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The m-delay Autoregressive Model with Application
Manlika Ratchagit1, Benchawan Wiwatanapataphee1 and Nikolai Dokuchaev1, *

Abstract: The classical autoregressive (AR) model has been widely applied to predict
future data usingm past observations over five decades. As the classical AR model required
m unknown parameters, this paper implements the AR model by reducing m parameters
to two parameters to obtain a new model with an optimal delay called as the m-delay AR
model. We derive the m-delay AR formula for approximating two unknown parameters
based on the least squares method and develop an algorithm to determine optimal delay
based on a brute-force technique. The performance of them-delay AR model was tested by
comparing with the classical AR model. The results, obtained from Monte Carlo simulation
using the monthly mean minimum temperature in Perth Western Australia from the Bureau
of Meteorology, are no significant difference compared to those obtained from the classical
AR model. This confirms that the m-delay AR model is an effective model for time series
analysis.

Keywords: Delay autoregressive model, least squares method, brute-force technique.

1 Introduction
Time series analysis has been widely applied in many branches such as agriculture,
environment and so on. For agriculture application, the rainfall forecast is one of a popular
topic in time series analysis for the irrigation management propose. Based on using
historical rainfall data, a time series model has been used to predict the amount of rainfall
for agriculture target planning. This would probably help the farmer to deal with their
resources and gain more agricultural products [Moeletsi, Mellaart, Mpandeli et al. (2012)].
For Environment, the weather forecast is important as the temperature is the key factor for
government planning and management in many aspects such as tourism, vegetation and
public health [Ustaoglu, Cigizoglu and Karaca (2008)].

Various approaches based on time series methods have been proposed to fit the data set.
These approaches include Box-Jenkins method, neural networks, hybrid technique and
fuzzy time series method. Box-Jenkins method is one of the famous methods consisting of
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autoregressive (AR) model, moving average (MA) model, autoregressive moving average 
(ARMA) model and autoregressive integrated moving average (ARIMA) model [Box, 
Jenkins and Reinsel (2008)]. This method has been applied to a wide range of applications 
including economic especially a stock process sequence [Ip, Zhang, Sowinski et al.
(2015)], engineering [Amo-Salas, López-Fidalgo and Pedregal (2015); Bacher, Madsen and 
Nielsom (2009); de Waele and Broersen (2003)], industry [Acedański (2013)] and scientific 
[Hurvich and Tsai (1989) and Sawa (1978)]. The artificial neural networks (ANN) 
approach is the main tool for nonlinear data as it is a brain-inspired system [Tealab 
(2018)]. The hybrid technique has been established since the individual model may 
not be adequate to analyze all the actual observations [Taskaya-Temizel and Casey 
(2005)]. This method combines at least two individual forecast methods to improve 
forecasting accuracy [Pan, Zhang and Xia (2009)]. ANN approach integrated with either 
AR or ARIMA method are called AR-ANN model [Qi and Zhang (2001)] or ARIMA-
ANN model [Zhang (2003)]. Fuzzy time series is a forecasting method using fuzzy 
principle as the basis. It is suitable for numerical and linguistic data [Saxena and Easo 
(2012)]. Apart from the development of forecasting methods, various estimating model-
parameter approaches used in the time series model have been proposed such as the 
maximum likelihood method, the method of moment and the Yule-Walker procedure. For 
the maximum likelihood method, studies aim to find the parameter values giving the 
distribution that maximize the probability of observing the data. The method of moment is 
a simple procedure. By equating the sample moments to the corresponding population 
moments, the estimating model parameter is solved [Cryer and Chan (2008)]. The Yule-
Walker method (or autocorrelation method ) fits an AR model to the window input data by 
maximizing the error in the least squares sense [Broersen (2008)].

Time series data are commonly classified into two groups; stationary and non-stationary 
data. For stationary data, its mean and variance are consistent. Its sequence does not 
reveal an upward (or downward) trend and seasonal pattern. In contrast to the stationary 
data, mean and variance of non-stationary data vary over time. Two common ways 
to check the stationary of the data are time series plot and roots of the characteristic 
equation [Maddala and Wu (1999)]. As possible roots of the characteristic equation may 
be real and/or complex numbers, the data is stable if all real roots are greater than one 
or the modulus of each complex root is greater than one. The data is considered to be 
non-stationary data if at least one root falls between minus and plus one or fall inside the 
unit circle [Box, Jenkins and Reinsel (2008)]. As the AR model required stationary data 
to predict future data, single/double differencing method and mathematical transformation 
are two common procedures to convert non-stationary data to stationary data [Hassler 
(1994)]. The differencing technique is used to remove the trend component of the data 
while mathematical transformations including the square/cube root transformation and log 
transformation are applied when the variance of data is unstable [Pourahmadi (2001)].

