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Grading Method for Hypoxic-Ischemic Encephalopathy Based on
Neonatal EEG

Jingmin Guo1, Xiu Cheng1 and Duanpo Wu2, 3, *

Abstract: The grading of hypoxic-ischemic encephalopathy (HIE) contributes to the
clinical decision making for neonates with HIE. In this paper, an automated grading method
based on electroencephalogram (EEG) data is proposed to describe the severity of HIE
infants, namely mild asphyxia, moderate asphyxia and severe asphyxia. The automated
grading method is based on a multi-class support vector machine (SVM) classifier, and
the input features of SVM classifier include long-term features which are extracted by
decomposing the EEG data into different 64 s epoch data and short-term features which
are extracted by segmenting the 64 s epoch data into 8 s epoch data with 4 s overlap.
Of note, the correlation coefficient and asymmetry extracted in this paper have obvious
discriminating capability in HIE infants classification. The experimental results show that
the proposed method can achieve the classification accuracy of 78.3%, 75.8% and 87.0% of
the mild asphyxia group, moderate asphyxia group and severe asphyxia group, respectively.
Moreover, the overall accuracy and kappa used to evaluate the performance of the proposed
method can reach 79.5% and 0.69, respectively.

Keywords: Hypoxic-ischemic encephalopathy, electroencephalograph, neonate, support
vector machine.

1 Introduction
Hypoxic-ischemic encephalopathy (HIE) is a type of brain dysfunction that occurs when an
infant’s brain can’t receive enough oxygen and blood. It is a major cause of morbidity and
mortality in neonates throughout the world with an incidence of 0.1% to 0.8% in developed
countries and up to 2.6% in developing countries [Shah (2010); Awal, Lai, Azemi et al.
(2016)]. HIE not only threatens the life of neonates, but also is an important factor to bring
serious sequelae to neonates, which seriously affects the quality of neonates. Therefore,
early diagnosis and prognosis assessment of HIE are particularly important. Optional tests
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to confirm HIE may include electrocardiogram (ECG), electroencephalograph (EEG) and
evoked potential tests. In the aforementioned types of tests for diagnosis of HIE, EEG is
a relatively successful and non-invasive tool for early identification of infants at risk. By
observing EEG, neurologists can assess brain activity including the symmetry of activity
over the two hemispheres, synchrony of activity that occurs in bursts, overall continuity,
amplitude of the activity, presence of sleep wake cycling (SWC) and the response of EEG
to external stimuli [Murray, Boylan, Ryan et al. (2009)]. In fact, the classification of
abnormal grades of EEG can provide objective evidence for clinical diagnostic, and to
guide treatment of HIE. In general, grading of HIE with EEG can be done by assessment of
discontinuity, amplitude, asynchrony and presence of SWC [Mariani, Scelsa, Pogliani et al.
(2008); Briatore, Ferrari, Pomero et al. (2013)], where discontinuity is the most commonly
used parameter to assess the severity of HIE and it is most useful in severe grades [Matić,
Cherian, Jansen et al. (2016); Dunne, Wertheim, Clarke et al. (2017); Awal, Lai, Azemi
et al. (2016)]. However, grading HIE using EEG is difficult, time-consuming, and requires
the presence of a highly qualified neurophysiologist. Hence, an automated grading method
for HIE could be of great convenience to medical staff or assist the non-expert’s assessment
of cerebral activity.
The main motivation for developing an automated model for HIE grading is to assist
the clinical decision making for neonates with HIE. The recent studies of HIE grading
focus on developing quantitative features. Tich et al. [Tich, Derambure, Lamblin
et al. (2018)] have assessed the severity of cerebral disability after perinatal hypoxia
and predicted long-term prognosis by calculating the minimal/maximal amplitude index,
the burst suppression rate, the spectral power and the spectral edge frequency of EEG.
The results show that quantitative EEG markers are associated with the EEG grades of
severity. Bourel-Ponchel et al. [Emilie, Marie-Dominique and Florence (2018)] have also
confirmed that conventional EEG is still the gold standard for hypothermia decision and
prognosis assessment by analyzing the results of 120 neonates admitted to hospital from
January 2013 to February 2015 due to suspected HIE. Moreover, various time domain,
frequency domain and joint time-frequency domain features have been extracted and then
combined with various methods to grade HIE [Ambalavanan, Carlo, Shankaran et al.
(2006); Korotchikova, Stevenson, Walsh et al. (2011); Ahmed, Temko, Marnane et al.
(2016)]. Stevenson et al. [Stevenson, Korotchikova, Temko et al. (2013)] have proposed
a method of automatically grading the degree of abnormality in an hour-long epoch of
neonate. The automated HIE grading system is based on a multi-class linear classifier
grading of short-term epoch of EEG which are converted into a long-term grading of EEG
using majority vote operation. In a more recent study, Ahmed et al. [Ahmed, Temko,
Marnane et al. (2016)] have proposed a cross-disciplinary method to classify the severity
of HIE in neonates using EEG, which adopts the sequences of short-term features of EEG
to grade an hour-long recording and improve the overall accuracy.
In this study, the paper presents an automated grading method for describing the severity of
HIE infants. The aim of the paper is to classify grade of HIE (mild asphyxia, moderate
asphyxia and severe asphyxia). In general, the classification accuracy of the model is
closely related to the construction of features. Therefore, this paper focuses on feature
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engineering and comprehensive analysis of long-term and short-term features from EEG
signals. Long-term features which are extracted by decomposing the EEG data into 64
s epoch data and calculating the time domain and frequency domain features. Short-
term features which are extracted by segmenting the 64 s epoch data into 8 s epoch
data with 4 s overlap. Especially, the paper extracts two features that have significant
discriminating capability in HIE infants classification, namely correlation coefficient and
asymmetry. To the knowledge of the authors, although a large number of literatures have
shown that the asymmetry of EEG signals play an important role in the diagnosis of
encephalopathy (including HIE infants) [Low, Mathieson, Stevenson et al. (2014); Knott,
Mahoney, Kennedy et al. (2001)], few studies [Schindler, Leung, Elger et al. (2006)] have
been conducted on the classification of HIE infants using correlation coefficient. Moreover,
since the support vector machine (SVM) algorithm has been successfully applied in the
HIE infants classification model and behaves good performance [Ahmed, Temko, Marnane
et al. (2016)]. On the one hand, the SVM algorithm behaves better performance than
other algorithms on small dataset [Ahmed, Temko, Marnane et al. (2016)]. On the other
hand, the SVM algorithm introduces the concept margin, which reduces the algorithm’s
requirements for data size and data distribution to enhance robustness and generalization
capability. Consequently, the SVM algorithm is finally selected to construct the model of
the paper. Finally, a multi-class classifier based on SVM algorithm is used to exploit this
information and classify these epochs into three grades.
The rest of the paper is organized as follows: Section 2 presents the description of the
experimental data used in this study, elucidates a brief description of the feature extraction
and explicates the SVM classification in the proposed method. Results are presented in
Section 3 and are discussed in Section 4. Finally, Section 5 presents the conclusions.

