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Abstract: Accurate segmentation of CT images of liver tumors is an important adjunct 
for the liver diagnosis and treatment of liver diseases. In recent years, due to the great 
improvement of hard device, many deep learning based methods have been proposed for 
automatic liver segmentation. Among them, there are the plain neural network headed by 
FCN and the residual neural network headed by Resnet, both of which have many 
variations. They have achieved certain achievements in medical image segmentation. In 
this paper, we firstly select five representative structures, i.e., FCN, U-Net, Segnet, 
Resnet and Densenet, to investigate their performance on liver segmentation. Since 
original Resnet and Densenet could not perform image segmentation directly, we make 
some adjustments for them to perform live segmentation. Our experimental results show 
that Densenet performs the best on liver segmentation, followed by Resnet. Both perform 
much better than Segnet, U-Net, and FCN. Among Segnet, U-Net, and FCN, U-Net 
performs the best, followed by Segnet. FCN performs the worst. 
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1 Introduction 
Liver segmentation is an important step before lesion detection and diagnose, but 
manually segmenting livers from medical images is time-consuming. With the soaring of 
deep learning recent year, many deep learning works have been proposed for automatic 
liver segmentation. Liver segmentation is analogy to image semantic segmentation, an 
important branch in the field of AI and computer vision. 
Different from image classification, semantic segmentation needs to determine the 
category of each pixel for accurate segmentation. Therefore, deep learning networks are 
required to transform the feature map extracted from input images to their original size. 
The fully convolutional neural network proposed by Long et al. [Long, Shelhamer and 
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Darrell (2015)] is the first work in semantic segmentation that can process arbitrarily 
sized input images. Specifically, it removes the fully-connected layer and introduces the 
deconvolution layer to return the feature map extracted from an input image to its original 
size. After this, the structure of FCN is widely used in semantic segmentation, Segnet 
Badrinarayanan et al. [Badrinarayanan, Kendall and Cipolla (2017)] conducts the image 
segmentation in an encoder-decoder manner. Its encoder is identical to the 13 
convolution layers in VGG-16, and its decoder will map the feature map extracted by the 
encoder to the full input resolution feature map. In medical image segmentation, U-Net 
Ronneberger et al. [Ronneberger, Fischer and Brox (2015)] also employs the encoder-
decoder structure to conduct segmentation. It develops the lateral connection to 
concatenate the feature from the encoder phase to the decoder phase. The effectiveness of 
the lateral connection is demonstrated in medical image segmentation. Besides, it can 
help the model achieve good results with fewer images. 
With the increment of the number of layers, neural network becomes hard to train. 
However, the depth of a neural network is crucially important and the abstract level of 
extracted features can be increased by increasing the number of stacked layers. He et al 
[He, Zhang, Ren et al. (2016)] designed a residual structure, which adds the input of the 
non-linear layer to its output. With the residual structure, gradient can be quickly 
delivered to the previous layer, which makes the depth of the network can be much 
deeper than before. Different from the residual structure, Huang et al. [Huang, Liu, Van 
Der Maaten et al. (2017)] concatenates each layer to all the other layers in the same block. 
Simonyan et al. [Simonyan and Zisserman (2014)] obtained a state-of-the-art 
performance on liver and lesion segmentation based on the Densenet. 
In this paper, we firstly make some adjustments to Resnet and Densenet, since they are 
originally designed for image recognition, not for image segmentation. Then, we conduct 
experiments to investigate the performance of FCN, Segnet, U-Net, Resnet and Densenet 
on liver segmentation. The main purpose of this paper is to find the best deep learning 
approach for liver segmentation. 

2 Five popular deep learning networks 
The emergence of AlexNet Krizhevsky et al. [Krizhevsky, Sutskever and Hinton (2012)] 
made deep learning become a hot topic. Many deep learning approaches have been 
proposed after AlexNet. The development on deep learning mainly includes the depth 
increment of deep learning network, the enhancement of convolution module functions, 
new functional units, and many different real-world applications. We will briefly 
introduce five popular deep learning approaches in the following subsections. 