As the classical AR model uses more parameters in the formula to predict future 
observation, statistical techniques have been applied to obtain these parameters. In this 
study, we propose the m-delay AR model in which only two parameters are determined.
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The m-delay AR formula based on the least squares method is derived and an optimal
delay algorithm based on a brute-force technique is developed. The remainder of this paper
is structured as follows. Section 2 concerns the derivation of the m-delay AR model to
obtain two parameters of them-delay AR model. The performance of parameter estimation
is presented in Section 3 and the empirical study is reported in Section 4. Discussion and
conclusion are given in Section 5.

2 Derivation of the m-delay autoregressive (MAR) model

Generally, an explicit formula of the present value xt is determined by the standard AR
model [Box, Jenkins and Reinsel (2008)] , i.e.,

xt = εt +
m∑
i=1

φixt−i, (1)

where xt represents the present value at instant time t, {xt−1, xt−2, . . . , xt−m} is the list
of the past observations, φi(i = 1, . . . ,m) are ith coefficients of AR model and εt is a
gaussian white noise process which is assumed to be the normal distribution, N(0, σ2).

In this study, we propose am-delay AR model to approximate the present value xt by using
only the first term at t− 1 and the last term at t−m,

xt = εt + φ1xt−1 + φmxt−m. (2)

The first and the last coefficients of the AR model are estimated by Eq. (3) based on the
least squares method [Khalil and Moraes (1995)]. The principle concept of the least squares
procedure is to minimize the sum of square error functions

Sc(φ̂1, φ̂m) =

n∑
t=m+1

[
xt − φ̂1xt−1 − φ̂mxt−m

]2
. (3)

To find the optimal values of φ̂1 and φ̂m in Eq. (3). We differentiate Eq. (3) with respect to
φ̂1 and φ̂m and set them to zero. This step is shown in Eq. (4).


∂Sc

∂φ̂1
= −2

n∑
t=m+1

[
xt − φ̂1xt−1 − φ̂mxt−m

]
xt−1 = 0,

∂Sc

∂φ̂m
= −2

n∑
t=m+1

[
xt − φ̂1xt−1 − φ̂mxt−m

]
xt−m = 0.

(4)
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We finally obtain the m-delay formula for approximating φ̂1 and φ̂m, i.e.,

φ̂1 =

n∑
t=m+1

xtxt−1

n∑
t=m+1

x2t−m −
n∑

t=m+1
xt−1xt−m

n∑
t=m+1

xtxt−m

n∑
t=m+1

x2t−1

n∑
t=m+1

x2t−m −
[

n∑
t=m+1

xt−1xt−m

]2 ,

φ̂m =

n∑
t=m+1

x2t−1

n∑
t=m+1

xtxt−m −
n∑

t=m+1
xtxt−1

n∑
t=m+1

xt−1xt−m

n∑
t=m+1

x2t−1

n∑
t=m+1

x2t−m −
[

n∑
t=m+1

xt−1xt−m

]2 .

(5)

We call φ̂1 and φ̂m as the new approximation of the m-delay AR coefficients.

As the standard AR model is a stationary time series process, we now determine the
stationarity condition of them-delay AR model. In this study, we investigate the stationarity
condition of our proposed model (2) by computing the roots of AR characteristic equation.

To discuss the stationarity, we define the AR characteristic polynomial as

φ(t) = 1− φ1t− φmtm, (6)

where the characteristic equation is

1− φ1t− φmtm = 0. (7)

To solve Eq. (7), a sufficient stationarity condition of our model is

| φ1 | + | φm |< 1, (8)

where the delay (m) is between 3 and 120.

We illustrate the sufficient stationarity condition in Fig. 1.
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(a) (b)

Figure 1: Linear relationship between φ1 and φm for different delays (m); (a) m is even
number, (b) m is odd number

To illustrate the performance of the MAR model and the AR model, two different errors
based on the root mean square error are computed by

RMSE =

√√√√√ L∑
l=1

[(
φ1 − φ̂(l)1

)2
+
(
φm − φ̂(l)m

)2]
L

, (9)

Em =

√√√√√ n∑
t=m+1

(x̂t − xt)2

n−m
, (10)

where φ1 and φm are parameters of the MAR model, φ̂1 and φ̂m are approximated
parameters, x̂t are the forecast observations, n is the sample size, m is the delay and L
is the number of simulations.