2 Materials and methods
The paper proposes an automated grading method for HIE infants based on neonatal EEG
signals, following the step of data preprocessing, feature extraction, SVM training and
SVM testing. Fig. 1 shows the procedure of the proposed method.

2.1 Dataset description of HIE infants

In general, the basic method of neonatal EEG recording is the same as conventional EEG,
but considering the small neonatal head circumference, the number of recording electrodes
can be appropriately reduced. Ideally, 8-channel recording electrodes are sufficient to
cover the entire brain and describe the EEG information of infant. Moreover, according to
the studies of Stevenson [Stevenson, Korotchikova, Temko et al. (2013)] and considering
the age of subjects and the size of head circumference, this paper collects 8 channels of
EEG signals. In fact, in order to improve the quality of the EEG signals, this paper
uses alcohol to clean the infants’ head to reduce the impedance between the electrode
and the scalp. After this treatment, the impedance between electrodes and the scalp is
distributed between 1000 Ω and 2000 Ω. Consequently, 8 channels (FP1, FP2, T3, T4,
C3, C4, O1 and O2) EEG data with earlobe electrode as reference electrodes have been
collected with the sampling rate of 128 Hz from 64 HIE infants (44 males and 20 females)
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Figure 1: The automated grading procedure of neonatal EEG

in the Department of electrophysiology of Fujian Provincial Maternity and Children’s
Hospital and Affiliated Hospital of Fujian Medical University. In the data collection of
HIE infants, all EEG recordings are tested within 24 hours of post-natal and the test time
is similar across the cohort. Subsequently, the paper grades HIE according to the EEG
recording. In the HIE infants dataset, 47 mothers are in healthy state during pregnancy,
and the remaining 17 mothers have different health problems during pregnancy, such as
gestational diabetes mellitus, gestational hypertension, α-thalassemia, etc., but all women
have received treatment. Moreover, all of the mothers did not smoke, drink alcohol or take
drugs during pregnancy.

