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Abstract: Scene recognition is a popular open problem in the computer vision field. Among 
lots of methods proposed in recent years, Convolutional Neural Network (CNN) based 
approaches achieve the best performance in scene recognition. We propose in this paper an 
advanced feature fusion algorithm using Multiple Convolutional Neural Network (Multi-
CNN) for scene recognition. Unlike existing works that usually use individual convolutional 
neural network, a fusion of multiple different convolutional neural networks is applied for 
scene recognition. Firstly, we split training images in two directions and apply to three deep 
CNN model, and then extract features from the last full-connected (FC) layer and 
probabilistic layer on each model. Finally, feature vectors are fused with different fusion 
strategies in groups forwarded into SoftMax classifier. Our proposed algorithm is evaluated 
on three scene datasets for scene recognition. The experimental results demonstrate the 
effectiveness of proposed algorithm compared with other state-of-art approaches. 
 
Keywords: Scene recognition, deep feature fusion, multiple convolutional neural 
network. 

1 Introduction 
Deep convolutional neural network (DCNN) has proved to provide better feature 
representation compared with low-level manually extracted features [Seong, Hyun and 
Kim (2019); Liu, Chen, Chen et al. (2018)]. Primary learning of the CNN is end-to-end, 
so that make training convenient. In DCNN, the low-level convolutional layer is used as 
the Gabor filters and color blob detectors [Yosinski, Clune, Bengio et al. (2014)] which 
can extract the information such as edges and texture, and fully-connected (FC) layers 
encode abstractive feature information that reduce the influence of the local information 
change. Recently, researchers have found that high-level features which are extracted 
form FC layers has better performance in image classification [Razavian, Azizpour, 
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Sullivan et al. (2014); LeCun, Bengio and Hinton (2015); Guo, Huang, Wang et al. 
(2017); Liu, Ma, Zhou et al. (2019); Zhao and Larson (2018)]. It is significant to employ 
multiple such high-level features from distinct CNN architecture for more generalized 
representation of scene information. The reason is that using single modality high-level 
features is hard to distinguish the fine-grained difference in the field of scene recognition. 
So researchers focus on feature fusion methods, such as multi-stage feature fusion of the 
GoogLeNet models for scene recognition [Tang, Wang and Kwong (2017)], which 
improves the accuracy than the state-of-the-art CNN models. However, only a single 
CNN model, i.e., GoogLeNet is used, thus the features extracted from different CNN 
models cannot be combined, although which can express more semantic information.  
These methods seek to optimize features acquisition are propitious to scene recognition. 
In previous period scene recognition algorithms use manual features like GIST [Oliva 
and Torralba (2001)], SIFT [Lowe (2004)] and CENTRIST [Wu and Rehg (2011)], 
which obtain promising results for certain tasks. But more discriminative information is 
ignored at higher levels that are critical for scene understanding. In addition, the 
manually features cannot be transferred to a new target domain because they only have 
better performance in the original domain. Because of the shortness of manually features, 
deep feature learning methods are proposed such as Deep Belief Net (DBN) [Hinton, 
Osindero and Teh (2006)], Deep Boltzmann Machines (DBM) [Salakhutdinov and 
Hinton (2012)] and Convolutional Deep Belief Network (CDBN) [Lee, Pham, Largman 
et al. (2009)] and et al. We can see that the features extracted from different layers by 
unsupervised CNN feature learning are still more prominent than these methods. On the 
other hand, fusion of multiple features has proved to achieve better results than many 
single methods for applications like classification and recognition [Arora, Bhaskara, Ge 
et al. (2014)]. Our work is to improve scene recognition performance by constructing a 
more general feature representation model via fusion of multiple deep features. Lavinia et 
al. fuse the features extracted from 2 or 3 CNN models [Lavinia, Vo and Verma (2016)], 
but train CNN models in the same dataset. Different from it, we train 3 single models in 3 
different datasets in our method, which can get the more suitable parameters of the CNN 
models because of the diverse scale. 
Inspired by CNN’s applications using fusion strategy in other tasks, we propose in this 
paper an advanced feature fusion framework based on Multiple Convolutional Neural 
Network (Multi-CNN) for scene recognition. The contributions of our paper are 
concluded as follows: 
1. An advanced feature fusion framework using multiple DCNN for scene recognition is 

proposed; 
2. The fusion of 2 deep CNNs provides higher accuracy of scene recognition than a 

single model; 
3. The fusion of 3 deep CNNs obtains a higher-level performance compared with the 2-