3 Parameter estimation
This section concerns the effectiveness of the m-delay formula (see Eq. (5)) via Monte
Carlo simulation, and the optimal delay using brute-force technique.

3.1 Effectiveness of the m-delay formula (φ̂1 and φ̂m)

To examine the coefficients φ1 and φm obtained from the m-delay formulation (see Eq.
(5)), we set the initial value of m data to zero (m � n). The observations xt determined
by Eq. (2) are generated using Monte Carlo technique. Fig. 2 presents the examination
process using computation scheme as shown in Tab. 1. We perform the same process for
the different sample sizes with different delays.
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Figure 2: The flowchart for examining the effectiveness of the m-delay formulation

Table 1: Computation scheme used in generating Fig. 3
Sample size 50 100 300 500 1000 2000 5000 10000

Delay
5 5 5 5 5 5 5 5
20 20 20 20 20 20 20 20

120 120 120 120 120 120
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The simulation results indicate that the average φ̂1 and φ̂m approach the actual φ1 and φm.

Figure 3: Scatter plots of the average m-delay coefficients φ̂1 and φ̂m: (a) m = 5; (b)
m = 20; (c) m = 120

Fig. 3 illustrates the relationship between average twom-delay coefficients, φ̂1 and φ̂m, and
sample size for three different delays including m = 5, 20, 120. For the case of delay 5 and
20, the sample size starts from 50 to 1000. Figs. 3(a)-(b) indicate that sample size greater
than 300 gives the reasonable results of approximated of φ̄1 and φ̄m. In case of the delay
120, the process starts with the sample size of 300. The estimated φ̄1 and φ̄m approach the
actual ones when the sample size about 500. It is noted that Eq. (5) is an effective formula
for approximating the m-delay parameter φ1 and φm.
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3.2 Determination of optimal delay (m)

To find the optimal delay, we develop an algorithm as shown below based on brute-force
technique by fixing the m0-delay AR parameter, φ1 and φm0 for the initial delay m0 and
select the sample size n and the prescribed delay

n

2
− 1.

Algorithm 1
Step 1 Prescribe sample size (n), initial delay (m0), the m-delay AR parameter

(φ1, φm0), count=0, set initial iteration (l = 0) , the maximum number of
iterations (L = 10000) and set xt = 0 for t=1,2,. . . ,m0

Step 2 Generate {xt}nt=m0+1 from Eq. (2)
Step 3 Set m=3

l = l + 1

Calculate φ̂1, φ̂m from Eq. (5) and x̂t which is function of φ̂1, φ̂m

Compute E3 =

√
n∑

t=m+1
(x̂t−xt)2

n−m where x̂t = φ̂1xt−1 + φ̂mxt−m

Set minE = E3

Step 4 m=m+1
Calculate φ̂1, φ̂m from Eq. (5)

Compute Em =

√
n∑

t=m+1
(x̂t−xt)2

n−m

If Em < MinE then minE=Em and minD=m

Step 5 If m <
n

2
− 1 (maximum delay) then go to Step 4

Step 6 If minD=m0

count=count+1 and mop=minD
If l ≤ L then go to Step 2.

Step 7 Compute the accuracy using Eq. (11).

This above algorithm begins with prescribing input parameters including the sample size
(n), the initial delay (m0) and the actual m-delay AR parameters (φ1, φm0) and setting
the values of all m0 observations to zero. We then generate the data set (xt) by Eq. (2).
The process starts with delay 3 at the first iteration. Two unknown parameters (φ̂1, φ̂m) are
calculated by Eq. (5) and the minimum error (minE) is obtained. We repeat the process by
increasing the delay by one. In each iteration, the minimum error (minE) and minimum
delay (minD) are obtained. The process stops when the delay equals the prescribed delay.
The process will succeed when the minimum delay equals to the initial delay, i.e., the
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optimal delay (mop) is obtained for the sample size n. We then go back to Step 2 until
reaching to the maximum number of iteration. Finally, the accuracy of delay estimation
based on the brute-force technique is computed by Eq. (11).

To illustrate the performance of a brute-force technique. We compute the accuracy on the
simulated data set for each different sample size. The accuracy of the delay estimation is
computed by

Accuracy(%) =
Number of success outcomes
Number of possible outcomes

× 100. (11)

Using a brute-force algorithm, our experiments show that sample size has a significant
effect on the accuracy of the m-delay AR model as shown in Fig. 4.

