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Abstract: Focusing on the structural optimization of auxetic materials using data-driven 
methods, a back-propagation neural network (BPNN) based design framework is 
developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-
based parametric modelling scheme with a small number of design variables, the highly 
nonlinear relation between the input geometry variables and the effective material 
properties is obtained using BPNN-based fitting method, and demonstrated in this work to 
give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy 
analytical sensitivity analysis, in contrast to the generally complex procedures of typical 
shape and size sensitivity approaches. 
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1 Introduction 
Auxetic materials [Lakes (1987)] have unusual mechanical properties and advanced 
functionalities in many fields, such as crushing, indentation, damping, shear, acoustics and 
energy absorption [Greaves, Greer, Lakes et al. (2011); Lakes (2017); Novak, Vesenjak and 
Ren (2016); Saxena, Das and Calius (2016)], with important potential applications in sports 
[Duncan, Foster, Senior et al. (2016); Duncan, Shepherd, Moroney et al. (2018)], textiles 
[Wang and Hu (2014)], aerospace and military fields [Alderson and Alderson (2007)]. 
In recent years, considerable effort has focused on the design of auxetic structures to 
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achieve enhanced properties using numerical optimization approaches [Ren, Das, Tran et 
al. (2018)], since the pioneering work in [Sigmund (1994, 1995)]. Such studies are mostly 
based on topology optimization [Kaminakis and Stavroulakis (2012); Schwerdtfeger, Wein, 
Leugering et al. (2011); Wang (2018); Wang, Sigmund and Jensen (2014); Wang, Gao, Luo 
et al. (2017); Wang, Luo, Zhang et al. (2014); Xia, Shi and Xia (2019); Zheng, Xiao, Gao 
et al. (2019)], with experimental validations using samples made from additive 
manufacturing [Schwerdtfeger, Wein, Leugering et al. (2011); Wang (2018); Wang, 
Sigmund and Jensen (2014)]. In contrast, studies using shape optimization approach are 
only limited to the works in Choi et al. [Choi and Cho (2018); Clausen, Wang, Jensen et al. 
(2015); Wang, Xia, Wang et al. (2018); Weeger, Narayanan and Dunn (2019); Zhu, Wang 
and Poh (2018)] for chiral structures and [Kumar, Wang, Poh et al. (2019); Wang and Poh 
(2018); Wang, Poh, Dirrenberger et al. (2017); Wang, Poh, Zhu et al. (2019)] for petal 
shaped structures. These numerical design optimization are often based on the 
computational homogenization of a representative volume element (RVE) to achieve 
tunable effective properties, and has attracted increasing attention [Xia and Breitkopf 
(2017)]. Since the multi-scale homogenization scheme involves additional boundary value 
problems associated with each RVE at different regions of a structure [Da, Cui, Long et al. 
(2017); Hou, Cai, Sapanathan et al. (2019); Wang, Abdalla, Wang et al. (2019); Xia and 
Breitkopf (2014); Xia and Shi (2017, 2018); Xu, You and Du (2015)], Wang et al. [Wang, 
Arabnejad, Tanzer et al. (2018); Wang, Xu and Pasini (2017)] studied the relation between 
effective mechanical properties of optimal designs and the corresponding relative density, 
which is next utilized to speed up the homogenization computations. This provides an 
instructive idea on accelerated homogenization computations. 
Isogeometric analysis (IGA) [Benson, Bazilevs, Hsu et al. (2010); Hughes, Cottrell and 
Bazilevs (2005)] combines the basis functions used in computer-aided design (CAD), e.g., 
nonuniform rational B-splines (NURBSs), with the discretization shape functions in the 
finite element method (FEM). Compared to the conventional FEM, one essential 
improvement of IGA is the direct design-to-analysis approach, i.e., analysis follows 
directly from computer-aided design (CAD) framework without further FE discretization. 
IGA thus has a huge potential in structural shape and topology optimization [Qian (2010); 
Wall, Frenzel and Cyron (2008); Wang and Benson (2016); Wang, Wang, Xia et al. (2018); 
Xia, Wang, Wang et al. (2017); Xie, Wang, Xu et al. (2018)]. This naturally leads to the 
design of auxetic structures with smoothed and curved features using IGA [Choi and Cho 
(2018); Kumar, Wang, Poh et al. (2019); Wang, Xia, Wang et al. (2018); Wang and Poh 
(2018); Wang, Poh, Dirrenberger et al. (2017); Wang, Poh, Zhu et al. (2019); Weeger, 
Narayanan and Dunn (2019)]. Among these works, the petal-shaped auxetics inherit the 
reentrant features from their counterpart star-shaped auxetics. 
Data-driven methods [Kirchdoerfer and Ortiz (2016); Kirchdoerfer and Ortiz (2017); 
Nguyen and Keip (2018)] often requires large experimental datasets, then utilize machine 
learning methods to find the relations and guide the designs. Machine learning (e.g., 
artificial neural networks [Basheer and Hajmeer (2000); Pineda (1987)] and deep learning 
[LeCun, Bengio and Hinton (2015)]) has become increasingly important in many advanced 
fields, e.g., computer vision [Akhtar and Mian (2018); LeCun and Bengio (1998)] and 
natural language processing [Collobert and Weston (2008); Collobert, Weston, Bottou et al. 
(2011)]. These techniques can construct models for complex input-output relations, and are 
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thus suitable for the prediction of mechanical properties and design of structures. The 
pioneering work of Le et al. [Le, Yvonnet and He (2015); Yvonnet, Monteiro and He (2013)] 
presented a multiscale data-driven homogenization framework for the design of nonlinear 
elastic composite RVEs. Combining neural networks and RVE analyses, Bessa et al. [Bessa, 
Bostanabad, Liu et al. (2017)] developed a data-driven framework for materials with 
uncertain events. Gu et al. [Gu, Chen and Buehler (2018)] proposed a machine-learning 
method for optimizing composite structures to achieve exceptional toughness and strength. 
Lei et al. [Lei, Liu, Du et al. (2018)] applied machine learning technique to moving 
morphable component-based structure optimization. Li et al. [Li, Kafka, Gao et al. (2019)] 
used clustering discretization methods to generate material performance databases for 
training neural networks, and applied it for material mechanism prediction and structure 
optimization. Liu et al. [Liu and Wu (2019); Liu, Wu and Koishi (2019)] proposed deep 
material network to describe multiscale heterogeneous materials. While the research efforts 
on machine learning methods for material and structure design have received increasing 
attention, such design concepts are still limited due to the high training cost and 
complicated implementation procedures.  
This paper proposes a data-driven machine learning framework for designing petal-shaped 
auxetics with back-propagation neural network (BPNN) [Goh (1995); Wang, Zeng and 
Chen (2015)]. The current work refers to the isogeometric parameterization method 
proposed in Wang et al. [Wang and Poh (2018); Wang, Poh, Zhu et al. (2019)], where only 
a small number of design variables is required to describe the geometric model. An 
analytical sensitivity analysis is provided using on the BPNN approach. Subjected to an 
effective stiffness constraint, a design methodology to achieve optimal effective properties 
can be accelerated with the BPNN-based fitting function. 
In the following, Section 2 introduces the basic theories of IGA-based computational 
homogenization. A detailed description of BPNN-based fitting method is presented in 
Section 3 and based on that the design optimization model is provided in Section 4. In the 
section 5, a BPNN training process is discussed in detail. Two group of numerical design 
studies are shown in Section 6. Finally, the conclusions are drawn in Section 7. 