2.2 Data preprocessing for EEG signals

In order to capture discriminative features of EEG data from 64 HIE infants, the data
requires further preprocessing. In this study, the paper filters the EEG signal with a
bandpass filter of 0.1-12 Hz, because there is very little power in the EEG signals in the
frequency band higher than 12 Hz [Ahmed, Temko, Marnane et al. (2016)]. And then
the paper segments the EEG signals of each patient into 64 s epochs which is similar
to segmentation procedure in the study of Lofhede [Löfhede, Thordstein, Löfgren et al.
(2010)]. Finally, this paper gets a total of 420 64 s epoch. Furthermore, according to
the 1-min Apgar score, 5-min Apgar score, 10-min Apgar score, MRI information and
Sarnat Score, etc. provided by the HIE infants dataset, two experienced neonatal EEG
technicians are invited to perform visual analysis of each epoch independently and score
the EEG epochs with 1, 2 or 3. Where 1 represents mild asphyxia (C1), 2 represents
moderate asphyxia (C2), and 3 represents severe asphyxia (C3). In those cases, when
two different grades were assigned to the same EEG epoch, the EEG epoch would be
subsequently reviewed and discussed by the EEG technicians until consensus on the HIE
grade was reached. Consequently, the paper gets C1 group including 128 epochs, C2 group
including 169 epochs and C3 group including 123 epochs. The overview of this process is
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Figure 2: The preprocessing of HIE data

shown in Fig. 2. It is noteworthy that the state of HIE infants will change over time, so
the single infant may exist in C1, C2 or C3 at the same time. Tab. 1 shows some basic
statistics for HIE infants dataset classified by EEG technicians. Clearly, it is easy to find
that the C3 group of mothers are more concentrated and older, whose age differs from 27
to 41. It suggests that the maternal age of subjects may be a factor affecting HIE infants
classification. Additionally, in order to more intuitively display the EEG signals of different
types of HIE infants, the paper shows the EEG signals of C1, C2 and C3 groups in Fig.
3. In Fig. 3(a), it can be seen that a continuous background pattern with mild asymmetric
patterns and mild voltage depression, which is a typical feature of the C1 group EEG signal.
In Fig. 3(b), it can be seen that discontinuous activity and clear asymmetry or asynchrony,
which is a typical feature of the C2 group EEG signal. In Fig. 3(c), it can be seen that
major discontinuous activity and continuous voltage depression, which is a typical feature
of the C3 group EEG signal. Moreover, in the process of collecting EEG signals from
infants with recording electrodes, some artifacts inevitably occur due to the young age of
the subjects and the limitation of the professional level of the staff who collects the EEG
signals. Clearly, the data collected in this study also contains artifacts, which affects the
classification performance of HIE infants.

Table 1: Statistical information of 3 types of HIE infants dataset
Features

Types Gender Health state Maternal age (year) Gestational age (week) Weight (kg)
Male Female With disease Without disease Min Max Mean Std Min Max Mean Std Min Max Mean Std

C1 15 6 7 14 24.00 37.00 28.61 3.48 37.86 40.86 39.36 0.92 2.66 4.10 3.25 0.44
C2 20 9 5 24 21.00 39.00 30.84 5.47 35.00 41.43 39.08 1.40 2.40 5.90 3.24 0.70
C3 9 5 5 9 27.00 41.00 31.50 4.48 34.71 41.29 38.96 1.51 2.50 4.44 3.47 0.55

All groups 44 20 17 47 21.00 41.00 30.30 4.75 34.71 41.43 39.15 1.28 2.40 5.90 3.29 0.59

2.3 Feature extraction for EEG signals

In order to classify the HIE infants, the paper needs to extract feature information of EEG
signals after preprocessing. The total features are outlined in Tab. 2 which mainly consists
of two parts, one is time domain and frequency domain features of each 64 s EEG signals,
and the other part contains the statistic features derived from 8 s epochs which are extracted
from 64 s epoch data with 50% overlap.
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(a) Mild asphyxia group. (b) Moderate asphyxia group. (c) Severe asphyxia group.