(a) (b)

Figure 4: The relationship between the percentage of accuracy and sample sizes of the
m-delay approximation

To investigate the effect of sample size on the accuracy of the m-delay approximation as
revealed in Fig. 4(a), we choose 24 sample sizes between 60 and 3000 giving the percentage
of accuracy from 27.85% to 99.90% and 0.22% to 99.90% for delay 5 and 20, respectively.
The percentage of accuracy with delay 100 and 120 is shown in Fig. 4(b). We found that
using sample size from 700 to 3000 gives the percentage of accuracy 6% to 99.90% and
0.10% to 99.90%, respectively. For delay 120, we choose various sample sizes to evaluate
its effect on estimation accuracy. We found that using sample size from 700 to 3000 gives
the percentage of accuracy from 0.10% to 99.90%.

4 Empirical study
In this section, we first test the performance of the MAR model comparing with the AR
model as shown in Algorithm 2. We then apply both models to approximate the monthly
mean minimum temperature in Perth, Western Australia.



496 CMES, vol.122, no.2, pp.487-504, 2020

4.1 Monte Carlo simulation

Algorithm 2 below compares the performance of the MAR model (based on only
2 parameters namely φ1 and φm) with the AR model (via m coefficient parameter,
φ1, φ2, . . . , φm).

Algorithm 2
Step 1 Prescribe sample size (n), parameter of AR model (φ1, φm0) ,the initial

delay (m0) and maxL, set L = 0, sumEAR = 0 , sumEMAR = 0 and
xt = 0 for t=1,2,. . . ,m0

Step 2 Generate {xt}nt=m0+1 from Eq. (2)
Step 3 Find root mean square error from AR model (RMSEAR)

Estimate the coefficient of the AR model(φ̂1, φ̂2, . . . , φ̂m0)
Compute RMSEAR

sumEAR = sumEAR +RMSEAR

Step 4 Find root mean square error from the MAR model (RMSEMAR)
Set m=3
Calculate φ̂1, φ̂m from Eq. (5)

Compute Em =

√
n∑

t=m+1
(x̂t−xt)2

n−m where x̂t = φ̂1xt−1 + φ̂mxt−m

If Em < MinE, Then minE = Em and minD=m
m=m+1

Step 5 If m <
n

2
− 1. Then go to Step 4

Step 6 Optimalmop=minD and CalculateRMSEMAR using the optimal m (mop)

Step 7 sumEMAR = sumEAR +RMSEMAR and L = L+ 1

Step 8 If L ≤ maxL. Then go to Step 2

Step 9 Compute average root mean square error of both models
RMSEAR = sumEAR/L and RMSEMAR = sumEMAR/L

This algorithm starts with determining input parameters including sample size (n),
actual parameters of AR with delay process (φ1, φm0) and setting the values of all m0

observations to zero. We then generate the data set (xt) by Eq. (2). To find the root
mean square error from the AR model (RMSEAR), we first estimate the model parameter
and we then compute the root mean square error by Eq. (10). In the MAR model, the
computation process of the optimal delay starts at delay 3. The unknown parameters (φ̂1,
φ̂m) are calculated by Eq. (5), and the minimum error (minE) and the minimum delay
(minD) are obtained. The process is repeated until the delay reaching to the prescribed
delay

n

2
− 1. This step returns the optimum delay with the smallest value of the error for



The m-delay Autoregressive Model with Application 497

each iteration (mop=minD) and we also calculate RMSEMAR using the optimal delay
(mop). This process goes back to Step 2 until the total iterations equal the maximum
number of iterations. Finally, we compute the average root mean square error of both
models.

Tab. 2 compares average root mean square error obtained from the AR model (RMSEAR)
and the MAR model

Table 2: Average root mean square of the AR model and the MAR model for different
sample sizes

size AR MAR size AR MAR size AR MAR

30 0.09364 0.08147 650 0.09978 0.09916 4000 0.09999 0.09989
50 0.09703 0.08897 700 0.09959 0.09929 4500 0.09996 0.09978
80 0.09834 0.09320 750 0.09983 0.09930 5000 0.09997 0.09989
100 0.09871 0.09468 800 0.09989 0.09939 5500 0.09996 0.99889
150 0.09908 0.09635 850 0.09981 0.09934 6000 0.09998 0.09991
200 0.09939 0.09737 900 0.09993 0.09948 6500 0.09999 0.09993
250 0.09953 0.09793 950 0.09987 0.09945 7000 0.09999 0.09993
300 0.09955 0.09820 1000 0.09988 0.09948 7500 0.09997 0.09992
350 0.09962 0.09847 1500 0.09990 0.09963 8000 0.09996 0.09991
400 0.09978 0.09878 2000 0.09992 0.09972 8500 0.10000 0.09995
450 0.09969 0.09880 2500 0.09994 0.09978 9000 0.09996 0.09992
500 0.09982 0.09901 3000 0.09995 0.09982 9500 0.09998 0.09994
550 0.09977 0.09905 3500 0.09995 0.09983 10000 0.09999 0.09995
600 0.09975 0.09908