CNN fusion; 
4. The fusion coefficient shows the importance in the fusion CNN feature learning, which 

may enhance the distinction of the respective corresponding model in fusion models; 
5. The training of different source domain makes an important contribution to the latter 

fusion CNN and the generalization.  
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The rest of our paper is organized as follows. Some related DCNN models will firstly 
introduced, and then proposed DCNN fusion framework be described in Section 2. 
Experimental results compared with conventional approaches will be presented and 
discussed in detail in Section 3. Finally, the conclusions will be given. 

2 Proposed deep CNN fusion methodology 
Our method is built on the idea of using high-level CNN representation for scene 
recognition. In this paper, a SoftMax classifier is trained by employing a number of CNN 
models with completely distinct structures and using their complementary cues. 

2.1 Overview of deep learning models 
Three CNN models are used as the basis of the fusion model in our proposed strategy. The 
deep CNN models we chose are AlexNet, GoogLeNet and VGG-16. Generally speaking, a 
smaller CNN is suitable for small datasets. Because the Alexnet has only eight layers, so 
we choose it as the first single model to extract low-level features such as edge features. 
GoogLeNet includes the 1*1 convolutional layers, which can reduce the channel 
dimensions of feature maps, and improve the computational effectiveness. GooLeNet is 
selected as the second single model to extract higher-level features such as some fine-
grained local features. On the other hand, VGG-16 can balance the computation and 
efficiency. Although these 3 models contain some similar structures, they have their own 
characteristics. We train these 3 single models with 3 different datasets, which contain 
images of different scene and scale. Therefore, we can get better image features by the 
fusion strategy. Their convolutional layers are regarded as feature extractors to extract 
scene features, and the parameters of the full convolutional layers of all benchmark models 
are fixed. Our work mainly focuses on the full connection layers and the derived 
probabilistic layers. The architecture of each model is described as follows.  
 
2.1.1 AlexNet [Krizhevsky, Sutskever and Hinton (2012)] 
AlexNet is a typical Convolutional Neural Network (CNN) architecture, which contains 5 
convolutional layers as well as 3 fully-connected (FC) layers. Some novel methods such 
as ReLU, Dropout are adopted first time in this CNN model for reducing overfitting in 
the FC layers. As the winner of the 2012 ILSVRC competition, AlexNet achieves a 
significant improvement with the top-5 error rate down to 16.4%, almost 10% ahead of 
the second place. In Alexnet the overlap adjacent pooling units certainly not lead to over 
fitting. For the training of the small dataset, it is undoubtedly good to choose the 
relatively shallow AlexNet as the first DCNN model, which structure is shown in Fig. 1. 
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Figure 1: The architecture of AlexNet 

2.1.2 GoogLeNet [Szegedy, Liu, Jia et al. (2015)] 
As the winner of the 2015 ILSVRC competition, GooLeNet (Inception-v1) is a deep yet 
small scale network, which has improvements on performance and calculating. Its 
relatively low computation cost profits from the two aspects: firstly, convolutional neural 
network (CNN) is optimized by using sparseness. Secondly, the dimensionality is 
reduced through 1*1 convolutional layers as that in Network-in-Network (NIN) model 
[Lin, Chen and Yan (2013)]. 
The Inception-v1 module of GoogLeNet, block is shown in Fig. 2, in which the overall 
architecture is wide and deep (22 layers) as shown in Fig. 3. However, the decrease of the 
calculating on account of the first conventional convolutional layers and the 1*1 
convolutional layers reduce the dimension. GoogLeNet depends on wider structure to 
boost capacity of network and training DCNN becomes easier than before. Thus, 
GoogLeNet is our second DCNN model. 
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Figure 2: The structure of block 

 
Figure 3: The architecture of GoogLeNet 
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2.1.3 VGG Net [Cui, Zhou, Wang et al. (2017)] 
This deep CNN architecture employs 16 or 19 layers with small (3*3) convolutional 
kernel and the stride is 1 in the overall network. VGG-16 has 13 convolutional layers and 
3 FC layers. The advantage can be summarized as two aspects: 1) More layers show the 
better performance in distinguish the rectified linear activation; 2) decrease the number of 
parameters. VGG is a large computation but good performance network. Considering the 
balance between performance and efficiency, we choose VGG16 as the third DCNN 
model and its architecture is shown in Fig. 4. 