Figure 3: Types of EEG signals

In the first part, firstly, the paper extracts features from the perspective of the time domain
based on previous research work [Glass, Nash, Bonifacio et al. (2011); Douglas-Escobar
and Weiss (2015); Perlman and Shah (2011)], including Max, Min, Mean, Variance,
Kurtosis [Hjorth (1970)] and Skewness [Mursalin, Zhang, Chen et al. (2017)]. Hence,
a total of 48 statistical features are obtained from 8 channels. Then the line length [Esteller,
Echauz, Tcheng et al. (2001)] and auto regressive (AR) model coefficients [Ge, Hou and
Xiang (2007)] of each channel are also extracted to obtain 80 features. In order to improve
the performance of the model, the correlation coefficients of the processed 8-channel EEG
signals, δ (0.5 Hz-4 Hz), θ (4 Hz-8 Hz) and α (8 Hz-12 Hz) are extracted to measure the
relationship between two channels and their related directions, and a total of 256 features
are obtained. Furthermore, the paper extracts 8 features of Shannon entropy from each
channel. Subsequently, the paper extracts features from the perspective of the frequency
domain. The frequency domain features are limited up to 12 Hz as there is very little
power in the frequency band higher than 13 Hz. As can be seen from Fig. 4 that when
the frequency exceeds 12 Hz, the power spectral density (PSD) of all channels obtained
is lower. Furthermore, Ahmed et al. [Ahmed, Temko, Marnane et al. (2016); Temko,
Stevenson, Marnane et al. (2012)] have chosen power in the range of 0.1-12 Hz in the
frequency domain. Hence, this paper also chooses the power of this interval. Moreover,
Fig. 4 also shows significant differences between the left and right hemispheres, which
indicates that there may be asymmetry between the left and right hemispheres. Therefore,
extracting these features is beneficial to HIE classification. After passing a bandpass filter,
the paper calculates the PSD to get the total power and the power of the 2 Hz width sub-
bands. Meanwhile, in order to reduce the noise in spectral features, the paper calculates
the energy of δ wave, θ wave and α wave as well as their power ratio: δ/θ, δ/α and
θ/α respectively. Moreover, according to the definition of HIE grades in Murray et al.
[Murray, Boylan, Ryan et al. (2009)] and the visualized EEG data in Fig. 3, it shows that
asymmetry is an important feature of HIE infants classification. Therefore, the paper also
calculates the asymmetry of 2 Hz width sub-bands power, which are calculated as |Left
Channel-Right Channel|/(Left Channel+Right Channel). Left Channel means the power
of electrodes in left hemisphere including FP1, T3, C3, O1 and Right Channel means the
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power of electrodes in right hemisphere including FP2, T4, C4, O2 accordingly.

Table 2: Extracted features

Category Domain Feature parameters Number

Max, Min, Mean, Variance, Kurtosis, Skew-
ness

8× 6

Line length 8

Time AR model coefficient 8× 9

Correlation coefficient of original EEG sig-
nals, α, σ and θ waves

8×8×4

Type I Shannon entropy 8

(64 s epoch) Total power (0.1 Hz-12 Hz) 8

Power of 2 Hz width sub-bands (0.1-2 Hz, 1-3
Hz, ...10-12 Hz)

8× 11

Power of α, σ and θ waves 8× 3

Frequency Power ratio: δ/θ, δ/α and θ/α 8× 3

Asymmetry of 2 Hz width sub-bands power
(0.1-2 Hz, 1-3 Hz, ..., 10-12 Hz), total power
, δ, α and β power

8× 15

Type II (8 s epoch) Frequency Max, Min, Mean, Variance of 2 Hz width sub-
bands (0.1-2 Hz, 1-3Hz, ... , 10-12 Hz) power

8×4×11

Other - Gestational age (week) 1

In the second part, the 64 s epoch data will be divided into 8 s epoch with 4 s overlap, so
as to obtain short-term features. In order to achieve this goal, the paper calculates Max,
Min, Mean, Variance of each sub-band (0.1-2 Hz, 1-3 Hz, ... , 10-12 Hz) power and
352 statistical features are obtained. In addition, HIE abnormalities are often affected by
gestational age, so this paper also considers gestational age as a feature.

2.4 SVM classifier

In proposed method, SVM is chosen to be used since it has shown good performance for
HIE severity grading in neonatal EEG [Guler and Ubeyli (2007); Ahmed, Temko, Marnane
et al. (2016); Temko, Doyle, Murray et al. (2015); Ansari, Cherian, Dereymaeker et al.
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Figure 4: PSD distribution of the EEG signals in the frequency domain (64 s epoch)

