawitz, Ivanov, Kreuter et al. 
(2017); Zhang, Yang and Chen (2016); Phong, Aono, Hayashi et al. (2017)], Internet of 
things [Shokri and Shmatikov (2015)] and cyberspace security [Liu, Jiang, Chen et al. 
(2017); Li, Li, Huang et al. (2017)]. Among them, the linear regression technique is 
particularly suitable for regression problems because it can output a continuous value. 
Therefore, it is widely used in practical scenarios, such as predicting continuous values of 
house price, temperature and sales. 
But machine learning models like linear regression unconsciously record some training 
data, and some training data involves people’s privacy. It is inevitable that machine 
learning itself is vulnerable to security threats. In recent years, the security defense and 
privacy protection of machine learning have brought certain difficulties. The current 
researches on machine learning security defense and privacy protection are still in their 
infancy, and there are many problems to be solved, including the establishment of a 
sound evaluation mechanism. We should seek effective confrontation training methods 
and efficient encryption methods to protect user privacy. The most direct and effective 
way to protect privacy is to use encryption technology. However, current homomorphic 
encryption technology has too much computational overhead and cannot directly perform 
some non-polynomial operations in computer learning. User privacy is often protected at 
the expense of the accuracy of the target model. Therefore, researching efficient 
encryption methods to protect user privacy is an important research issue. 
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This paper proposes a Somewhat Homomorphic Encryption method to encrypt the data 
that needs to be trained and uses ciphertext data to train in the linear regression equation, 
while ensuring that the error between the training result and the original plaintext data’s 
training result is in a controllable range. And after the training ciphertext is decrypted, it 
can be restored to the original plaintext training data without loss. 
Below we will elaborate on this article in four aspects. The second part is related work 
and the third part is the application framework and specific process of ciphertext in linear 
regression equation. The fourth part is a summary of the work we have done. 

2 Related work 
2.1 Somewhat homomorphic encryption 
Homomorphic encryption is a public-key cryptography that allows essential mathematical 
operations on data in the encrypted domain. As a homomorphic encryption, certainly, SHE 
(Somewhat Homomorphic Encryption) can satisfy the finite times of addition and a small 
number of multiplication operations on ciphertexts. It is based on a ring learning with errors 
(ring-LWE) homomorphic cryptosystem [Lindner and Peikert (2011)] and parametrized by 
the ring 𝑅𝑅𝑞𝑞 ≜ ℤ𝑞𝑞[𝑥𝑥]/〈𝑥𝑥𝑛𝑛 + 1〉. In this ring, the dimension n is a power of 2, an modulus 
prime number q and an error parameter σ that makes a definition of a discrete Gaussian 
error distribution 𝜒𝜒 = 𝐷𝐷ℤ𝑛𝑛,𝜎𝜎  with standard deviation σ.  According to a prime t<q, the 
message space of the scheme can be defined as 𝑅𝑅𝑡𝑡 = ℤ𝑡𝑡[𝑥𝑥]/〈𝑓𝑓(𝑥𝑥)〉. The goal of choosing 
these parameters (depending on the security parameter 𝜅𝜅) in such a way is to guarantee 
correctness and security of SHE.  

SH.Keygen (1κ): Sample a ring element 𝑠𝑠
$
←𝜒𝜒 and set the secret key 𝑠𝑠𝑠𝑠 ≜ 𝑠𝑠. Sample a 

uniformly random ring element a1 ← Rq and an error 𝑒𝑒 ← 𝜒𝜒. Meanwhile, compute the 
public key 𝑝𝑝𝑠𝑠 ≜ (𝑎𝑎0 = −(𝑎𝑎1𝑠𝑠 + 𝑡𝑡𝑒𝑒),𝑎𝑎1). 
Publish pk and keep sk secret. 
SH.Enc (pk, m): Recall that our message space is 𝑅𝑅𝑡𝑡. Namely, we obtain a polynomial of 
degree n with coefficients in ℤt by encoding our message. 
Given the public key 𝑝𝑝𝑠𝑠 = (𝑎𝑎0,𝑎𝑎1) and a message 𝑚𝑚 ∈ 𝑅𝑅𝑞𝑞 , the encryption algorithm 
samples 𝑢𝑢 ← 𝜒𝜒 and 𝑓𝑓,𝑔𝑔 ← 𝜒𝜒, and calculates the ciphertext 
𝑐𝑐𝑡𝑡 = (𝑐𝑐0, 𝑐𝑐1) ≜ (𝑎𝑎0𝑢𝑢 + 𝑡𝑡𝑔𝑔 + 𝑚𝑚,𝑎𝑎1𝑢𝑢 + 𝑡𝑡𝑓𝑓) (1)  
SH.Dec (𝑠𝑠𝑠𝑠, 𝑐𝑐𝑡𝑡 = (𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝛿𝛿): To decrypt, we first calculate  