2 IGA-based computation homogenization 
A NURBS curve with an order of 𝑝𝑝  often consists of a knot vector 𝛯𝛯 =
[𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑛𝑛+𝑝𝑝+1] and 𝑛𝑛 control points. Each control point corresponds to a weighted 
basis function 

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) =
𝐵𝐵𝑖𝑖,𝑝𝑝(𝜉𝜉)𝑤𝑤𝑖𝑖

∑ 𝐵𝐵𝑗𝑗,𝑝𝑝(𝜉𝜉)𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1

. (1) 

where the B-Spline basis 𝐵𝐵𝑖𝑖,𝑝𝑝(ξ) are defined as [Boor (1972)] 

𝐵𝐵𝑖𝑖,0(𝜉𝜉) = � 1,    𝑖𝑖𝑖𝑖 𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉 < 𝜉𝜉𝑖𝑖+1
0,            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 , 

𝐵𝐵𝑖𝑖,𝑝𝑝(𝜉𝜉) = 𝜉𝜉−𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖+𝑝𝑝−𝜉𝜉𝑖𝑖

𝐵𝐵𝑖𝑖,𝑝𝑝−1(𝜉𝜉) + 𝜉𝜉𝑖𝑖+𝑝𝑝+1−𝜉𝜉
𝜉𝜉𝑖𝑖+𝑝𝑝+1−𝜉𝜉𝑖𝑖+1

𝐵𝐵𝑖𝑖+1,𝑝𝑝−1(𝜉𝜉)   𝑖𝑖𝑖𝑖  𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉 < 𝜉𝜉𝑖𝑖+1, 
(2) 

with the convention 0/0 = 0 , and the weights 𝑤𝑤𝑖𝑖  are positive.   A 2D NURBS basis 
functions of order 𝑝𝑝 in 𝜉𝜉 direction and 𝑞𝑞 in 𝜂𝜂 direction are constructed as 
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𝑁𝑁𝑖𝑖,𝑝𝑝
𝑗𝑗,𝑞𝑞(𝜉𝜉, 𝜂𝜂) = 𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉)𝑁𝑁𝑗𝑗,𝑞𝑞(𝜂𝜂), (3) 

Accordingly, a generic variable 𝑥𝑥  (e.g., coordinate, force, or displacement) with 
parametric coordinate (ξ, η) can be evaluated from the corresponding control variables 
𝑥𝑥𝑖𝑖 by 

𝑥𝑥(𝜉𝜉, 𝜂𝜂) = �𝑁𝑁𝑖𝑖(𝜉𝜉, 𝜂𝜂)𝑥𝑥𝑖𝑖
𝑖𝑖

, (4) 

In IGA, the displacement field 𝒖𝒖 of a deformed geometry patch can similarly be written as 

𝒖𝒖 = �𝑁𝑁𝑖𝑖𝒖𝒖𝑖𝑖
𝑖𝑖

, (4) 

where 𝒖𝒖𝑖𝑖 is the displacement control variable of the i-th control point.  
Using this interpretation in FEM, the stiffness matrix 𝑲𝑲 𝑖𝑖 , unknown displacement vector 
𝑼𝑼 𝑖𝑖 , and the corresponding load vector 𝑭𝑭 𝑖𝑖  for the i-th NURBS patch can be obtained. By 

assembling them together with multiple points constraints (MPCs), a system of equations 
can be obtained as 

�𝑲𝑲 𝑨𝑨𝑇𝑇
𝑨𝑨 0

� �𝑼𝑼𝝀𝝀� = �𝑭𝑭𝒃𝒃�. (5) 

where 𝝀𝝀 are Lagrangian multipliers,  

𝑲𝑲 = �

𝑲𝑲 1    
 𝑲𝑲 2   
  …  

   𝑲𝑲 𝑛𝑛
� ,𝑼𝑼 = �

 1𝑼𝑼
 2𝑼𝑼
⋯

 𝑛𝑛𝑼𝑼

� , and 𝑭𝑭 = �
 1𝑭𝑭
 2𝑭𝑭
…

 𝑛𝑛𝑭𝑭

�. (6) 

void

Ω

S
V

V

V

S S

void+

-

+ +

-

-

-

-

-

- +

++

+

(a) (b)

(c)  
Figure 1: RVE characterization for (a) tri-petals (b) tetra-petals and (c) hexa-petals designs 

A representative volume element (RVE) is used to obtain the efficient properties of a petal-
shaped auxetic structure. The RVEs for three types of petal structures are defined in Fig. 1. 
Please note that the RVE of tri-petals are a symmetric parallelogram which combines two 
tri-petals structures. For each RVE, V represents the design domain and S denotes the 
boundary. Symbols ‘-’ and ‘+’ represent analogous boundaries at the opposite sides of a 
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RVE. Within a RVE, the bulk material lies within a sub-domain Ω (Ω ⊂ 𝑉𝑉) with boundary 
Γ, and the remaining region within a RVE defined as void. With a macro strain E and 
periodic boundary conditions imposed on Ω, a boundary value problem within the RVE is 
solved to extract the macro stress field:  