(2016); Ahmed, Temko, Marnane et al. (2017)]. Clearly, SVM is a supervised learning
method. Its main idea is to achieve the purpose of classification by finding a classification
plane and separating the data from both sides of the plane. Since the problem is a three-
category problem, the paper needs to build the SVM classifier into a suitable multi-class
classifier. This paper uses the one-versus-one (OVO) classification method to classify HIE
infants, which is to design a SVM classifier between any two types of samples, so k types
of samples need to design k(k − 1)/2 SVM classifiers. Fig. 5 shows the training process
of the SVM. Considering that the SVM classifier needs to standardize the dataset, that is,
the processed data conforms to a normal distribution with a mean of 0 and a variance of
1. According to Fig. 5, the classification process of this paper mainly includes two parts.
The first part is to train the features of each channel to get the maximum probability of
classification. The second part is to accumulate the maximum probability of the 8 channels,
and then get the maximum probability of the overall classification of the 8 channels, and
obtain the final classification results. Moreover, the paper uses the grid search method to
set the penalty parameter C of SVM to be 20, kernel function of the SVM to be the radial
basis function (RBF) and sigma component of the RBF to be 0.01.

3 Results
As stated above, this study treats the HIE grading problem as a multi-class classification
problem in machine learning. And then, a multi-class classification model based on SVM
is established.

3.1 Cross validation

In this study, a cross validation method is used to assess the performance of the method
[Rodriguez, Perez and Lozano (2009)]. By using cross validation, not only can you get
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an estimate of the performance of the model, but you can also get the variance, which is
important for judging the difference between the two models. This paper uses 10-fold cross
validation method. Firstly, the original processed EEG data are randomly partitioned into
10 similar-sized subsets, and each subset is mutually exclusive. Of the 10 subsets, a single
subset is retained as the validation data for testing the model, and the remaining 9 subsets
are used as training data. The cross validation process is then repeated 10 times, with each
of the 10 subsets used exactly once as the validation data. The 10 results are then merged to
produce a single estimation. The advantage of this method over repeated random subsets is
that all observations are used for both training and validation, and each observation is used
for validation exactly once. The 10-fold cross training process is shown in Fig. 6.
In Fig. 6, D represents all EEG signal data (64 HIE infants with 420 epochs), and Di is
a subset of D which contains 42 epochs, they are similar in size and mutually exclusive.
That is, D = D1 ∪D2 ∪ ... ∪D10, Di ∩Dj = ∅, (i 6= j).
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3.2 Evalution criteria

In order to evaluate the effectiveness of the proposed method, confusion matrix (CM) will
be calculated to show the difference between the results given by the proposed method and
marked by EEG technicians as shown in Eq. (1). Sij represents the number of epochs that
are marked to be class i and are classified to be class j. In the CM, C1 group, C2 group
and C3 group are represented as 1, 2 and 3, respectively.

CM =


S11 S12 S13

S21 S22 S23

S31 S32 S33

 (1)

In machine learning, the kappa is usually used to measure the accuracy of a model for
multi-class classification problems, and its range is [-1, 1]. The higher the value, the higher
the accuracy of the classification. And the calculation method of kappa is shown in Eq. (2).

k =
po − pe
1− pe

(2)

According to CM, po and pe are calculated as follows:

Po =

∑3
i=1 Sii∑3

i=1

∑3
j=1 Sij

(3)

Pe =

∑3
i=1(

∑3
j=1 Sij

∑3
j=1 Sji)

(
∑3

i=1

∑3
j=1 Sij)

2
(4)

Accuracy (AC), sensitivity (SE), specificity (SP) and precision (P) can also evaluate the
performance of the proposed method as shown in Eq. (5) to Eq. (8), respectively.

AC =

∑3
i=1 Sii∑3

i=1

∑3
j=1 Sij

(5)

SE =
Sii∑3
j=1 Sij

(6)

SP =
(
∑3

i=1 Sii)− Sii∑3
i=1

∑3
j=1 Sij −

∑3
i=1 Sij

(7)

P =
Sii∑3
i=1 Sij

(8)
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3.3 Result analysis

3.3.1 Performance of proposed method

In the 10-fold cross validation, all infants (64 infants with 420 epochs) are divided into 10
mutually exclusive subsets (approximately 6 infants per subset) by infant and the number of
epochs for each subset is 42. According to Fig. 6, firstly, selecting D1 to D9 (378 epochs)
with all features in Tab. 2 are input to train the SVM classifier and the remaining D10 (42
epochs) is used to test the performance of model. Secondly, D1 to D8 and D10 (378 epochs)
are used to train the SVM classifier and D9 (42 epochs) is used to test the performance of
model. Finally, this process will be repeated until each subset has been used as the testing
data and an overall AC and kappa of the model will be reported. According to Eq. (5) and
Eq. (2) , the overall AC and kappa obtained by the SVM classifier are 79.5% and 0.69,
respectively.
Tab. 3 presents the CM for the proposed method. It can be seen that 86 out of 420 epochs
are misclassified. From Tab. 3, It can be clearly found that the EEG signals between
adjacent groups can easily affect the AC of the proposed method. For example, when the
actual data is C1 group, the proposed method misclassifies only 32 and 6 C1 group epochs
to be C2 group epochs and C3 group epochs, respectively. This is also a direction that the
paper can be improved in the future.