𝑚𝑚 = �𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖 ∈ 𝑅𝑅𝑞𝑞

𝛿𝛿

𝑖𝑖=0

 (2) 

and obtain the message as 𝑚𝑚�  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡). 
SH.Add ( 𝑝𝑝𝑠𝑠, 𝑐𝑐𝑡𝑡0, 𝑐𝑐𝑡𝑡1 ): Given two ciphertexts 𝑐𝑐𝑡𝑡 = (𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝛿𝛿) and 𝑐𝑐𝑡𝑡′ =
(𝑐𝑐0′ , 𝑐𝑐1′ , … , 𝑐𝑐𝛾𝛾′ ). Assume that 𝛿𝛿= 𝛾𝛾, otherwise pad the shorter ciphertext with zeroes. 
Through the simple component-wise addition of the ciphertexts, homomorphic addition 
can be finished. With this method, compute and output 
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𝑐𝑐𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 = �𝑐𝑐0+𝑐𝑐0′ , 𝑐𝑐1+𝑐𝑐1′ , … , 𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚(𝛿𝛿,𝛾𝛾)+𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚(𝛿𝛿,𝛾𝛾)
′ � ∈ 𝑅𝑅𝑞𝑞

𝑚𝑚𝑎𝑎𝑚𝑚(𝛿𝛿,𝛾𝛾)    (3) 

2.2 Simple linear regression equation 
First, let’s assume that we have a line 
𝑦𝑦� = 𝜃𝜃1𝑥𝑥 + 𝜃𝜃2    (4) 
The Fig. 1 corresponding to this Eq. (4) is a straight line called the regression line. Where 
𝜃𝜃1 is the slope of the regression line and θ2 is the intercept of the regression. Then we need 
to determine if the line fits the points well. We can input a 𝑥𝑥 to get the corresponding 𝑦𝑦 
value and then calculate the error between the two based on the real y value. The smaller 
the error, the better the straight line fit. 

 
Figure 1: simple linear regression equation 

Therefore, we can derive a loss function y-𝑦𝑦�, the actual value minus the value calculated 
using the fit function is the error between the two. Even we can calculate the sum of all 
the errors, the smaller the value, the better the overall fit. The cost function is 

𝐽𝐽(𝜃𝜃1,𝜃𝜃2) =
1

2𝑚𝑚
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑚𝑚

𝑖𝑖=0

    
(5) 

where i represents a sample in the range [0, m]. When the error function J(θ1,θ2) is the 
smallest, the corresponding value of 𝜃𝜃1  and 𝜃𝜃2  is the optimal parameter. To get the 
optimal solution for 𝜃𝜃1 and 𝜃𝜃2, we use the gradient descent method to solve the linear 
regression equation.  

𝜃𝜃1 = 𝜃𝜃1 − 𝛼𝛼
𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃1

 
(6) 

𝜃𝜃2 = 𝜃𝜃2 − 𝛼𝛼
𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃2

 
(7) 

where α is the learning rate. When the learning rate is too large, it does not converge, that 
is, it cannot find a global minimum or local minimum. If the learning rate is too small, it 
will waste a lot of time for calculation. And, the calculation method of the two partial 
derivatives is as follows 

𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃1

=
1
𝑚𝑚
�𝑥𝑥(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑚𝑚

𝑖𝑖=1

 
(8) 
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𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃2

=
1
𝑚𝑚
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑚𝑚

𝑖𝑖=1

 
(9) 

