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Abstract: Image classifiers that based on Deep Neural Networks (DNNs) have been 
proved to be easily fooled by well-designed perturbations. Previous defense methods 
have the limitations of requiring expensive computation or reducing the accuracy of the 
image classifiers. In this paper, we propose a novel defense method which based on 
perceptual hash. Our main goal is to destroy the process of perturbations generation by 
comparing the similarities of images thus achieve the purpose of defense. To verify our 
idea, we defended against two main attack methods (a white-box attack and a black-box 
attack) in different DNN-based image classifiers and show that, after using our defense 
method, the attack-success-rate for all DNN-based image classifiers decreases 
significantly. More specifically, for the white-box attack, the attack-success-rate is 
reduced by an average of 36.3%. For the black-box attack, the average attack-success-
rate of targeted attack and non-targeted attack has been reduced by 72.8% and 76.7% 
respectively. The proposed method is a simple and effective defense method and provides 
a new way to defend against adversarial samples. 
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1 Introduction 
With the development of artificial intelligence, the DNN-based image classification 
models constantly refresh the record in the field of image recognition [Akhtar, Liu and 
Mian (2018); Huang, Liu, Van Der Maaten et al. (2017); Krizhevsky, Sutskever and 
Hinton (2012); Simonyan and Zisserman (2014); Szegedy, Liu, Jia et al. (2015)], which 
even surpass human beings. However, it does not mean that it has reached a real level of 
human beings, for that no matter how good the image classifier is, it will have serious 
errors in the face of a negligible attack. Image samples added with perturbations that 
cause errors in classification results are called “adversarial samples” [Szegedy, Zaremba, 
Sutskever et al. (2013)]. Most of the existing DNN models have little or no consideration 
for the existence of attackers when they are designed and implemented. This leads to the 
fact that although these models can perform perfectly in the face of natural input, they 
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will make mistakes when encountering a large number of malicious users and even 
attackers in the real environment. Therefore, how to defend against adversarial samples is 
the key to ensure the security of the DNN models. 
Up to now, there are many defenses methods have been proposed, e.g., Lu et al. [Lu, 
Issaranon and Forsyth (2017); Xie, Wang, Zhang et al. (2017)]. Although the current 
methods have achieved some good results, unfortunately, these defense methods have some 
limitations and can be easily bypassed by the evolutionary and variant adversarial samples. 
1) For modifying training/input defense method, it requires a large number of normal 
samples and adversarial samples, which greatly increases the cost of time and space. On the 
other hand, it can only defend against specific attack methods, so it is not suitable for use in 
situations where the amount of data is large; 2) For modifying networks defense methods, 
most of them use a “gradient masking” method. The reason why they use gradient masking 
is that most white-box attacks operate by calculating the gradient of the DNN model, so if 
the effective gradient cannot be calculated, then the attack will fail, and gradient masking’s 
main goal is making the gradient useless. But because the decision boundaries of models 
trained with the same distribution dataset will not be much different, the gradient masking-
based defense methods are easily broken by black-box migration attack, for that the 
attacker can get a gradient in the “substitute”; 3) For network add-on defense method, the 
complete defense strategy generally adds other networks that need training, which leads to 
the reduction of classification accuracy to a certain extent. However, the detection-only 
strategy cannot solve the unknown risks such as 0-Day attacks. 
To address the aforementioned challenges, we propose a new defense strategy based on 
image perceptual hashing [Lin and Chang (2001)], some results are shown in Fig. 1. Our 
approach is based upon the observation that in order to generate adversarial samples, 
existing attack methods adopt an iterative method (see Fig. 2 for an example). 
Specifically, most attack methods generate perturbations according to generation rules, 
then add the perturbations to the original image to generate a perturbed image, which is 
then inputted into the DNN to evaluate the perturbation according to the cost function. 
Repeat the process until the perturbed image causes the specified model to be 
misclassified, that is, attack success, in other words, an adversarial sample is generated. 
Based on this iterative update perturbation rule, we realize that by destroying the process 
of perturbations’ generation, we can effectively prevent attacks on DNNs, which is also 
our core idea. Specific to the method (see Section 3.3 for more details), we added 1) 
“Judgment layer” on the DNN, whose main goal is determining whether the two images 
are similar by comparing the perceptual hash function and the difference of pixel values 
of two images. 2) “Time layer”, this layer mainly compares the difference between the 
time cost before and after our defense method, and ensures that the use of defense will 
not make a big change in time, thus preventing the enemy from guessing the defense 
strategy through time difference. 
This work proposes a new strategy using the perceptual hashing to defend against 
adversarial samples. The major contributions of this paper are as follows: 
Effectiveness-Our key contribution is introducing and evaluating perceptual hashing as a 
new technique to defend against adversarial samples. We can destroy the process of 
generating adversarial samples. Furthermore, even if the attack algorithms have generated 
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adversarial samples, we can still output the label of clean images to avoid the 
misclassification of DNNs. Using a white-box attack named Jacobian-based Saliency Map 
Attack (JSMA) [Papernot, McDaniel, Jha et al. (2016)] and a black-box attack named One 
Pixel Attack [Su, Vargas and Sakurai (2019)] methods as the defense targets, our defense 
strategy is shown definite results, whether it is a targeted attack or a non-targeted attack. 