Table 3: CM of proposed model’s output and actual assigned grade by EEG technicians

Actual Grade
Proposed Model’s Output

C1 C2 C3

C1 90 32 6

C2 16 144 9

C3 9 14 100

Tab. 4 shows the classification performance for each HIE group. It can be found that the
P of the C3 group is the best and the SE of the C2 group is the best, which shows that
the proposed method can play a significant role in HIE infants classification. In medical
diagnosis, doctors pay more attention to the SE of the model, which is also an advantage
of the proposed method in this paper.

3.3.2 Comparison of different classifiers

In this part, 3 other classifiers including random forest (RF), logistic regression (LR) and
naive bayes (NB) will be tested.

• RF classifier. RF proposed by Leo Breiman [Breiman (2001)] contains multiple decision
trees and its output category is determined by the highest number of votes given
by all trees. The essence of RF classifier is an improvement of the decision tree
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Table 4: Performance of each group of proposed model

Types P SE SP

C1 78.3% 70.3% 83.6%

C2 75.8% 85.2% 75.7%

C3 87.0% 81.3% 78.8%

algorithm. Multiple decision trees are merged together, and the establishment of each
tree depends on an independently extracted sample. Each tree in the forest has the same
distribution, and the classification error depends on each tree’s classification ability and
their correlation. In general, RF, an ensemble learning method, is highly competitive in
both classification and regression tasks.

• LR classifier. LR is developed by statistician David Cox [Cox (1958)] in 1958 and can
be considered as a special case of linear regression models. It usually uses a logistic
function to model a binary dependent variable. Moreover, LR is also the most commonly
used learning algorithm in machine learning and is often used as a benchmark classifier
in classification tasks.

• NB classifier. NB is based on Bayes theory with strong (naive) independence
assumptions between the features. With appropriate preprocessing, it is competitive in
automatic medical diagnosis with more advanced methods [Pulmano and Estuar (2017)].

In order to compare the performance of the proposed method with the aforementioned
classifier, all classifiers use the extracted features in Tab. 2 for experiments. Similarly, the
paper uses the grid search method to obtain the number of the decision tree is 100 in RF.
Likewise, LR selects L1 regularization and the performance of classifier is best when the
regularization parameter C is set to be 1. Fig. 7 presents the comparison of kappa and AC
between the proposed method and the RF classifier, LR classifier and NB classifier. It is
obvious that the proposed method has obvious advantages in kappa and AC, especially in
the kappa which can reach 0.69 in the proposed method, but can only reach 0.54, 0.50 and
0.18 in RF, LR and NB, respectively.
Moreover, since the AC and kappa of RF classifier are better than LR classifier and NB
classifier, the paper compares the performance of the proposed method with RF classifier
in the following analysis. Tab. 5 and Tab. 6 present the CM for obtaining the best AC and
classification performance for each HIE group by RF classifier. It can be seen from Tab. 5
that the RF classifier is poorly identified in C3 group, but proposed method performs well
in this group, which has great advantages in medical diagnosis. Similarly, comparing Tab.
4 with Tab. 6, it is easy to find that the proposed method has significant advantages in SE
(C3 group) with 81.3% vs 62.6%. In clinical practice, it is important to identify serious
patients, which can allow doctors to intervene early and reduce the risk of death.
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Figure 7: Comparison of different classifiers

Table 5: CM of RF model

Actual Grade
RF’s Output

C1 C2 C3

C1 84 37 7

C2 30 133 6

C3 17 29 77

Table 6: Performance of each group of RF model

Types P SE SP

C1 64.1% 65.6% 71.9%

C2 66.8% 78.7% 64.1%

C3 85.6% 62.6% 73.1%
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3.3.3 Comparison of different features