𝜮𝜮 =
1
𝑉𝑉
�𝝈𝝈
𝛺𝛺

𝑑𝑑𝑑𝑑. (7)  

The macro stress-strain relation for plane stress can be written as 

�
𝛴𝛴11
𝛴𝛴22
𝛴𝛴12

� =
𝐸𝐸
𝑌𝑌

1 − 𝜈𝜈2
�

1 𝜈𝜈 0
𝜈𝜈 1 0

0 0
1 − 𝜈𝜈

2

� �
𝐸𝐸11
𝐸𝐸22

2𝐸𝐸12
�, (8) 

where 𝐸𝐸
𝑌𝑌

 and 𝜈𝜈 are the effective Young modulus and Poisson’s ratio, respectively. For 
plane stress condition with a macro strain 𝑬𝑬 = [1 0 0]T, we can evaluate the effective 
Poisson’s ratio as 

𝜈𝜈 =
𝛴𝛴22
𝛴𝛴11

=
∫ 𝜎𝜎22𝛺𝛺𝜏𝜏 𝑑𝑑𝑑𝑑
∫ 𝜎𝜎11𝛺𝛺𝜏𝜏 𝑑𝑑𝑑𝑑

, (9)  

and the effective Young modulus as 

𝐸𝐸
𝑌𝑌

= 𝛴𝛴11�1− 𝜈𝜈2�. (10)  

d3

d4 θ
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𝑪𝑪10 

θ

 
Figure 2: The IGA-based multi-patches parameterization scheme [Wang and Poh (2018); 
Wang, Poh, Zhu et al. (2019)]: (a) interior boundary definition; (b) exterior boundary 
generation; (c) parent petal generation; (d) insertion of connecting bars and transformation 
of the parent petal; (e) full RVE generation 

The IGA-based parameterization scheme for the petal-shaped auxetics studied in this work 
follows the methodology presented in Wang et al. [Wang and Poh (2018); Wang, Poh, Zhu 
et al. (2019)], where only 8 variables (𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4,ℎ4,𝑑𝑑1,𝑑𝑑2,𝑑𝑑3) are needed to describe a 
unit-cell (Fig. 2). For simplicity, the width of connecting bar 𝑑𝑑3 is set identical to the petal 
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width 𝑑𝑑2. A single material is considered in the unit-cell. The design variables for petal-
shaped auxetic design thus reduce to 𝒙𝒙 = [𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4,ℎ4,𝑑𝑑1,𝑑𝑑2]. 

3 BP-neural-network-based fitting method 
Extracting the effective properties of petal-shaped auxetics from the abovementioned IGA-
based homogenization framework can be computationally expensive. To improve the 
computational efficiency, a data-driven BPNN-based fitting method is proposed here. 
BP (back-propagation) neural network is a type of multilayer forward network, in which 
the learning process consists of signal forward-propagation and error back-propagation 
stages. Compare to other machine learning methods, BPNN has two outstanding 
advantages, i.e., strong nonlinear mapping ability and flexible network structure. Since the 
nonlinear relationship between the geometric parameters and effective properties is not 
quite complicated, the three-layer BPNN can possess the best trade-off between accuracy 
and efficiency when fitting such nonlinear relationship, and thereby the three-layer 
structure is employed herein. 

l1

l2

l3

l4

h4

d1

d2

Poisson's ratio

Young modulus

input layer hide layer output layer

bh bj

wv

1 2

 
Figure 3: BPNN structure 

In this work, the three-layer BP neural network is utilized to fit the nonlinear relationship 
between design variables (i.e., geometric parameters) and effective properties. The data-
driven method presented herein is developed for BPNN and requires large databases. Given 
a training set 𝑫𝑫 = {(𝒙𝒙𝑘𝑘 ,𝒚𝒚𝑘𝑘),𝑘𝑘 = 1,2, … ,𝑚𝑚} , 𝒙𝒙𝑘𝑘  is the input neuron data, i.e., 𝒙𝒙𝑘𝑘 =
[𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4,ℎ4,𝑑𝑑1,𝑑𝑑2], 𝒚𝒚𝑘𝑘 is the output neuron data, i.e., effective mechanical properties 
(Poisson’s ratio and Young modulus), and 𝑚𝑚 is the number of samples. The dataset is 
populated using the IGA-based computation homogenization. The detail process is to select 
the different design variables randomly in the definitional domain, before the extraction of 
efficient properties by IGA-homogenization method. Fig. 3 shows the BPNN structure with 
7 input neurons, unknown hidden neurons and 2 output neurons, in which the weight between 
the j-th output neuron and the h-th hidden neuron is defined as 𝑤𝑤𝑗𝑗ℎ  and the weight between 
the i-th input neuron and the h-th hidden neuron is defined as 𝑣𝑣𝑖𝑖ℎ. Additionally, the bias 
neurons are inserted to the input layer and hidden layer, in which the bias for the h-th hidden 
layer neuron is defined as 𝑏𝑏ℎ1, the bias for the j-th output layer neuron is defined as 𝑏𝑏𝑗𝑗2. For 
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a training sample (𝒙𝒙𝑘𝑘 ,𝒚𝒚𝑘𝑘), the final output can be calculated by 

𝑦𝑦�𝑗𝑗𝑘𝑘 = �𝑤𝑤𝑗𝑗ℎ 𝑧𝑧ℎ

𝑞𝑞

ℎ=1

+ 𝑏𝑏𝑗𝑗2, 𝑗𝑗 = 1,2, … , 𝑙𝑙.  (11)  

where 𝑞𝑞  and 𝑙𝑙 denote the number of hidden and output neurons (𝑙𝑙 = 2 in this work), 
respectively, and 𝑧𝑧ℎ is the output of the h-th hidden neuron, expressed as 
𝑧𝑧ℎ = 𝑖𝑖(𝛼𝛼ℎ) = tanh(𝛼𝛼ℎ), 