2.1 FCN 
Fig. 1 shows the structure and the schematic diagram of fully convolutional networks 
(FCN). The max-pooling layer of FCN is commonly used in convolution neural network to 
reduce the computation complexity and overcome overfitting. After several pooling 
operations, the feature map will be 16 or 32 times smaller than the size of an input image. 
What we need in the semantic segmentation is an output image with the same size, where 
each pixel has an assigned label. Therefore, FCN introduces deconvolution to transform the 
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final feature map extracted from a medical image to an output image with the same size. 
The simplest way to transform the final feature map extracted from an image to an output 
image with the same size is to directly enlarge 32 times. However, this manner will loss 
the segmentation detail. Therefore, FCN Long et al. [Long, Shelhamer and Darrell (2015)] 
deconvoluted the output of the fourth layer and the third layer, carry out 16 times and 8 
times up-sampling respectively, and then combine them to generate a prediction for each 
pixel. This will retain more spatial information in the original input image. Finally, the 
feature map is classified pixel by pixel, and the result is a little more subtle. 
In our experiments, we adapt the up-sampling strategy of FCN-8s to carry out 32-fold up-
sampling for pool5 (refer to Fig. 1) features. And then each point of 32x upsampled 
features will make a softmax prediction to obtain segmentation. 
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Figure 1: The FCN network structure and its schematic diagram 

2.2 U-Net 
U-net is a semantic segmentation network based on FCN, which performs well in medical 
image segmentation, and is the cornerstone of medical image segmentation. Medical 
images usually have fuzzy boundary, complex gradient and large gray range, so medical 
image segmentation needs more high-resolution information. The U-net structure 
combines the information of bottom layers with top layers, and erases the problem of 
information insufficient during up-sampling through the low-resolution information after 
multiple down-sampling. Its underlying characteristics are important for model training 
with a small medical image dataset. Because the underlying information can provide 
contextual semantic information of the target of segmentation in a whole image, which is 
helpful for the classification of objects. High level information is directly transferred 
from encoder to decoder at the same height after concatenate operations, which can 
provide more detailed features for segmentation, such as gradients. 
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Figure 2: A U-Net network structure 

In the up-sampling stage, comparing with FCN, U-Net adopts a completely different 
feature fusion method: lateral connection! Different from point-by-point addition, U-Net 
concatenates features together in channel dimensions to form thicker features. U-Net 
combines low-resolution information (providing the basis for object classification 
recognition) with high-resolution information (providing the basis for accurate 
segmentation and positioning), which is perfect for medical image segmentation. 

512x512 256x256 128x128 64x64 32x32 32x32 64x64 128x128 256x256 512x512

Convolutional Encoder-Decoder

Pooling Indices

Conv + Batch Normalisation + Relu

Pooling Upsampling Softmax

Input Output

 
Figure 3: A Segnet network structure 
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2.3 Segnet 
Fig. 3 shows that the whole structure of Segnet is composed of an encoder and a decoder. 
The encoder is the 13 identical convolution layers in VGG-16, while its decoder is the 
symmetric structure of its encoder. Segnet uses same convolution layers to extract 
features in the process of encoding. In the decoding process, Segnet uses convolution to 
enrich the image information after up-sampling operations. In Segnet, each convolutional 
layer is followed by a Batch Normalization layer and a ReLu activation layer. 
The main difference between Segnet and FCN lies in up-sampling the decoding process. 
From the above structure, we can see that each pooling layer saves pooling indices and is 
transferred to a later symmetric up-sampling layer. The process of up-sampling is as follows. 
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Figure 4: The comparison of up-sampling operation between Segnet and FCN 

The left sub-figure of Fig. 4 is the up-sampling method proposed in Segnet. It maps the 
feature map ‘ABCD’ to the new feature map by the coordinates of the max-pooling 
previously saved, and pads zeros for other positions. The right sub-figure of Fig. 4 is the 
up-sampling method used in FCN. It conducts a deconvolution operation on map 
‘ABCD’ to obtain a new feature map, and then it is added to the previous corresponding 
encoder feature map. The FCN network just replicates the encoder characteristics, while 
the Segnet network replicates the maximum pooling component. In terms of memory 
usages, Segnet is more efficient than FCN. 
By comparing the whole network structure of the models introduced, Segnet has 
fewer training parameters, faster speed and lower memory requirements than previous 
neural networks.  