Typically, different feature sets will have different effects on the proposed method.
Therefore, this paper inputs different features into the proposed method for experiments,
that is, all the proposed features in this paper, only the features of correlation coefficient
and asymmetry, and the features of removing correlation coefficient and asymmetry.
Fig. 8 shows that the proposed features have significant discriminating capability in HIE
infants classification. In particular, the introduction of features (correlation coefficient and
asymmetry) has significantly improves the performance of the proposed method in kappa
and AC. If the paper removes these two features, the kappa and AC are reduced to be 0.46
and 65.0%, respectively, which is very bad and unacceptable. In fact, this also shows that
these two features extracted in this paper have significant discriminating capability in HIE
infants classification.
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Figure 8: Comparison of different features in the proposed model

Tab. 7 and Tab. 8 present the CM for obtaining the best AC and classification
performance for each HIE group by proposed method that removing correlation coefficient
and asymmetry. It can be concluded from Tab. 7 and Tab. 8 that the classification of the
proposed method in the C1 group and C3 group are seriously reduced due to the removal of
the features correlation coefficient and asymmetry, which further indicates that the features
proposed in this paper have important discriminating capability.
Furthermore, the paper uses recursive feature selection [Guyon, Weston, Barnhill et al.
(2002)] method to obtain the most important 20 features which affect the performance of
the proposed method, including Mean, Variance, Max of Type II-frequency, power of σ
wave, Variance of Type I-time, power of α wave, total power of Type I-frequency, power
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Table 7: CM of proposed model without correlation coefficient and asymmetry

Actual Grade
Proposed Model’s Output

C1 C2 C3

C1 61 56 11

C2 19 139 11

C3 7 42 74

Table 8: Performance of each group of proposed model without correlation coefficient and
asymmetry

Types P SE SP

C1 70.1% 47.7% 72.9%

C2 58.6% 82.2% 53.8%

C3 77.1% 60.1% 67.3%

of 2 Hz width sub-bands of 1-3 Hz and 2-4 Hz, power of θ wave, power of 2 Hz width sub-
bands of 5-7 Hz and 3-5 Hz, correlation coefficient of FP1 (δ wave) and T3, correlation
coefficient of FP1 and T3, asymmetry of total power, asymmetry of 2 Hz width sub-bands
power of 0.1-2 Hz and 3-5 Hz, power of 2 Hz width sub-band of 8-10 Hz, asymmetry of
α power and asymmetry of 2 Hz width sub-band power of 9-11 Hz. It can be found that
correlation coefficient and asymmetry play an important role in HIE infants classification.
Importantly, in order to evaluate the contribution of the extracted features to HIE infants
classification, each type of feature in Tab. 2 (i.e., the feature of time domain in Type I, the
feature of frequency domain in Type I and the feature of frequency domain in Type II) is
used as input of the proposed method, and the evaluation performance is shown in Tab. 9.
It can be seen from the Tab. 9 that the feature of Type I-time has obvious discrimination
capability in HIE infants classification with AC and kappa reaching 74.8% and 0.61,
respectively. The AC of Type I-time is 18.6% and 22.7% better than Type I-frequency and
Type II-frequency, and the kappa of Type I-time is 0.3 and 0.38 better than Type I-frequency
and Type II-frequency. Clearly, since Type I contains features correlation coefficient and
asymmetry, it further indicates that features correlation coefficient and asymmetry have a
significant contribution in the classification of HIE and that the contribution of correlation
coefficient is slightly more than the contribution of asymmetry.

3.3.4 Comparison of different works

In fact, there are some other methods proposed for grading HIE. Tab. 10 presents
a comparison on the results between the proposed method in this paper and other
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Table 9: The contribution of the extracted features to HIE infants classification

Features AC Kappa

Type I-time 74.8% 0.61

Type I-frequency 56.2% 0.31

Type II-frequency 52.1% 0.23

Total 79.5% 0.69

Table 10: A comparison of the classification performance obtained by proposed method
and others’ work

Works Methods Features Dataset AC Kappa

Korotchikova, Stevenson, Walsh et al. (2011) Kruskal-
Wallis
testing with
post hoc
analysis and
multiple
linear
regression

Skewness, kurtosis, discontinu-
ity, amplitude, relative delta
power, spectral edge frequency,
fractal dimension, revised brain
symmetry index, linear correla-
tion coefficient

Continuous
video-EEG data
collected with
NicoletOne
EEG system
(NOEEG)

87.5% -

Stevenson, Korotchikova, Temko et al. (2013) Multi-
class linear
discriminant
classifier

Mean, standard deviation, skew-
ness, kurtosis, covariance, rela-
tive delta power, IBI, symmetry,
synchrony

Continuous
video-EEG data
collected with
NicoletOne
EEG system
(NOEEG)