𝛼𝛼ℎ = �𝑣𝑣𝑖𝑖ℎ𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=1

+ 𝑏𝑏ℎ1, 
(12)  

with 𝑑𝑑 as the number of input neurons (𝑑𝑑 = 7 in this work), 𝛼𝛼ℎ the input of the h-th 
hidden neuron, and 𝑖𝑖 the activation function. The derivative of 𝑖𝑖(𝛼𝛼ℎ) is 
𝑖𝑖′(𝛼𝛼ℎ) = 1 − 𝑧𝑧ℎ2. (13) 

To find the optimal fitting function, the key issue is to minimum the loss error, which is set 
for each training sample as 

𝐸𝐸𝑘𝑘 =
1
2
�(𝑦𝑦�𝑗𝑗𝑘𝑘 − 𝑦𝑦𝑗𝑗𝑘𝑘)2
𝑙𝑙

𝑗𝑗=1

. (14) 

In order to reduce the loss error, the updated rule can be expressed as 
𝑤𝑤ℎ𝑗𝑗 = 𝑤𝑤ℎ𝑗𝑗 + 𝛥𝛥𝑤𝑤ℎ𝑗𝑗, 
𝑣𝑣𝑖𝑖ℎ = 𝑣𝑣𝑖𝑖ℎ + 𝛥𝛥𝑣𝑣𝑖𝑖ℎ , 
𝑏𝑏𝑗𝑗2 = 𝑏𝑏𝑗𝑗2 + 𝛥𝛥𝑏𝑏𝑗𝑗2, 
𝑏𝑏ℎ1 = 𝑏𝑏ℎ1 + 𝛥𝛥𝑏𝑏ℎ1. 

(15)  

Giving a learning rate 𝜂𝜂, 𝛥𝛥𝑤𝑤ℎ𝑗𝑗 can be calculated by stochastic gradient descent (SGD) 
[Bottou (2010)] 

𝛥𝛥𝑤𝑤ℎ𝑗𝑗 = −𝜂𝜂
𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝑤𝑤ℎ𝑗𝑗

.  (16) 

According to the chain rule 
𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝑤𝑤ℎ𝑗𝑗

=
𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝑦𝑦�𝑗𝑗𝑘𝑘

⋅
𝜕𝜕𝑦𝑦�𝑗𝑗𝑘𝑘

𝜕𝜕𝑤𝑤ℎ𝑗𝑗
= �𝑦𝑦�𝑗𝑗𝑘𝑘 − 𝑦𝑦𝑗𝑗𝑘𝑘�𝑧𝑧ℎ, (17)  

where 𝛥𝛥𝑤𝑤ℎ𝑗𝑗 can be rewritten as 

𝛥𝛥𝑤𝑤ℎ𝑗𝑗 = −𝜂𝜂(𝑦𝑦�𝑗𝑗𝑘𝑘 − 𝑦𝑦𝑗𝑗𝑘𝑘)𝑧𝑧ℎ. (18)  
Similarly, 
𝛥𝛥𝑣𝑣𝑖𝑖ℎ = −𝜂𝜂𝑒𝑒ℎ𝑥𝑥𝑖𝑖, 
𝛥𝛥𝑏𝑏𝑗𝑗2 = −𝜂𝜂�𝑦𝑦�𝑗𝑗𝑘𝑘 − 𝑦𝑦𝑗𝑗𝑘𝑘�, 
𝛥𝛥𝑏𝑏ℎ1 = −𝜂𝜂𝑒𝑒ℎ . 

(19)  

where 
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𝑒𝑒ℎ = −
𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝑧𝑧ℎ

⋅
𝜕𝜕𝑧𝑧ℎ
𝜕𝜕𝛼𝛼ℎ

= −�
𝜕𝜕𝐸𝐸𝑘𝑘
𝜕𝜕𝑦𝑦�𝑗𝑗𝑘𝑘

⋅
𝜕𝜕𝑦𝑦�𝑗𝑗𝑘𝑘

𝜕𝜕𝑧𝑧ℎ
𝑖𝑖′(𝛼𝛼ℎ)

𝑙𝑙

𝑗𝑗=1

= (1 − 𝑧𝑧ℎ2)�𝑤𝑤ℎ𝑗𝑗�𝑦𝑦𝑗𝑗𝑘𝑘 − 𝑦𝑦�𝑗𝑗𝑘𝑘�
𝑙𝑙

𝑗𝑗=1

. (20)  

It is noted that the training object is to minimize the loss function 𝐸𝐸, defined as the average 
loss error of all training samples,  

𝐸𝐸 =
1
𝑚𝑚
�𝐸𝐸𝑘𝑘

𝑚𝑚

𝑘𝑘=1

. (21) 

After BPNN training, the weights and biases are obtained, and the fitting function can be 
expressed as 

  𝑦𝑦𝑗𝑗 = �𝑤𝑤𝑗𝑗ℎ 𝑧𝑧ℎ

𝑞𝑞

ℎ=1

+ 𝑏𝑏𝑗𝑗2, 𝑗𝑗 = 1,2, 

  𝑧𝑧ℎ = tanh��𝑣𝑣𝑖𝑖ℎ𝑥𝑥𝑖𝑖

𝑑𝑑

𝑖𝑖=1

+ 𝑏𝑏ℎ1� ,ℎ = 1,2, … , 𝑞𝑞. 

(22)
  

where 𝑦𝑦𝑗𝑗   represent the effective mechanical properties, in which 𝑦𝑦1   denotes effective 
Poisson’s ratio, and 𝑦𝑦2  denotes effective Young modulus. 
Henceforth, the IGA-based computation homogenization can be replaced by the fitting 
function, which establishes an explicit relationship between geometric parameters and 
mechanical properties. The flowchart of data-driven design framework is shown in Fig. 4. 
The data-driven design framework first uses the databased to train the fitting function by 
BPNN, then replaces the IGA-based computation homogenization with the fitting function. 
Based on the fitting function, the design can obtain optimal properties structures efficiently. 