3 System framework 
Generally, in the simple linear regression equation, the plaintext x is calculated by the 
linear regression equation to obtain the trained data 𝑦𝑦�. Now that the plaintext data x is 
encrypted into 𝑐𝑐𝑚𝑚, the encrypted data is put into the linear regression equation to train a 
data 𝑐𝑐𝑦𝑦� . We hope to ensure that 𝑐𝑐𝑦𝑦�  can still get the data trained in plaintext after 
decryption. The encryption process is represented by SHE encryption, the public key is 
pk and the private key is sk. The approximate flow chart is shown below. 
The x and the predicted value 𝑦𝑦� are encrypted with SHE, and encrypted to be represented 
as 𝑐𝑐𝑚𝑚，𝑐𝑐𝑦𝑦� . 
𝑐𝑐𝑚𝑚 = (𝑐𝑐0, 𝑐𝑐1) ≜ (𝑎𝑎0𝑢𝑢 + 𝑡𝑡𝑔𝑔 + 𝑥𝑥,𝑎𝑎1𝑢𝑢 + 𝑡𝑡𝑓𝑓) (10) 
𝑐𝑐𝑦𝑦� = (𝑐𝑐0, 𝑐𝑐1) ≜ (𝑎𝑎0𝑢𝑢 + 𝑡𝑡𝑔𝑔 + 𝑦𝑦�,𝑎𝑎1𝑢𝑢 + 𝑡𝑡𝑓𝑓) (11) 
Therefore, the linear regression equation of the encryption domain can be expressed as 
𝑐𝑐𝑦𝑦� = θ1𝑐𝑐𝑚𝑚 + θ2 (12) 
The error function of the corresponding ciphertext domain is 

𝐽𝐽(𝜃𝜃1,𝜃𝜃2) =
1

2𝑚𝑚
�(𝑐𝑐𝑦𝑦𝑖𝑖 − �̂�𝑐𝑦𝑦)
𝑚𝑚

𝑖𝑖=0

 
(13) 

The error function after partial derivation in the encryption domain is 

In order to prove that the correct plaintext can still be obtained after decrypting the data 
in the ciphertext domain, we combine the partial derivative formula with the SHE 
encryption method to perform the following calculations. 

𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃1

=
1
𝑚𝑚
�𝑐𝑐𝑚𝑚(𝑐𝑐𝑦𝑦𝑖𝑖 − �̂�𝑐𝑦𝑦)
𝑚𝑚

𝑖𝑖=1

 
 

(14) 

𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃2

=
1
𝑚𝑚
�(𝑐𝑐𝑦𝑦𝑖𝑖 − �̂�𝑐𝑦𝑦)
𝑚𝑚

𝑖𝑖=1

 
 

(15) 

𝜕𝜕𝐽𝐽
𝜕𝜕𝜃𝜃1

=
1
𝑚𝑚
�(𝑎𝑎 + 𝑥𝑥, 𝑏𝑏)[(𝑎𝑎 + 𝑦𝑦, 𝑏𝑏) − (𝑎𝑎 + 𝑦𝑦�, 𝑏𝑏)]
𝑚𝑚

𝑖𝑖=1

 

  
𝑆𝑆𝑆𝑆.𝑎𝑎𝑎𝑎𝑎𝑎
�����

1
𝑚𝑚
�(𝑎𝑎 + 𝑥𝑥, 𝑏𝑏)�𝑎𝑎 + (𝑦𝑦 − 𝑦𝑦)�, 𝑏𝑏�
𝑚𝑚

𝑖𝑖=1

 

𝑆𝑆𝑆𝑆.𝑎𝑎𝑑𝑑𝑑𝑑
�����

1
𝑚𝑚
�𝑥𝑥(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)                           
𝑚𝑚

𝑖𝑖=1

 

 
 
 

(16) 
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where 𝑎𝑎 = 𝑎𝑎0𝑢𝑢 + 𝑡𝑡𝑔𝑔 , 𝑏𝑏 = 𝑎𝑎1𝑢𝑢 + 𝑡𝑡𝑓𝑓 . It can be proved by the above formula that the 
optimal solution can still be found in the ciphertext domain. In addition, the ciphertext 
can still recover the original plaintext data after the training. 

4 Security analysis 
As a kind of public key encryption, SHE consists of public key and private key. The 
public key pk is generated by a pseudo-random ring-LWE sample, and the private key sk 
is selected from the Gauss error distribution. If an attacker does not have a private key, he 
will usually attack it by replacing the public key pair (u, v), but the result is still a random 
ring LWE sample. This ensures that the attacker cannot obtain the correct private key to 
protect the secret data. Therefore, she can provide a certain degree of security. 

5 Conclusion and future work 
This paper proposes a strategy for machine learning in the encryption domain. It is 
mainly for the comparison of the basic one-dimensional linear regression equation. It is 
proved that the machine learning in the ciphertext domain is feasible by the algorithm in 
the paper, and the ciphertext data after the machine training can also recover the original 
plaintext. This provides some protection for improving the safety of machine learning. 
Since multiple linear regression equations have important significance in the field of data 
prediction, we will further study the encryption domain of multiple linear regression 
equations in the future to ensure a more reliable role in protecting data security. 
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