2.4 Resnet 
In ImageNet classification, it has been demonstrated that the error is obviously reduced 
with the increment of the depth of deep learning networks. That is, the depth of a deep 
learning network is crucial to its performance. This is because when the number of layers 
of the network is increased, the network can extract more complex feature patterns. 
However, the deep learning network is hard to train. This is because the global 
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distribution gradually approaches the upper and lower limits of the value interval of the 
nonlinear activation function. This leads to the disappearance of the gradient of the lower 
neural network in the back propagation. This is the essential reason for the slower and 
slower convergence of training a deep neural network. 
Before Resnet, convolutional networks rarely exceed 20 layers. Resnet solves the 
problem of gradient dispersion well and makes a deeper network easier to train. Fig. 5 
simply shows a typical residual block used in Resnet. Since the network is directly 
connected to the network of the layer above, the gradient can be propagated better. 
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Figure 5: A residual block 

Table 1: Three different structures of Resnet 
Layers Output size ResNet-50 ResNet-101 ResNet-152 
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In Resnet, when the residual is 0, the accumulation layer only does identity mapping at 
this time. This ensures the network performance will not decline. In fact, the residual 
won’t be 0, and will make the accumulation layer learn new features based on the input 



Empirical Comparisons of Deep Learning Networks on Liver Segmentation               1239 

features, and thus will get a better performance. This is like a kind of a short circuit in a 
circuit, so it’s called a short circuit connection. 
Tab. 1 presents five different deep types of Resnet with 50 layers, 101 layers, and 152 
layer respectively. The leftmost column of the table shows that Resnet is composed of 
five parts: conv1_x, conv2_x, conv3_x, conv4_x, and conv5_x. Since the size of feature 
maps keep the same in the same layer while it is different between layers and the 
operation on each layer are all convolutions, the author uses the conv n_x to denote each 
layer. In our experiments, we use 101-layer Resnet. Most importantly, since original 
Resnet could not perform image segmentation, in order to use Resnet for liver image 
segmentation, we introduce deconvolution like FCN to transform the final feature map 
extracted from a medical image to an output image with the same size after removing its 
fully connection layer.  

2.5 Densenet 
The core of Densenet is the same with that of Resnet: using short paths concatenate 
features in early layers with features in later layers. One obvious difference between 
Densenet and Resnet is that each network layer of Resnet is connected by summation, 
while Densenet is done by concatenating. In Densenet, the input of each layer includes 
the outputs of all previous network. We use L to denote the output of one layer, so the 
formulation of L equals to ×(L-1)+ , where K is the growth rate which represents the 
number of channels in each layer and  is the number of channels in input. 
Tab. 2 shows four different structures of Densenet. In our experiments, Densenet-121 is 
used. The numbers (such as 6, 12, 24 and 16) in the third column are corresponding 
growth rates, representing the number of feature maps output from each layer in each 
dense block. Each bottleneck layer starts with a 1×1 convolution to merge information of 
each channel and reduce the input feature map, and then tends to do 3×3 convolution. 
According to the design of the dense block, subsequent layers can get the input from all 
preceding layers, so the input channel after concatenating is still large. In order to further 
compress parameters, we add atransition layer between every two dense blocks to do the 
convolution operation of 1×1. 
Densenet improves the transmission efficiency of information and gradient in the 
network. Each layer can get the gradient directly from the loss function and get the input 
signal directly, so that the deeper network can be trained. This network structure also has 
the effectiveness of regularization. Other networks focus on improving their performance 
from depth and width. 
Densenet is dedicated to improving the performance from the perspective of feature 
reuses. Its network is thin and the number of parameters is controlled. Multiple 
bottleneck designs tend to have obvious levels, and the number of feature graphs tend to 
go up layer by layer to ensure the expressive ability of output features; Fewer pooling 
layers and more down sampling improve the propagation efficiency; There is no dropout 
in the network, and the regularization is carried out by using BN and a global average 
pooling, speeding up the training speed. Since original Densenet could not perform image 
segmentation, in order to use Densenet for liver image segmentation, we introduce 
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deconvolution like FCN to transform the final feature map extracted from a medical 
image to an output image with the same size after removing its fully connection layer. 