The experimental results shown in Tab. 2 are generated using φ1 = 0.5, φm = 0.3,
m0 = 10 and L = 10000. We now use the independent sample t-test to confirm that the
results obtained from both models are not significantly different. The null hypothesis and
alternative hypothesis are RMSEAR = RMSEMAR and RMSEAR 6= RMSEMAR,
respectively.

The result of hypothesis testing is demonstrated in Tab. 3.

Table 3: Hypothesis test using t-test
Variable N Mean SD df t-test p-value

AR 40 0.0995 0.0011
78 -0.945 0.348

MAR 40 0.1208 0.1425

It indicates that there is not enough evidence to reject the null hypothesis at significance
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level 0.05 as p-value > 0.05. This means that our proposed MAR model is an efficient
technique for the time series prediction comparing to the AR model.

4.2 Validation of the m-delay AR model

This section concerns the prediction of the monthly mean minimum temperature in Perth,
Western Australia, using the data obtained from the Bureau of Meteorology, Australia
between January 1994 and June 2019 containing 306 observations. The data are divided
into two sets; training set and testing set. The training set, from January 1994 to December
2017, has 288 observations. The rest, January 2018 to June 2019, is the testing set consisting
of 18 observations. As the training data has a seasonal pattern as shown in Fig. 5(a), we
firstly deseasonalize the original data by taking the seasonal difference (xt − xt−12). The
result after transformation is shown in Fig. 5(b).

(a) (b)

Figure 5: Monthly mean minimum temperature in Perth from January 1994 to December
2017: (a) Original data; (b) Transformed data

As the AR model requires stationary data, we then need to check the features of the
transformed data: normal and independent [Razali and Wah (2011)]. To check whether
normal distribution of data, we apply the Shapiro-Wilk test. The result is revealed in Tab.
4.

Table 4: Normality test for transformed data

Variable
Shapiro-Wilk Test

Statistics df p-value
Transformed data 0.993 276 0.234

Tab. 4 indicates that transformed data are normally distributed as p-value=0.234. We now
check the independent of the transformed data by using one sample t-test. The result is
shown in Tab. 5.
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Table 5: Independent testing for one-sample group using t-test
Variable n Mean SD df t p-value

Transformed data 276 0.011 1.610 275 0.112 0.911

In Tab. 5, the p-value of 0.911 illustrates that the data are independent. We now can use
these transformed data that are normally distributed and independent to find the suitable AR
model.

4.2.1 Classical AR(9) model

It appears that the transformed data are suitable for this study. From our experiment, it is
found that the classical AR(9) model is applicable to this data set when φ̂1 = 0.1871, φ̂2 =
0.1916, φ̂3 = −01097, φ̂4 = 0.0628, φ̂5 = −0.0229, φ̂6 = −0.0789, φ̂7 = 0.0938, φ̂8 =
−0.0336 and φ̂9 = −0.00029934.

Table 6: Normality test of the residuals from the classical AR order 9

Variable
Shapiro-Wilk Test

Statistics df p-value
Residuals 0.993 276 0.221

Table 7: One-sample t-test of the residuals from the classical AR order 9
Variable n Mean SD df t p-value

Residuals 276 0.009 1.534 275 0.094 0.925

In Tabs. 6 and 7, the AR(9) residuals are tested. The statistical testing results of the residuals
from the classical AR(9) based on the Shapiro-Wilk test (p-value=0.221) and one sample
t-test (p-value=0.925) demonstrate that the residuals from the classical AR (9) are normally
distributed and independent.

4.2.2 The m-delay AR model

From Eq. (5) and using the transformed data, we obtain the m-delay coefficient φ̂1 =
0.194561 and φ̂9 = 0.027676 which satisfy the characteristic Eq. (7) with inequality
condition | φ1 | + | φm |< 1.
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Figure 6: All roots of the characteristic Eq. (7) in the MAR model

Fig. 6 demonstrates that all roots of Eq. (7) lie outside the unit circle. This confirms the
stationarity condition of the proposed the MAR model. The analyses of residuals using
Shapiro-Wilk test and one sample t-test are shown in Tabs. 8 and 9.