 
Figure 4: The architecture of VGG16 

2.2 Proposed method 
We make the assumption that extracted features from diverse CNN layers can draw on 
each other’s strong points, after that the fusion layer extracted the uniform features 
among these features in order to make better discrimination between the scene classes. 
As shown in Figs. 5-7, the process of feature fusion learning consists of 4 steps:  
(1) Input Images & Preprocessing (segmentation) (Section 2.2.1) 
(2) Feature transformation (high-level CNN representation) (Section 2.2.2) 
(3) Fusion feature (with five rules) (Section 2.2.3) 
(4) Classification (with SoftMax) (Section 2.2.4) 

 
Figure 5: Fusion feature learning frame overview on the same dataset, e.g., MIT67-
indoor dataset 
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As shown in Fig. 5, input images are resized and split in two directions and fed into 3 
single CNN models. Then, extracted features from 67-dimensional(d) fully-connected 
(FC) layer and probabilistic layer on the 3 models. Finally, those vectors are fused with 
different fusion strategies in groups of two and three forwarded into SoftMax classifier. 

 
Figure 6: Fusion feature learning frame overview on different datasets 

The process of learning on different datasets shown in Fig. 6 is approximately the same 
as the Fig. 5. We use 3 single CNN models to extract the features of the input images 
from different datasets. Eight sports is used for training Alexnet, Scene15 for GoogLeNet, 
and MIT67-indoor for VGG16. Then we get the trained models to extract features from 
images to achieve better results. The difference is that we insert a new 100- dimensional 
(d) FC layer as the penultimate FC layer to figure out whether the dimension of the 
penultimate FC layer can affect the experimental results and the 67-d is the optimal 
choice. The 100-d can reduce the dimension and regularization of the extracted features 
which have different dimension. The features are extracted from the 100-d layer and the 
probabilistic layer derived from distinct CNN models. Moreover, the target domain has 
not overlap with source domain in testing. 

 

Figure 7: The GP vector generated from GoogLeNet on MIT67-indoor dataset 

The Fig. 7 shows that the 67-dimensional(d) vector is the output of the last FC layer. The 
theory is to make the best of a higher dimensional feature vectors which will result in a 
better performance. The probabilistic vector is the output of this probabilistic layer which 
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we are interested in treating as the coefficient of fusion with other models’ feature vectors 
and the GP vector can be obtained by computing the product of the corresponding feature 
vector element wise. The production process of AP, VP vector is the same as the GP vector. 
During the preparation period, we train AlexNet, GoogLeNet, and VGG16 on the 
benchmark scene recognition datasets respectively to obtain each model’s scene 
recognition accuracy. After receiving the accuracy of each single deep CNN model, we 
extract features from the last FC layer and probabilistic layer as candidate layers. We are 
prior to fuse and fine-tune these layers. The probabilistic layer is the output of SoftMax 
layer in CNN which is a vector stands for probability of each class. We treat it as the 
pixel-level coefficient of fusion with other models’ feature vectors. A fusion function f: 
𝑉𝑉𝐼𝐼 → 𝑉𝑉𝑂𝑂 fuses features: 
V𝑂𝑂 =  𝑃𝑃1𝑉𝑉𝐼𝐼1 ⊕1 𝑃𝑃2𝑉𝑉𝐼𝐼2 ⊕2 …⊕𝑛𝑛 𝑃𝑃𝑛𝑛𝑉𝑉𝐼𝐼𝑛𝑛                        (1) 
where 𝑉𝑉0 denotes the vector after fusion and 𝑉𝑉𝐼𝐼𝑛𝑛 is extracted from the candidate pool. P is 
the coefficient of fusion came from the probabilistic layer, and n is the number of fusing 
CNN model’s features. “⊕” is the fusion strategy that will be described as the following.  
We fuse 2 or 3 layers from this candidate pool. Finally, they are applied to some large-
scale scene datasets by SoftMax classifier. 