Table 2: Four different structures of Densenet 
Layers Output 

size 
DenseNet-121 DenseNet-169 DenseNet-201 

Convolution   
Pooling   

Dense Block (1)  
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Figure 6: The histogram comparison of an image before and after preprocessing 
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3 Experiments 
In this section, we will conduct experiments to investigate the performance of the five 
network structures on liver image segmentation. 

3.1 Preprocessing 
Since original medical images have a wide range number of pixels, and the contrast 
between livers and its surrounding organs is relatively low, we first perform image 
contrast enhancement and denoising. Specifically, we first use a linear transformation to 
adjust the brightness and the contrast of the original medical images. Then, by stretching 
the distribution range of pixel intensity, the number of pixels of each image is reallocated 
to a roughly equal number of pixels within a certain gray level. Finally, we use the 
method of a total variation (the integral of the norm of image gradients) to remove noise 
and retain main details such as edges. In our experiments, we randomly choose 70% 
images for training and the rest as test data. 
Fig. 6 shows the histogram of an image before and after image processing. Due to the 
particularity of CT images, the histogram of the original image is very different from that 
of the processed image. It can be seen that the preprocessed image has a higher brightness 
and a sharper contrast. 

3.2 Parameter settings and loss functions 
In the experiment, we use an exponential attenuation learning rate. That is, the learning rate 
can adjust and change by itself according to the descending speed of training to prevent 
vibration. The equation of the exponential decay learning rate is defined as follows. 

                            (1) 
where lr is the current learning rate;  is the initial learning rate; gamma is the learning 
rate decay coefficient (generally between 0 and 1); global step is the number of iterations; 
and decay steps are the decay rate. In the experiment, the initial learning rate is set as 3e-
5, and the learning rate attenuation rate is 0.90, the learning rate will be updated for each 
epoch. The batch size is set as 2, and the total number of rounds of training is 50000. The 
selected optimizer is Adam optimizer, which is an adaptive learning optimizer and can 
make the network convergence faster compared with the traditional gradient descent 
method, and can quickly jump out of the local optimum to find the global optimum. 
Due to the particularity of medical images, some slices of medical images may be tangent 
to the boundary of the target organ. The area of the tangent part is very small, so it will 
lead to a low contrast and greatly affect the segmentation accuracy. For this problem, 
ordinary loss function may convergence. So, we adopt dice as a loss function, and its 
mathematical equation is , where a is the label image and b is the predicted 

image by the network. Dice loss is converted from the Dice coefficient, which can 
measure the similarity between the auto-segmented results and the ground truth. During 
training we reverse the value of dice and the small dice will generate a big loss.  
We standardize trained images to improve the balance of background and foreground, 
minimizing the loss for training and improving the efficiency of convergence. The pixels 
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of each image is labeled as either 0 or 1 after preprocessing. We expect to train a 
segmentation deep learning model with this loss function to reduce the gap between 
corresponding labelled images and original images in general. 

3.3 Experimental equipment and data set 
Our experiments run on Ubuntu 16.04 with CPU i7 6700K, NVIDIA GTx1080ti GPU, 32 
G memory. All deep learning approaches are developed based on TensorFlow 1.70. The 
data set we used was provided by the liver segmentation competition, containing 131 CT 
sequences. The resolution of the CT slices is 512×512. 