Replace
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Geometric parameters
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Input layer
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Random sampling 

Poisson 
ratio

Young 
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𝜒𝜒 = [𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4,ℎ4,𝑑𝑑1,𝑑𝑑2 = 𝑑𝑑3] 

 

  

 
 

IGA-homogenization

 

Figure 4: The flowchart of data-driven design framework 

4 Design optimization problem 
An intriguing advantage of the BPNN-based fitting function is to parameterize structure 
intrinsically. The rate of gradient or change of the geometric parameters (i.e., the input 
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neurons) with respect to the effective mechanical properties (i.e., the output neurons) in the 
network can be derived analytically. 
The design optimization problem here is to optimize a given petal-shaped auxetic to 
achieve tunable Poisson’s ratio at a certain stiffness, i.e., 

min  Φ[𝒙𝒙] = (𝜈𝜈 − 𝜈𝜈�)2, 

st.Ψ[𝒙𝒙] ≔  𝐸𝐸
𝑌𝑌
− 𝐸𝐸�

𝑌𝑌
= 0. 

(23) 

Sensitivity analysis can be expressed as follows, 

Φ̇ =
𝐷𝐷Φ
𝐷𝐷𝑥𝑥𝑖𝑖

= 2�𝜈𝜈 − 𝜈𝜈���̇�𝜈. (24) 

where ( )̇ denotes the material (design) derivative or full derivative. The optimized model 
can be expressed as 

find 𝑥𝑥�𝑖𝑖 ∈ �𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖�, 𝑖𝑖 = 1,2,⋯ , such that
Φ[𝒙𝒙�] ≤ Φ[𝒙𝒙],Ψ[𝒙𝒙�] = 0,∀𝑥𝑥�𝑖𝑖 ∈ [𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖]

, (25)  

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 are the lower and upper bounds of 𝑥𝑥�𝑖𝑖, respectively. Based on BPNN 
framework, the derivative of 𝜈𝜈 can be written analytically, 

�̇�𝜈 = 𝑦𝑦1 ̇ = �
𝜕𝜕𝑦𝑦1 

𝜕𝜕𝑧𝑧ℎ
⋅
𝜕𝜕𝑧𝑧ℎ
𝜕𝜕𝛼𝛼ℎ

⋅
𝜕𝜕𝛼𝛼ℎ
𝜕𝜕𝑥𝑥𝑖𝑖

𝑞𝑞

ℎ=1

= �𝑤𝑤ℎ𝑗𝑗 ⋅ (1 − 𝑧𝑧ℎ2) ⋅ 𝑣𝑣𝑖𝑖ℎ

𝑞𝑞

ℎ=1

, 𝑗𝑗 = 1. (26)  

Similarly, we can obtain 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= �̇�𝐸
𝑌𝑌

= 𝑦𝑦2 ̇ = �
𝜕𝜕𝑦𝑦2 

𝜕𝜕𝑧𝑧ℎ
⋅
𝜕𝜕𝑧𝑧ℎ
𝜕𝜕𝛼𝛼ℎ

⋅
𝜕𝜕𝛼𝛼ℎ
𝜕𝜕𝑥𝑥𝑖𝑖

𝑞𝑞

ℎ=1

= �𝑤𝑤ℎ𝑗𝑗 ⋅ (1 − 𝑧𝑧ℎ2) ⋅ 𝑣𝑣𝑖𝑖ℎ

𝑞𝑞

ℎ=1

, 𝑗𝑗 = 2. (27)  

The sensitivity analysis in a conventional IGA-based computation homogenization 
approach can be complicated. In several cases, a semi-analytical approach is adopted 
[Wang and Poh (2018)] to facilitate implementation, though at the expense of higher 
computational cost. The BPNN-based function describes an explicit relationship between 
geometric parameter and mechanical properties, which enables a simple analytical 
derivation of the gradient and thus improves the computational efficiency significantly. 

5 BP Neural network training 
Three different auxetic structures with tri-, tetra- and hexa-petals are used to train the 
BPNN, respectively. The tetra-petals case will be discussed in detail to find the optimal 
BPNN structure. The BP neural networks include 3 layers, with the input layer consisting 
of 7 neurons (corresponding to the geometric parameter of petal structure), and the output 
layer consisting of 2 neurons (corresponding to the effective Poisson’s ratio and effective 
Young modulus). There are three kinds of datasets: training set, validation set and test set, 
all generated by random sampling in the definition domain. Training set and validation set 
are used for BPNN training, and test set is used to prove the accuracy of fitting function. 
The loss functions of the training and validation sets decrease during the iteration, and 
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converge at the iteration number larger than 200000. To avoid overfitting, an extra stop 
criteria is set if the loss function of validation set starts to increase. All examples are run 
on a desktop computer with CPU Intel core i7-6700K of 4.00 GHz, GPU NVIDIA GeForce 
GTX 1080, RAM of 16.0 GB, and software environment TensorFlow. 

5.1 Data set 
Datasets are essential in BPNN training and determine the upper limit of fitting accuracy. 
In this study, three types of datasets are generated through IGA-based computation 
homogenization. The numbers of training, validation and test samples are 3000, 500 and 
500, respectively. Specifically, the tetra-petals cases are discussed here in detail, with upper 
and lower bounds set for the size and shape design variables to avoid non-feasible solutions.  
Generally, the fitting function is prone to have large errors when the input variables are 
closed to the upper and lower bounds. To increase the accuracy of the fitting function, the 
sampling range of design variables in training set is defined slightly larger than the 
validation and test sets, while the validation and test sets have the same data distribution.  
First, the upper and lower bounds of validation and test set should be defined. To avoid 
overlaps between the petals and connecting bars, the upper and lower bounds for the design 
variables 𝑙𝑙1,2,3,4 are set to be [3, 3, 3, 1] and [0.8, 0.5, 0.5, 0.25], respectively. The upper 
and lower bounds for design variable ℎ4 are set to be 11 and 7, respectively, so that the 
petals are small enough to fit within a unit cell, and a sufficient size to avoid a relatively large 
curvature at the vertices. For the validation and test sets, the upper and lower bounds for the 
tetra-petals design variables are set to be [3, 3, 3, 1, 11, 1, 1] and [0.8, 0.5, 0.5, 0.25, 7, 0.3, 
0.2], respectively. To increase the accuracy of fitting function, the sampling ranges of design 
variables in training set are 20% larger than the validation and test sets in this work. 
The input data is selected randomly in the definition domain, and the output data are 
generated by IGA-based computation homogenization using the input data. The 
distribution of datasets is shown in Fig. 5, in which the 1st ~7th variables in horizontal axis 
represent the input neurons data, i.e., design variables, and the 8th and 9th variables in 
horizontal axis represent the output neurons data, i.e., effective mechanical properties. It is 
noted that the test set has the same data distribution as validation set.  