2.2.1 Input images & preprocessing 
Because the size of scene images varies, we resize them to 256*256, which is later 
cropped to 224*224 in CNN. Furthermore, the spatial layout information of a scene 
image is vital for recognition. The DCNN can hardly obtain satisfied recognition results 
if ignoring the spatial information. In this paper, we split scene images into two parts 
equally in vertical direction, which can reduce the redundancy between subjects and 
prevent the over-fitting in training. 

2.2.2 Feature transformation 
As shown in Fig. 2 the high -level CNN features fusion through distinct hidden layers 
which are correlated with single CNN features. The input of this hidden layer is modified 
by rectilinear units (ReLU), which create sparse representation, decreasing computational 
work. Besides, it is a non-linear activation function, and the sparse representation shows 
the bionic characteristics. And it can avoid the gradient explosion and gradient 
disappearance. Hence, the particular CNN feature space 𝑋𝑋𝑖𝑖  associated with the single-
hidden layer can be rectified from the dimensionality N to K as 
𝑉𝑉𝑖𝑖,𝐾𝐾 =  ∑ 𝜔𝜔𝑖𝑖,𝑘𝑘,𝑛𝑛

𝑁𝑁
𝑛𝑛=1 • 𝑋𝑋𝑖𝑖,𝑛𝑛 + 𝑏𝑏𝑖𝑖,𝑘𝑘                        (2) 

where N donates the dimension of 𝑖𝑖𝑡𝑡ℎ CNN feature𝑋𝑋𝑖𝑖, k ∈ {1, … ,𝐾𝐾}, K is the number of 
classes, 𝜔𝜔and b are the weight matrix and bias vector respectively. 

2.2.3 Fusion strategy 
To make the description more comprehensible, we now propose several methods to fuse 
the 3 extracted features. The function𝑓𝑓∗:𝑉𝑉1,𝑉𝑉2,𝑉𝑉3 → 𝑉𝑉∗ means the fusion strategy which 

fuses the three feature vectors, 𝑉𝑉1 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐷𝐷1 ,  𝑉𝑉2 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐷𝐷2

 , and 𝑉𝑉3 ∈
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ℝ𝐻𝐻3×𝑊𝑊3×𝐷𝐷3 into one feature vector𝑉𝑉∗ ∈ 𝑅𝑅(𝐻𝐻∗×𝑊𝑊∗×𝐷𝐷∗) . And W is the abbreviation of 
width, H means the height for short and D shows the number of the feature vectors 
channels respectively. In this paper, H1 = H2 = H3 = 1 , 1 2 3 1,= = =D D D and W1 =
W2 = W3 =number of classes of scene datasets respective. So the fusion strategy we used 
in this paper is as follows. 
(1) Product fusion: 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)calculates the product of the 3 feature maps.  

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∏ 𝑉𝑉𝑖𝑖3
𝑖𝑖=1                                          

(2) Sum fusion: 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)calculates the sum of the 3 feature maps. 
  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑉𝑉𝑖𝑖3

𝑖𝑖=1                                      (4) 
(3) Max fusion: 𝑉𝑉𝑠𝑠𝑚𝑚𝑚𝑚 = 𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)chooses the largest values among the feature 
maps. 

   𝑉𝑉𝑠𝑠𝑚𝑚𝑚𝑚 = argmax(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)                                         (5) 
(4) Average fusion: 𝑉𝑉𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛 = 𝑓𝑓𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)the sum of the three feature maps divided 
by three. 