3.4 Experimental results 
We investigate the performance of the five deep learning approaches in terms five popular 
evaluation measures (i.e., Dice’s similarity coefficient (DSC), Volume Overlap Error (VOE), 
Relative Volume Difference (RVD), Average Symmetric Surface Distance (ASD) and Root-
Mean-Square Deviation (RMSD)). The definition of the five evaluation indices are as follows. 
DSC measures the ratio of the intersecting area between the segmentation result (S) and 
the corresponding ground truth (T), which is defined as follows: 

                                                                                          (2) 

VOE is similar to DSC, in which multiplication is replaced with subtraction operation to 
represent the error rate, defined as follows:  

                                                                                          (3) 

RVD measures the difference between the segmentation result (S) and the corresponding 
ground truth (T), defined as follows: 

                                                                                                       (4) 

ASD is another way to evaluate the difference between the segmentation result (S) and 
the corresponding ground truth (T), defined as follows: 

                                         (5) 

where BS and BT represent the outline of the segmented liver region and of the 
corresponding ground truth liver region respectively. ( , )Td x B represents the shortest 
distance between any pixel x and BS. That is, ( , ) min || ||

T T
T Tb B

d x B x b
∈

= − , where || ||• is 

an Euclidean distance. 
RMSD measures the deviation between the segmentation result (S) and the corresponding 
ground truth (T), defined as follows: 

                                 (6) 

Our experimental results are shown in Tab. 3. Note that the unit of DSC, VOE and RVD 
is in percentage and the unit of ASD and RMSD is mm. 
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Tab. 3 shows that Densenet-121 has the best performance in terms of DSC and VOE, and 
takes the second place in terms of RVD, ASD, and RMSD, while Resnet takes the first 
place in terms of RVD, ASD and RMSD. However, Resnet loses to U-Net in terms of 
DSC and VOE. To sum up, Resnet_101 and Densenet_121 perform the best, followed by 
U-Net. They all perform better than Segnet and FCN. Between Segnet and FCN, Segnet 
performs better. FCN performs the worst because the boundary segmentation accuracy of 
FCN is not high. Although all the five deep learning approaches in our experiment can 
perform a reasonable segmentation in terms of DSC, all other evaluation indexes show 
that segmented results need to be further refined. 

Table 3: Experimental results 
Model DSC (%) VOE (%) RVD (%) ASD (mm) RMSD (mm) 

FCN-8s 81.23±1.20 24.30±4.79 24.25±6.01 16.04±1.40 21.01±1.62 
U-Net 90.82±1.32 14.28±2.36 21.22±2.56 6.79±2.79 13.62±5.07 
Segnet 89.46±0.95 18.31±1.39 52.39±1.20 9.61±1.18 16.97±2.11 
Resnet 90.45±1.27 15.11±2.22 5.56±6.06 5.84±0.88 9.42±0.81 

Densenet 91.44±0.87 13.40±1.47 11.20±4.60 6.80±0.06 12.56±0.75 

 
Figure 7: The pixel classification accuracy during testing of each approach against the 
number of running units 
We also conduct experiments to investigate the performance of the five deep learning 
approaches in terms of the pixel classification accuracy on testing images against the 
number of running units (note that one unit is 300 rounds). Our experimental results are 
shown in Fig. 7. From Fig. 7, we can clearly see that Densenet almost always achieves 
the highest performance at the different training stage and it converges to a stable 
performance quickly. Its performance tends to be stable at 20 running units. The 
performance of Resnet is similar to that of U-Net. However, comparing to U-Net, Resnet 
has some fluctuations and is not very stable at the first 20 running units. Despite Segnet 
lags behind Densenet, Resnet and U-Net, but it performs consistently better than FCN. 
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Fig. 8 visually shows the segmentation results generated by FCN, U-Net, Segnet, Resnet and 
Densenet under the different number of rounds from 300, 3000, 20100, to 40000 rounds. The 
ground truth segmentation is presented in the last column. From Fig. 8, we can find that 
Densenet and the Resnet can converge more faster than any other models. They almost 
converge at 3000 rounds. After 20100 or 40000 rounds, all the deep learning networks are 
converged. Besides, it is obvious that the segmentation result of FCN is slightly worse.  