    E /EY Y
0log10( )𝑙𝑙1 𝑙𝑙2 𝑙𝑙3 𝑙𝑙4 ℎ4 𝑑𝑑1 𝑑𝑑2 𝜈𝜈�  E /EY Y

0log10( )𝑙𝑙1 𝑙𝑙2 𝑙𝑙3 𝑙𝑙4 ℎ4 𝑑𝑑1 𝑑𝑑2 𝜈𝜈�   
Figure 5: the distribution of training (left) and validation dataset (right) 
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5.2 Data preprocessing 
The original data of neurons differs significantly between one another. To increase the 
training efficiency, a preprocessing of training data is required. The input data are scaled 
using mean and standard deviation, with the normalization for each input neuron expressed 
as follows, 

𝑥𝑥𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

, (28)  

where 𝜇𝜇𝑖𝑖  and 𝜎𝜎𝑖𝑖  are the mean and standard deviation of the i-th input neuron data, 
respectively. The output data are scaled to fall within a specified range in [0,1], the 
preprocessing for each output neuron is expressed as follows, 

𝑦𝑦𝑗𝑗 =
𝑦𝑦𝑗𝑗 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗

𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗 − 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗
 , (29) 

where 𝑚𝑚𝑖𝑖𝑛𝑛𝑗𝑗 and 𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗 are the minimum and maximum value of the j-th output neuron data, 
respectively. It is noted that the data preprocessing is just performed in the training set, and 
the validation and test sets use the same preprocessing parameters as the training set. 

5.3 BPNN structure 
To find the optimal BPNN structure for the fitting case, we discuss four different structures: 
7-5-2, 7-15-2, 7-30-2 and 7-50-2, in which the three parameters denote the number of input, 
hidden and output neurons, respectively. The iterative history of the fitting error (defined 
as the average squared error between the predicted and the original values for all samples) 
for above cases are listed on the left side in Fig. 6, while the frequency distribution 
histograms of the sample errors (defined as the squared error between the predicted and the 
original values for each sample) are also presented in middle for the validation set and on 
the right side for the training set in Fig. 6. 
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Figure 6: The average error history and the fitting error distribution for different hidden 
neuron numbers 

Table 1: the fitting loss of the validation and training sets 
Case Validation fitting loss Training fitting loss 
7-5-2 0.0003664 0.0008848 
7-15-2 0.0001276 0.0004234 
7-30-2 0.0001241 0.0004040 
7-50-2 0.0001219 0.0003919 

From Fig. 6, it can be observed that the average error of the training and validation sets 
drop simultaneously in the training process, with the latter being smaller at all times. For 
the histogram, the error range of the validation set is much smaller than that of the training 
set. Similarly, in Tab. 1, the fitting error in the validation set is much smaller than that of 
the training set, which demonstrates the expansion for the defined range of training set is 
effective to guarantee the fitting accuracy of the validation set. The number of hiding layer 
neurons have a significant effect on the training process. If the number of hidden neurons 
is too small, the network lacks the necessary abilities of learning and information 
processing. Eventually, the case with 5 hidden neurons has a large error. If the number of 
hidden neurons is too large, it increases the complexity of the network structure 
significantly, and slows down the learning speed of the network. Thus, the number of 
hidden neurons should be set to a suitable value, which is taken as 15 in this work. 
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5.4 Test set 
After the fitting function is obtained with the BPNN structure of 7-15-2, the test set 
(including 500 random samples) is used to demonstrate the accuracy of fitting function, 
and the relative errors for the effective Poisson’s ratio and Young modulus are shown in 
Fig. 7. The average relative errors of the Poisson’s ratio and the Young modulus are 0.097 
and 0.007, respectively. The difference of the relative errors shows that the fitting values 
of the Young modulus has a better accuracy than that of the Poisson’s ratio, likely due to 
the fact that values smaller than 10−2 are present in the dataset of the Poisson’s ratio, and 
are thus prone to induce high relative errors. 
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Figure 7: The relative errors of tetra-petals fitting function for test dataset 
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Figure 8: The average error history and the fitting error distribution of (a) tri-petals and (b) 
hexa-petals 
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Figure 9: The relative error distributions of (a) tri-petals and (b) hexa-petals fitting 
function for test datasets 

Utilizing the same method, the fitting functions of 3-petals and 6-petals can be obtained. 
The average error and the fitting error distribution are plotted in Fig. 8, and the relative 
error distribution in test set shown in the Fig. 9. For the validation and test sets, the upper 
and lower bounds for the design variables of tri-petals are set to be [3, 3, 4, 1, 13.5, 1, 1] 
and [0.5, 0.5, 0.5, 0.25, 7, 0.3, 0.2], respectively, while for the hexa-petals are set to be [3, 
3, 3, 3, 10.5, 1, 1] and [0.8, 0.5, 0.5, 0.25, 7, 0.3, 0.2], respectively. The sampling ranges of 
design variables in training set are 20% larger than the validation and test sets. 

Table 2: The fitting loss of the validation and training sets for tri-petals and hexa-petals 

Case Validation fitting loss Training fitting loss 
tri-petals 0.0001851 0.0004840 
hexa-petals 0.0004568 0.0010080 

In Tab. 2, the fitting loss of the validation and training sets for tri-petals and hexa-petals 
are listed. The results show that the fitting error of the two validations cases reaches a 
magnitude of 10−4 . The average relative errors of the Poisson’s ratio and the Young 
modulus are 0.153 and 0.013 for hexa-petals, 0.111 and 0.007 for tri-petals, respectively. 
The fitting error and relative error of the hexa-petals case are bigger than that of the tri-
petals, indicating that hexa-petals case has a more complicated nonlinear relationship, 
which can be fitted by more complicated BPNN structure in our future work. 