 𝑉𝑉𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛 = argmean(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)                                                      (6) 
(5) Concatenation fusion: 𝑉𝑉𝑐𝑐𝑚𝑚𝑡𝑡 = 𝑓𝑓𝑐𝑐𝑚𝑚𝑡𝑡(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3)stacks the three feature maps across the 
feature channels d. 
       𝑉𝑉2𝑝𝑝𝑐𝑐𝑚𝑚𝑡𝑡 = 𝑉𝑉(1,𝑝𝑝),𝑉𝑉(2𝑝𝑝−1)

𝑐𝑐𝑚𝑚𝑡𝑡 = 𝑉𝑉(2,𝑝𝑝)                                                                                    (7)  
 
2.2.4 Classification 
SoftMax is applied to a N-way classified function, which input the logits function and output 
the probability p of each class in vector 𝑌𝑌∗ to a vector of K elements in [0,1], shown as 

ρ(z)𝑗𝑗 = 𝑚𝑚𝑧𝑧𝑗𝑗

∑ 𝑚𝑚𝑧𝑧𝑗𝑗𝐾𝐾
𝑘𝑘=1

， 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = {1, … ,𝐾𝐾}                           (8) 

where Z is the input vector with the dimensional K same as the output where the sum of 
all real values is 1. K is the number of different class in the scene datasets. We can use 
the largest probability to achieve the mean accuracy of the fused model. Beyond that, 
cross entropy (CE) loss computes the distance between predicted label and ground-truth 
label. We can denote the loss function of cross-entropy (CE) as below, which use the 
parameter φ and in the form of likelihood maximization. 
argmax ℒ(φ|𝑡𝑡, 𝑧𝑧)                                                            (9) 
where by the conditional distribution whose target is t, and input is z with the same 

parameter φ, we can get likelihood ℒ. 
𝑃𝑃(𝑡𝑡, 𝑧𝑧|φ) = 𝑃𝑃((t|z,φ)𝑃𝑃(𝑧𝑧|φ)                                       (10) 
where P(t,j|z) means the probability of the input z belong to class j. We can minimize the 
negative log-likelihood to get the cost estimation in the likelihood maximization, as  
ξ(𝑡𝑡, 𝑧𝑧) = −log ℒ(θ|𝑡𝑡, 𝑧𝑧)                                        (11) 
where ξ means the CE loss function. Besides, we can use the predicted class probability’s 
derivative ∂ ξ ∂⁄ ω of the cost function for the weight-update, as 
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ω(t + 1) = 𝜔𝜔(𝑡𝑡) − 𝜆𝜆 ∂ξ
∂ω(t)

                                (12) 

3 Experimental results and discussions 
In this part, we will investigate proposed algorithm which fuses features exacted from 
different 5CNN models by 3 publicly available scene datasets: Scene15, MIT67-indoor 
and Eight sports.  

3.1 Setup and implementation 
3.1.1 Datasets 
The Scene15 dataset [Li and Perona (2005)] has 15 natural scene categories, each of 
which has 216 to 400 images, 100 images per category are randomly selected out as the 
training set. With respect to the eight sports event categories dataset [Li and Li (2007)], it 
contains 8 sports event categories: rowing, badminton, polo, bocce, snowboarding, 
croquet, sailing, and rock climbing, with the image number from 137 to 250 of each 
category. The MIT67 dataset [Liu, Liu, Wang et al. (2015)] has 67 Indoor categories 
containing 15620 jpg images totally. 80 images per category are used as training samples 
while the remained 20 images as testing samples. Fig. 8 shows four samples from target 
scene dataset respectively. 

 
 (a) Scene15        (b) MIT67-indoor                (c) Eight sports 

Figure 8: Four samples from target scene datasets 

3.1.2 Initialization 
We use Caffe [Jia, Shelhamer, Donahue et al. (2014)] to do experiments, which is a popular 
framework in using CNN in image processing. The batch size is 10, and the initial learning 
rate is set as 0.001 which is reduced at every iteration by the “poly” method. Moreover, to 
avoid the over-fitting we set a momentum as 0.9 to avoid local optimum, meanwhile, the 
weight decay, Dropout ratio, and iteration time are set as 0.005, 0.5, and 8000, respectively.  
We set accuracy as the evaluation criterion because mean average precision (mAP) are 
more fit for image retrieval and accuracy show the results directly. 
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3.2 Experimental results 
In order to ensure our experimental results are accurate, we repeat each experiment five 
times and take the average as the statistical illustration. The Tab. 1-1 shows the accuracy 
of our individual deep CNN model on scene datasets respectively. We can observe that 
GoogLeNet achieved the highest accuracy with 93.12%, 65.97% and 95.85% on the 3 
datasets of Scene15, MIT67-indoor and Eight sports, respectively. GoogLeNet and VGG-
16 provide almost similar accuracy, and the result of GoogLeNet is slightly higher.  