83% 0.76

Proposed method Multi-
class SVM
classifier

Shown in Tab. 2 Children’s Hos-
pital and Affili-
ated Hospital of
Fujian Medical
University

79.5% 0.69

methods proposed in the previous literature. In Tab. 10, the studies of Korotchikova
et al. [Korotchikova, Stevenson, Walsh et al. (2011)] and Stevenson et al. [Stevenson,
Korotchikova, Temko et al. (2013)] on NOEEG dataset have a good performance on HIE
infants classification. However, the description of the NOEEG dataset in korotchikova et
al. [Korotchikova, Stevenson, Walsh et al. (2011); Stevenson, Korotchikova, Temko et al.
(2013)] make it easy to find that the inclusion criteria of NOEEG dataset are more stringent,
including 5-min Apgar score less than 5, initial capillary or arterial blood pH less than 7.1
mmol/l, and initial capillary or arterial blood lactate larger than 7 mmol/l, etc. However,
the dataset in this paper does not have these requirements. In addition, the dataset of this
paper is smaller than NOEEG dataset, which also limits the performance of the proposed
method in the paper.
In addition, the kappa for each channel and the kappa obtained by accumulating the
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maximum probability of each channel are shown in Fig. 9. The results in Fig. 9 show that
if only a single channel is used for HIE infants classification, the T3 channel can achieve
the best performance with a kappa of 0.57. However, if the HIE is classified by 8 channels,
the kappa can reach 0.69, which significantly improves the classification performance of
the proposed method.
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Figure 9: Kappa coefficient of different channel

However, there are certain areas that can be improved in the proposed automated grading
method. Tab. 3 shows that the proposed method is more likely to misjudge predictions
between adjacent classes, and that a future study could focus on HIE prediction between
adjacent classes. In addition, since the EEG signals are image data, and deep learning has
a very obvious advantage in the image field, a deep learning method can be introduced to
classify HIE infants in the future [Litjens, Kooi, Bejnordi et al. (2017); Shen, Wu and Suk
(2017); Suzuki (2017); Klang (2018)].

4 Discussion
The main contribution of this study is to propose a new method for HIE automatic
classification, which combines the long-term and short-term features of EEG signals
with SVM classifier. The proposed method has good performance in the real-world
data provided by the Department of electrophysiology of Fujian Provincial Maternity and
Children’s Hospital and Affiliated Hospital of Fujian Medical University. Particularly,
the feature of correlation coefficient and asymmetry have an obvious discriminating
capability in the classification of HIE infants. Clearly, there are a large number of
literatures and evidences showing that asymmetry plays an important role in the diagnosis
of encephalopathy using EEG signals [Low, Mathieson, Stevenson et al. (2014); Knott,
Mahoney, Kennedy et al. (2001)]. However, to the knowledge of the authors, there are
few studies in the literature related to use correlation coefficient feature for HIE infants
classification in EEG signals.
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In Fig. 8, it shows that the features (correlation coefficient and asymmetry) extracted by
the paper have a significant improvement on the classification accuracy and kappa of HIE
infants classification. Even if the input of proposed method includes only the features
of correlation coefficient and asymmetry proposed by the paper, there is still a larger
improvement than using the remaining features. When using correlation coefficient and
asymmetry, the AC and kappa of the model are 76.7% and 0.64, respectively. However,
after removing these two features, the AC and kappa obtained by proposed method are only
65.2% and 0.46, which demonstrates the discriminating capability of these two features
extracted in this paper. As expected, the proposed method and features have obvious
advantages in AC, SE and SP.
However, the study is based on off-line analysis, which may be a limitation similar to other
studies [Amsüss, Goebel, Jiang et al. (2013); Li, Wang, Yang et al. (2013)]. Furthermore,
a relatively small number of infants with HIE are collected in this study, which also limit
the performance of the proposed model. In the future, this study can collect more and more
high-quality data for model training.

5 Conclusions
The treatment of HIE infants still has great challenges. In order to reduce the burden on
doctors and improve the efficiency of diagnosis, this paper presents an automated method
for HIE grading using EEG signals. Basing on the extraction of long-term features and
short-term features of the EEG signals, SVM classifier is applied to classify HIE infants.
Moreover, the features extracted in this paper, especially features correlation coefficient
and asymmetry, have better discriminating capability in HIE infants classification. The
proposed grading method has shown significant performance with an AC of 79.5% and the
kappa of 0.69 by analyzing the EEG signals collected from 64 neonates. Therefore, the
proposed method in the paper can provide great convenience for medical staff, and can also
help non-experts to evaluate brain activity, which has great medical value.
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