6 Numerical design studies 
Since the BP neural networks is used to fit the relationship between the design variables and 
the mechanical properties, the efficiency and accuracy must be discussed. For each kind of 
petal-shaped auxetics, a clear fitting function is obtained. Based on such fitting functions, 
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considering the lowest Poisson’s ratio attainable with a reference structure over a range of 
stiffness constraints, the design limit curves for tri-petals and hexa-petals are provided. 

6.1 Demonstration for accuracy and efficiency 
To demonstrate the accuracy and efficiency of BPNN-based fitting method, three different 
petal-shaped auxetic structures are tested in this section.  

 
Figure 10: The petal-shaped structures of tri-petals, tetra-petals and hexa-petals auxetic 

The design variables in Fig. 10 are [2.42, 0.50, 2.50, 0.25, 10.00, 0.30, 1.00] for tri-petals, 
[1.5, 1, 1, 0.5, 10.25, 0.5, 0.5] for tetra-petals, and [1.64, 0.85, 1.02, 0.61, 8.29, 0.67, 0.98] 
for hexa-petals. Their computational time and effective mechanical properties extracted 
from IGA-based computation homogenization and BPNN-based fitting methods are listed 
in Tab. 3, respectively. 
Table 3: The computational time and mechanical properties of the IGA-based computation 
homogenization and BPNN-based fitting method in different petal-shaped auxetics 

Cases 
IGA-based computation 
homogenization 

BPNN-based fitting 

Computational 
time (s) 

Poisson’s 
ratio 

Young 
modulus 

Computational 
time (s) 

Poisson’s 
ratio 

Young 
modulus 

Tri-petals 2.55 0.12 -3.43 0.0012 0.13 -3.45 
Tetra-petals 2.25 -0.67 -3.91 0.0013 -0.67 -3.90 
Hexa-petals 2.48 0.20 -2.73 0.0018 0.20 -2.75 

As the Tab. 3 shown, the computational time of BPNN-based fitting is much smaller than 
the IGA-based computation homogenization. Moreover, the Poisson’s ratio and Young 
modulus obtained by BPNN-based fitting are relatively close to the IGA-based 
computation homogenization, hence demonstrating the high efficiency and accuracy of the 
BPNN-based fitting method. 

6.2 Optimal solution for petal design 
To find the design limit, i.e., the lowest achievable Poisson’s ratio at a given stiffness constraint, 
the target value for the effective Poisson’s ratio in the objective function in Eq. (24) can be set 
as 𝜈𝜈� = −1. The design optimization study is implemented sequentially over a range of 𝐸𝐸�𝑌𝑌 
values for the tri-petals and hexa-petals auxetics. The upper and lower bounds for the petal-
shaped design variables are set as the same as the validation sets of above section. There are 
two cases in this study: Case A with IGA-based computation homogenization and Case B with 
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BPNN-based fitting method. Using these two different methods, the design limit curves for 
tri- and hexa-petals auxetics are shown in Fig. 11, in which the optimal solutions from low to 
high stiffness for each case are listed in Figs. 12~Fig. 15 and the optimal design parameters 
for the optimal solutions are listed in Appendix A. 
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Figure 11: the design limit curves obtained by IGA-based computation homogenization 
and BPNN-based fitting method for (a) tri-petals and (b) hexa-petals auxetics structures 

A1 A2 A3

A4 A5 A6

A7 A8 A9

A12A10 A11  
Figure 12: Optimal solutions of the tri-petal structures for Case A with stiffness constraints 
indicated in Fig. 11(a) 
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B7 B8 B9

B10 B11 B12  
Figure 13: Optimal solutions of the tri-petal structures for Case B with stiffness constraints 
indicated in Fig. 11(a) 
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Figure 14: Optimal solutions of the hexa-petal structures for Case A with stiffness 
constraints indicated in Fig. 11(b) 
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B4 B5 B6

B1 B2 B3

B7 B8 B9

B10 B11 B12  
Figure 15: Optimal solutions of the hexa-petal structures for Case B with stiffness 
constraints indicated in Fig. 11(b) 

As shown in Fig. 11, a stationary point is obtained for the lowest attainable Poisson’s ratio 
for each petal-shaped case, and the design limit curves obtained by BPNN-based fitting 
function are similar with the IGA-based computation homogenization, which demonstrates 
its accuracy. In the range of lower or higher effective stiffness, the petal-shaped structures 
lose its auxeticity. From the Figs. 12~Fig. 15, we can observe that the structures obtained 
from IGA-based computation homogenization and BPNN-based fitting are similar. The 
general observations are: (1) the petal width tends to increase; (2) the petal length tends to 
reach its upper bound for a low Poisson’s ratio and lower bound for a high stiffness; and 
(3) the petal shrinks from an initial bouffant shape to a stout design with increasing stiffness. 
The computational time of each point in the design limit curves using IGA-based 
computation homogenization ranges from several minutes to an hour. In contrast, the 
optimization analyses based on BPNN fitting function only cost tens of seconds on average 
-an acceleration of the design process by two orders of magnitude. Since the gradient can 
be obtained analytically and efficiently in the BPNN framework, the optimization can be 
accelerated significantly. The results in this paper thus showcase the efficiency and 
accuracy of BPNN-base fitting method.  