Table 1-1: The accuracy of base model on Scene15 datasets (%) 

Model Alex Net GoogLeNet  VGG16 
Scene15 85.80 93.12 93.01 

MIT67-indoor 56.33 65.97 65.40 
Eight sports 91.82 95.85 95.50 

(*The bolded values are marked as the best results.) 

The Tab. 1-2 shows the accuracy of using high-level layers with different weight. The 
highest accuracy with GP is higher than the GoogLeNet on the Scene15 and MIT67-
indoor with 94.13% and 67.20%, which is improved 1.01% and 1.23% respectively. The 
highest accuracy on Eight sports with VP is approximately the same with GoogLeNet, 
and in this datasets GP and VP achieve similar accuracy. 

Table 1-2: The accuracy of using high-level (last fc) layers with different weight (%) 

Model AP GP VP 
Scene15 90.25 94.13 91.33 
MIT67 56.00 67.20 66.13 

Eight sports 90.90 95.35 95.80 
“P” stands for the probability vector obtained from the probabilistic (prob) layer of the 
VGG-16(V), GoogLeNet(G), and AlexNet(A) models, and the same naming are used 
over this paper. 

Tabs. 2-5 show the scene recognition accuracy of our fusion strategy, where the target 
domain has overlap with source domain in testing. “15”, “67” and “8” refer to 15-d layer, 
67-d layer and 8-d layer. Hence, “V15”, “G15”, “A15” stand for the features from the 15-
d layers of the VGG-16 (V), GoogLeNet (G), and AlexNet (A) models, and the rest can 
be done in the same manner 

Table 2-1: The accuracy of fusion model on Scene15 (V+G, %) 

Model Sum Max Average Concatenation 
VP+G15 95.56 95.33   95.56 95.67 
VP+GP 93.36 93.37 93.36 93.63 
V15+GP 93.43 93.46 93.43 91.69 
V15+G15 95.52 94.59 95.52 94.76 
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Table 2-2: The accuracy of fusion model on MIT67-indoor (V+G, %) 
Model Sum Max Average Concatenation 

VP+G67 64.27 65.33 64.27 62.67 
VP+GP 66.40 66.47 66.40 67.20 
V67+GP 64.73 64.60 64.73 64.60 
V67+G67 63.33 64.60 63.33 64.60 

Table 2-3: The accuracy of fusion model on Eights sports (V+G, %) 

Model Sum Max Average Concatenation 
VP+G8 94.60 94.40 94.60 94.20 
VP+GP 94.20 94.40 94.20 94.40 
V8+GP 95.20 95.20 95.20 95.20 
V8+G8 95.00 95.20 95.00 95.20 

Table 3-1: The accuracy of fusion model on Scene15 (V+A, %) 

Model Sum Max Average Concatenation 
VP+A15 91.93 92.20 91.93 94.21 
VP+AP 89.73 82.97 89.73 85.90 
V15+AP 87.20 89.46 87.20 77.20 
V15+A15 95.59 91.49 90.59 91.87 

Table 3-2: The accuracy of fusion model on MIT67-indoor (V+A, %) 

Model Sum Max Average Concatenation 
VP+A67 66.27 59.20 66.27 65.07 
VP+AP 63.80 61.80 63.80 63.73 
V67+AP 69.53 67.73 69.53 68.87 
V67+A67 68.07 61.20 68.07 69.46 

Table 3-3: The accuracy of fusion model on Eights sports (V+A, %) 

Model Sum Max Average Concatenation 
VP+A8 92.07 94.24 92.07 94.62 
VP+AP 96.24 95.84 96.24 95.69 
V8+AP 95.98 96.32 95.98 96.59 
V8+A8 96.52 95.94 96.52 96.28 
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Table 4-1: The accuracy of fusion model on Scene15 (G+A, %) 