FCN
U

-N
et

Segnet
Resnet

Densenet

Image 300 3000 20100 40000 Ground truth

 
Figure 8: The visualization of segmentation results under the different number of rounds 
for the five deep learning approaches  

To sum up, Resnet and Densenet not only have an excellent segmentation precision, but 
also have a good convergence rate. Although the data sets used in our experiments are 
from various CT images of different patients and have different pathological features of 
different sizes, both Densenet and Resnet still perform well. 

4 Discussions 
In this paper, we empirically studied the performance of five popular deep learning 
approaches on live segmentation, i.e., FCN, U-Net, Segnet, Resnet and Densenet.  
FCN can completely restore an image to its original size by using convolution and 
deconvolution operations, satisfying pixel-to-pixel segmentation. It provides a basic idea for 
deep learning to solve semantic segmentation and inspires many excellent new network 
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structures. It has no limit to the size of input images with a flexible structure, saving time 
and space. However, the disadvantages of FCN are also obvious. For example, it is not 
sensitive to the details of images. This problem is induced by two points. The first one is that 
the FCN only use one single deconvolution layer to up-sample feature maps. The second one 
is that it doesn’t take the relationship between pixels in the process of classifying into 
consideration. That is why FCN performs the worst among the five approaches. 
Many papers on medical image segmentation are improved by U-Net. This indicates the 
importance of U-Net. Compared with FCN, U-Net adopts another strategy in the up-
sampling stage. It simply concatenates the encoder’s feature map to the up-sampling 
feature map in each stage to form a thicker feature. The network structure of U-Net has a 
high practicality and is able to learn from relatively small datasets. That is why it has 
been successfully applied in medical image segmentation. Our experimental results 
showed that the accuracy and the efficiency of U-Net is higher than FCN and Segnet. 
The innovation of Segnet lies in the way of its decoder up-sampling. Its decoder uses the 
pooled index calculated in the maximum pooled step of the corresponding encoder to 
perform nonlinear up-sampling. This method eliminates the need for learning oversampling. 
The feature graph after up-sampling is sparse, so a trainable convolution kernel is then used 
for convolution operation to generate a dense feature graph. According to its network 
structure, Segnet has fewer training parameters, faster speed and lower memory 
requirements than FCN and U-Net. Moreover, it’s up-sampling form can be used in other 
networks. Its segmentation results are not as good as U-Net, but much better than FCN. 
Resnet has introduced a residual network structure, through which the residual network 
can make the network layer deeper and relatively improve its performance. After 
removing its fully connection layer, we introduce deconvolution like FCN to transform 
the final feature map extracted from an medical image to an output image with the same 
size. Our experimental results show that this up-sampling part can segment liver images 
very well. Its performance on liver segmentation is better than U-Net. 
Densenet improves the transmission efficiency of information and gradient in the 
network. Each layer can get the gradient directly from the loss function and get the input 
signal directly, so that the deeper network can be trained. This network structure also has 
the effect of regularization. Other networks focus on improving the network performance 
from depth and width. However, Densenet is committed to improving the network 
performance from the perspective of feature reuses. This network is thin and the number 
of parameters is controlled. Multiple bottleneck designs tend to have obvious levels, and 
the number of feature graphs tend to go up layer by layer to ensure the expressive ability 
of output features. Less pooling layer and more use of down sampling improve its 
propagation efficiency. There is no dropout in the network, and the regularization is 
carried out by using BN and global average pooling. Therefore, its training speed is 
speeded up. That is why its accuracy and efficiency are the best among the five networks. 

5 Conclusions 
In this paper, we conducted experiments to investigate the performance of five popular 
deep learning approaches on live segmentation, i.e., FCN, U-Net, Segnet, Resnet and 
Densenet. Since original Resnet and Densenet could not perform image segmentation, in 
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order to use both Resnet and Densenet for liver image segmentation, we introduce 
deconvolution like FCN to transform the final feature map extracted from an medical image 
to an output image with the same size by removing its fully connection layer. Our 
experimental results show that Densenet performs the best on liver segmentation, followed 
by Resnet. Both perform much better than Segnet, U-Net, and FCN. Among Segnet, U-Net 
and FCN, U-Net performs the best, followed by Segnet. FCN performs the worst. 
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