7 Conclusion 
This paper proposed a novel data-driven method to design petal-shaped auxetics with IGA 
utilizing BP neural network. Based on the BPNN training, the relationship between 
geometric parameters and effective mechanical properties (Poisson’s ratio and Young 
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modulus) is expressed by fitting function accurately. The fitting errors in the validation sets 
of three petal-shaped cases lie in range of 10−4, which demonstrates the high-accuracy 
level of the method. The computing processes for the mechanical properties can be 
accelerated by two orders of magnitude, demonstrating the efficiency of the method. The 
sensitivity analysis can be obtained analytically and easily in the BPNN-based design 
framework, which avoids the complicated shape and size sensitivity analysis. Numerical 
design studies to obtain the design limit curves for (minimum) effective Poisson’s ratio 
over a range of stiffness constraints are presented. The design limit curves can be obtained 
in a very short time by using BPNN-based fitting function and the optimal solutions are 
very close to those determined from IGA-based computation homogenization. Our future 
work will mainly focus on three aspects: (1) extending BPNN-based design framework to 
multi-materials auxetics and other material designs, e.g., lattice materials [Da, Yvonnet, 
Xia et al. (2018); Wang, Khanoki, Tanzer et al. (2018); Wang, Xu and Pasini (2017)], chiral 
metamaterials [Ma, Cheng and Liu (2018); Wang, Zhou, Koschny et al. (2009); Zhang, 
Park, Li et al. (2009)] and other metamaterial designs [Coulais, Teomy, De Reus et al. 
(2016); Falcone, Lopetegi, Laso et al. (2004)]; (2) exploring other machine learning 
methods for possible improved efficiency [Mohri, Rostamizadeh and Talwalkar (2018)] 
(e.g., reinforcement learning, decision tree, support vector machine); (3) combining fast-
calculation methods, such as parallel computing [Wang, Wang, Deng et al. (2015); Wang, 
Wang, Wang et al. (2013)] and algorithm acceleration [Liao, Zhang, Wang et al. (2019)], 
to further improve the computing efficiency in the training process of machine learning. 
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Appendix A. Design parameters of the optimized solutions for design limit curves. 
Tri-petal auxetics 

Cases Design variables 𝑥𝑥 = [𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4,ℎ4,𝑑𝑑1,𝑑𝑑2 = 𝑑𝑑3] 
A1 [0.5, 3, 4, 1, 13.5, 1, 0.2] 
A2 [2.42, 0.5, 4, 1, 13.5, 1, 0.2] 
A3 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.2] 
A4 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.26] 
A5 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.31] 
A6 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.35] 
A7 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.56] 
A8 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.67] 
A9 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.76] 
A10 [3, 0.5, 0.5, 1, 13.5, 0.3, 0.97] 
A11 [3, 0.5, 0.5, 0.25, 11.99, 0.3, 1] 
A12 [3, 0.5, 0.5, 0.25, 10.59, 1, 1] 
B1 [0.50, 1.85, 4.00, 1.00, 13.50, 1.00, 0.20] 
B2 [2.19, 0.91, 3.54, 0.88, 13.45, 0.64, 0.20] 
B3 [2.99, 0.53, 1.41, 0.87, 13.49, 0.62, 0.20] 
B4 [2.99, 0.53, 1.60, 0.95, 13.49, 0.72, 0.26] 
B5 [2.99, 0.53, 1.20, 0.85, 13.49, 0.72, 0.32] 
B6 [3.00, 0.51, 1.05, 0.99, 13.50, 0.98, 0.35] 
B7 [3.00, 0.51, 0.78, 0.99, 13.50, 0.99, 0.56] 
B8 [3.00, 0.50, 0.50, 1.00, 13.50, 1.00, 0.67] 
B9 [3.00, 0.50, 0.50, 1.00, 13.50, 1.00, 0.76] 
B10 [2.99, 0.55, 0.55, 0.43, 13.49, 0.40, 0.95] 
B11 [2.98, 0.61, 0.79, 0.35, 11.94, 0.78, 1.00] 
B12 [2.98, 0.98, 0.65, 0.44, 10.50, 0.83, 1.00] 
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Hexa-petal auxetics 
Cases Design variables 𝑥𝑥 = [𝑙𝑙1, 𝑙𝑙2, 𝑙𝑙3, 𝑙𝑙4,ℎ4,𝑑𝑑1,𝑑𝑑2 = 𝑑𝑑3] 
A1 [0.8, 0.5, 1.65, 3, 10.5, 1, 0.2] 
A2 [0.8, 0.5, 0.5, 1.59, 10.5, 1, 0.2] 
A3 [0.8, 0.5, 0.5, 0.25, 9.6, 1, 0.2] 
A4 [0.8, 0.5, 0.5, 0.25, 9.49, 1, 0.23] 
A5 [0.8, 0.5, 0.5, 0.25, 9.35, 1, 0.29] 
A6 [0.8, 0.5, 0.5, 0.25, 9.21, 1, 0.36] 
A7 [0.8, 0.5, 0.5, 0.25, 9.1, 1, 0.43] 
A8 [0.8, 0.5, 0.5, 0.25, 9.03, 1, 0.48] 
A9 [0.8, 0.5, 0.5, 0.25, 8.67, 1, 0.77] 
A10 [0.8, 0.5, 0.5, 0.25, 8.47, 1, 0.92] 
A11 [0.8, 0.5, 0.5, 0.25, 8.05, 0.7, 1] 
A12 [1.38, 0.5, 0.5, 0.25, 7, 0.76, 1] 
B1 [0.80, 0.54, 2.01, 2.88, 10.41, 0.99, 0.20] 
B2 [0.81, 0.55, 0.58, 2.03, 10.27, 0.87, 0.20] 
B3 [0.81, 0.54, 0.55, 0.95, 10.30, 0.84, 0.22] 
B4 [0.81, 0.54, 0.54, 0.79, 9.56, 0.82, 0.24] 
B5 [0.80, 0.51, 0.51, 0.51, 9.74, 0.97, 0.31] 
B6 [0.80, 0.51, 0.51, 0.32, 9.82, 0.99, 0.39] 
B7 [0.81, 0.54, 0.54, 0.75, 9.40, 0.96, 0.46] 
B8 [0.80, 0.51, 0.51, 0.67, 9.28, 0.99, 0.51] 
B9 [0.81, 0.53, 0.54, 0.78, 8.92, 0.97, 0.81] 
B10 [0.81, 0.53, 0.53, 0.51, 8.58, 0.97, 0.95] 
B11 [0.99, 0.52, 0.52, 0.41, 8.12, 0.88, 0.99] 
B12 [1.76, 0.51, 0.51, 0.43, 7.83, 0.93, 1.00] 
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