Model Sum Max Average Concatenation 
GP+A15 94.87 95.09 94.87 94.49 
GP+AP 94.37 95.23 94.37 94.19 
G15+AP 94.56 94.70 94.54 95.85 
G15+A15 92.02 91.85 92.02 94.02 

Table 4-2: The accuracy of fusion model on MIT67-indoor (G+A, %) 

Model Sum Max Average Concatenation 
GP+A67 56.47 56.13 56.47 57.27 
GP+AP 65.36 62.23 64.36 67.26 
G67+AP 65.24 68.56 66.46 69.42 
G67+A67 68.56 67.68 64.25 66.25 

Table 4-3: The accuracy of fusion model on Eights sports (G+A, %) 

Model Sum Max Average Concatenation 
GP+A8 95.73 97.73 95.76 98.29 
GP+AP 97.50 97.56 97.49 97.13 
G8+AP 97.49 96.49 97.49 97.56 
G8+A8 96.25 96.12 96.25 95.64 

Table 5-1: The accuracy of fusion model on Scene15 (V+G+A, %) 

Model Sum Max Average Concatenation 
VP+GP+A15 94.40 94.73 94.40 95.20 
GP+AP+V15 96.85 94.69 96.39 94.80 
VP+A15+G15 93.86 93.89 93.86 93.73 
GP+V15+A15 94.29 93.27 94.29 91.79 
G15+V15+A15 94.39 94.20 94.39 93.47 

Table 5-2: The accuracy of fusion model on MIT67-indoor (V+G+A, %) 

Model Sum Max Average Concatenation 
VP+GP+A67 66.82 65.86 66.82 66.24 
GP+AP+V67 65.87 66.58 65.87 70.46 
VP+A67+G67 65.24 66.48 65.24 66.84 
GP+V67+A67 68.56 67.24 68.56 68.54 
G67+V67+67 66.76 66.56 66.76 67.28 
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Table 5-3: The accuracy of fusion model on Eights sports (V+G+A, %) 

Model Sum Max Average Concatenation 
VP+GP+A8 97.88 97.66 97.88 98.56 
GP+AP+V8 96.25 96.56 96.25 96.54 
VP+A8+G8 97.48 97.26 97.48 97.22 
GP+V8+A8 97.84 97.88 97.84 97.44 
G8+V8+A8 96.85 96.25 96.85 96.23 

Besides the above experiments, we propose to use the 100-d FC layers features. 

3.3 Discussions 
From the fusion results on Tabs. 2-5, we can see that the highest layer combination 
accuracy on Scene15 has been increased from 93.12% to 96.85% (GP+AP+V15); the 
highest layer combination accuracy on MIT67-indoor has been increased from 65.97% to 
70.46% (GP+AP+V67); the highest layer combination accuracy on Eight sports has been 
increased from 95.85% to 98.56% (VP+GP+A8). Note that these highest results of scene 
recognition is a fusion the probabilistic layers, if we look at Tabs. 2-5, VP, GP play an 
important role in the individual and achieve the best fusion results for VGG-16 and 
GooLeNet fusion model. Because of the linearity of the features, the accuracy of sum and 
mean are equal. As shown in Tabs. 6-8, we can know that this pattern fusion cannot make 
a better performance in fusion model. 

Table 6: The accuracy of fusion model on Scene15 (V+A, %) 

Model Sum Max Average Concatenation 
V100+A100 89.84 91.46 89.46 94.18 
V100+AP 92.24 92.89 92.24 93.22 
VP+AP 92.45 93.20 92.45 92.85 

“100” refers to 100-d layer. 

Table 7: The accuracy of fusion model on MIT67-indoor (G+A, %) 

Model Sum Max Average Concatenation 
G100+A100 66.24 67.21 66.24 66.88 
G100+AP 65.46 66.42 65.46 68.26 
VP+AP 67.01 66.85 67.01 66.42 

Table 8: The accuracy of fusion model on Eight sports (V+G, %) 

Model Sum Max Average Concatenation 
V100+G100 95.88 95.84 95.88 95.24 
V100+GP 96.21 96.76 96.21 97.21 
VP+GP 96.04 97.26 96.04 96.46 
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(a) Scene15                                                  (b) MIT67-indoor 

 

 
(c) Eight sports 

Figure 9: Accuracy (%) comparison between individual models with fusion models 

Fig. 9 shows three single models (A, V, and G), the fusion of two models (A+G, A+V, 
and V+G), and the fusion of three models (A+V+G) accuracy results respectively. The 
algorithm by fusing all 3 features improves the accuracy of scene recognition almost by 
2.7%~4.7%, which obtains the better results compared with other state-of-the-arts 
algorithms as shown in Tabs. 9-11. 
The values shown here are same with bolded values in Tabs. 2-8.  