Table 8: Normality test of the residuals from the 9-delay AR model

Variable
Shapiro-Wilk Test

Statistics df p-value
Residuals 0.995 276 0.485

Table 9: One-sample t-test of the residuals from the 9-delay AR model
Variable n Mean SD df t p-value

Residuals 276 0.010 1.579 275 0.106 0.916

The results from Tabs. 8 and 9 illustrate that the residuals from the MAR model are
normally distributed and independent with p-values of 0.485 and 0.916, respectively.

4.2.3 Predictive modeling

Using the test set of data with 18 observations as shown in column 2 of Tab. 10 from
January 2018 to June 2019, we apply the AR(9) model and the proposed MAR model to
predict the monthly mean minimum temperature as shown in columns 3 and 4 of Tab. 10.
Fig. 7 and Tab. 10 compare the forecasting monthly mean minimum temperature obtained
from the MAR model and the AR model with observed data.
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Figure 7: Scatter plot of observed data, and a dashed line (the MAR model) and a solid
line (the AR model)

From the results as shown in Tabs. 2 and 3, it confirms that there is no significant difference
in results obtained from the MAR model and the AR(9) model. Consequently, the m-delay
AR model is an effective model for time series prediction.

5 Conclusion and discussion
In the classical AR model with a large delay, a number of coefficient parameters are
needed to determine. In this paper, we consider a special case of the classical AR model,
particularly when the delay is large. The optimal m-delay AR model using two parameters
is proposed. This would improve the results and reduce the computation time. We outline
the future development and the possible application below.

• For parameter estimation, we only modify the least square method to approximate the
coefficients of them-delay AR model. There are several techniques to approximate these
AR parameters, namely the maximum likelihood method, the Yule-Walker estimation,
and the method of moment.

• Based on the simulation results in Section 4, the root mean square error is utilized.
For future development, adding more information criteria can be useful to choose an
optimal delay such as the Akaike Information Criteria (AIC), the Bayesian Information
Criteria (BIC), the Minimum Description Length (MDL) [Dickie and Nandi (1994)],
the Predictive Least Square (PLS), the Predictive Densities Criteria (PDC) and the
Sequentially Normalized Maximum Likelihood (SNML) criteria [Giurcăneanu and
Razavi (2008)], the Final Prediction Error (FPE) [Akaike (1970)] and the criteria
autoregressive transfer function (CAT). [Burshtein and Weinstein (1985)]

• In this work, we assume a random process to be a sequence of independent elements
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Table 10: Forecasting monthly mean minimum temperature in Perth obtained from the
MAR model and the AR(9) model

Date Observation data
Predicted values

The MAR model The AR(9) model
January, 2018 18.1 16.9 17.1
February, 2018 18.2 18.0 18.1
March, 2018 17.7 16.5 16.6
April, 2018 13.9 13.2 13.2
May, 2018 10.0 11.2 11.3
June, 2018 8.5 7.8 7.9
July, 2018 9.5 10.4 10.0
August, 2018 8.1 9.3 9.6
September, 2018 8.8 9.9 9.5
October, 2018 13.2 11.7 11.6
November, 2018 13.5 16.3 16.2
December, 2018 16.2 16.2 16.4
January, 2019 16.6 18.0 17.5
February, 2019 17.8 17.9 18.2
March, 2019 17.3 17.6 17.2
April, 2019 13.0 13.8 13.8
May, 2019 8.7 9.8 10.1
June, 2019 9.2 8.2 7.9
Root mean square error (RMSE) 1.1499 1.1282
Mean absolute deviation (MAD) 0.9667 0.9389

with normal distribution via zero mean and constant variance. It is possible for changing
a random process to other distribution such as uniform distribution or exponential
distribution. Replacing random process would probably affect the parameter estimation
for the m-delay AR model.

• Our model assumes that the noise coefficient is finite. The challenging task is unknown
variance. Consequently, we may extend model parameters and estimate these unknown
parameters including two coefficient parameters, the delay and the noise coefficient,
namely φ1, φm, m and σ2.

• Our model can be applied to historical financial data to analyze the dependence of
time-scale volatility measurements.

• The experiment results show that the sample size is one of the key factors. It would be
interesting to consider the connection of the error (RMSE) with the sample size.
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