Table 9: Comparison our proposed algorithm with other state-of-the-arts on Scene15 
Methods Accuracy (%) 

M-ADDL [Zheng, Yi, Qi et al. (2018)] 80.40 
SIFT+SPM [Lazebnik, Schmid and Ponce (2006)] 81.42 

HOG+SPM3 [Xie, Lee, Liu et al. (2018)] 83.30 
SIFT+ORSP [Jiang, Yuan and Yu (2012)] 83.93 
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HIK [Wu and Rehg (2009)] 84.15 
Convnets+SVM [Zhou, Lapedriza, Xiao et al. (2014)] 84.26 

SIFT+BRSP [Jiang, Yuan and Yu (2012)] 88.12 
Convnets+RSP [Wu and Rehg (2009)] 89.48 

LScSPM [Gao, Tsang, Chia et al. (2010)] 89.74 
Place CNN [Zhou, Lapedriza, Xiao et al. (2014)] 90.19 

G-MS2F [Tang, Wang and Kwong (2017)] 92.90 
DUCA [Khan, Hayat, Bennamoun et al. (2016)] 94.50 

NNSD+ICLC [Xie, Lee, Liu et al. (2019)] 95.1 
Objectness [Cheng, Lu, Feng et al. (2018)] 95.80 

  SDO [Cheng, Lu, Feng et al. (2018)] 95.88 
Our approach 96.85 

Table 10: Comparison between the proposed algorithm and other state-of-the-arts on 
Eight sports 

Methods Accuracy（%） 
ScSPM [Yang, Yu, Gong et al. (2009)] 79.06 

LLC+SPM [Cheng, Lu, Feng et al. (2018)] 83.02 
Wu et al. [Wu and Rehg (2009)] 84.38 

HOG+SPM3 [Xie, Lee, Liu et al. (2018)] 84.88 
BOWL+SVM [Banerji, Sinha and Liu (2013)] 87.72 

Place CNN [Zhou, Lapedriza, Xiao et al. (2014)] 94.42 
S2ICA [Hayat, Khan, Bennamoun et al. (2016)] 95.80 

Our approach 98.56 

Table 11: Comparison between the proposed algorithm and other state-of-the-arts on 
MIT67-indoor 

Methods Accuracy（%） 
RBoW [Parizi, Oberlin and Felzenszwalb (2012)]  37.93 
DPM+GIST+SP [Pandey and Lazebnik (2011)] 43.10 

D-Parts [Banerji, Sinha and Liu (2013)] 51.42 
Convnets+FC 58.08 

Convnets +SVM [Wu and Rehg (2009)] 58.45 
IFV [Cheng, Lu, Feng et al. (2018)] 60.81 

MLrep  [Yang, Yu, Gong et al. (2009)] 64.03 
CFA [Sun, Li, Liu et al. (2019)] 67.31 

Our approach 70.46 
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4 Conclusions 
In this paper, we have proposed an advanced fusion framework based on multiple DCNN 
for scene recognition. Experimental results using publicly available datasets demonstrate 
that proposed algorithm achieves higher recognition performance than the single model.  
Furthermore, three single CNN models increase the performance than fused two models. 
These fusion methods take advantage of complementary of multi-CNN models to get the 
features which are more in common use and can distinguish the fine-grained difference. 
The future work is to make the research that applies this method to other many tasks like 
medical image classification. Besides that, it can be an interesting work that adding 
another deeper model such as ResNet is whether to have a better performance further. 
 
Conflicts of Interest: The authors declare that we have no conflicts of interest to report 
regarding the present study. 
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