 
Figure 1: The proposed method that successfully avoided adversarial samples trained on 
CIFAR-10 dataset. First column: the original images. Second column: perturbed images 
that can fool DNNs. Third column: DNNs which added our proposed defense method, 
although there are adversarial samples, the DNNs can still predict the true label, rather 
than an unexpected label 

Flexibility-Our defense strategy can be applied to a variety of DNNs without changing 
any structure or parameters of the target DNNs and is complementary to other defenses. 
Inexpensive-Unlike adversarial training, our proposed defense strategy does not require 
any additional samples to the training datasets, which reduces the huge computational 
cost and space cost. In addition, although we do not need to add other additional 
networks as other defense methods do, for example, GAN [Goodfellow, Pouget-Abadie, 
Mirza et al. (2014)] and PRN (Perturbation Rectifying Network), our defense method can 
still detect and fully defend against adversarial samples. 
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The rest of paper is organized as follows: Section 2 contains the literature review of 
existing attack methods and defense methods. The realization of our method is described 
in Section 3. In Section 4, we validate our method by extensive experiments. Section 5 
concludes the paper and provides future work of this ongoing research. 

 
Figure 2: Illustration of adversarial sample generated using for fooling special DNN. 
This is an iterative strategy, that is, to generate an adversarial sample, adversary need to 
update perturbations continuously until attack success. So we are trying to destroy this 
process next. (For better description, we make the perturbations easy to observe.) 

2 Related works 
2.1 Adversarial attacks 
In 2013, Szegedy et al. [Szegedy, Zaremba, Sutskever et al. (2013)] proposed the concept 
of “Adversarial samples” for the first time in the field of image classification, that is, by 
adding subtle perturbations to the original image, to change the intrinsic feature 
information of the image without affecting human’s subjective perception of the image, 
and which will cause errors of image classification models. “Adversarial samples” is the 
main technology to attack DNNs at present. It has the characteristics of good 
performance on the attack, easy to operate and diverse implementation methods. It can be 
divided into white-box attack and black-box attack depending on the application scenario.  

2.1.1 White-box attacks 
White-box attacks are complete knowledge of the target DNN model, including its 
parameter values, architecture, training methods, even some training data. The attacker 
can obtain the algorithms used in machine learning and the parameters used by the 
algorithms. An attacker can interact with the target model in the process of generating 
adversarial samples. 
Szegedy et al. [Szegedy, Zaremba, Sutskever et al. (2013)] tried to find the smallest loss 
function addition, which caused the neural network to misclassify and they transform the 
problem into a convex optimization process. Goodfellow et al.  [ Goodfellow, Shlens and 
Szegedy (2014)] developed a method for efficiently calculating adversarial perturbations 
called FGSM (Fast Gradient Sign Method), which confirms the high dimensional 
linearity of modern DNNs. Kurakin et al. [Kurakin, Goodfellow and Bengio (2016)] 
proposed a variant of FGSM’s one-step target class. Carlini et al. [Carlini and 
Wagner (2017)] proposed three methods of adversarial attacks that limit the perturbation 
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approximation by limiting the L∞, L2, and L0 norms. Moosavi-Dezfooli et al. [Moosavi-
Dezfooli, Fawzi and Frossard (2016)] generated a minimum normative adversarial 
perturbation by iterative computation until an error classification occurred. Methods such 
as FGSM, ILCM, DeepFool can only generate an adversarial sample of a single image. 
Subsequently, Moosavi-Dezfooli et al. [Moosavi-Dezfooli, Fawzi, Fawzi et al. (2017)] 
proposed the method of Universal Adversarial Perturbations, which can generate 
perturbations to all images, Khrulkov et al. [Khrulkov and Oseledets (2018)] also 
proposed a method of moving the general perturbation into a singular vector of the 
Jacobian matrix of the feature map of the network, which allows a relatively high fool 
rate to be achieved using only a small number of images. 

2.1.2 Black-box attacks 
Black-box attacks are the attack methods that generate adversarial samples for a target 
DNN model without knowing anything about the DNN model. Attackers do not know the 
algorithms and parameters used in machine learning, however, they can still interact with 
machine learning systems, such as judging the output by passing in any input. 
Sarkar et al. [Sarkar, Bansal, Mahbub et al. (2017)] proposed two black-box attack 
algorithms, UPSET (Universal Perturbations for Steering to Exact Targets) and ANGRI 
(Antagonistic Network for Generating Rogue Images for targeted fooling of deep neural 
networks). The ability of UPSET comes from the residual gradient network, which can 
generate adversarial perturbations for a specific target label, so that when the perturbation 
is added to an image, the image can be classified into target label. Compared with the 
imperceptible disturbance of UPSET, ANGRI generates image-specific perturbations. 
They all have high fool rates on MNIST [LeCun, Boser, Denker et al. (1989)] and CIFAR 
datasets. The Houdini method Cisse et al. [Cisse, Adi, Neverova et al. (2017)] uses the 
gradient information of the differentiable loss function of the network to generate 
adversarial perturbations. In addition to image classification networks, the algorithm can 
also be used to deceive speech recognition networks (Google Voice, etc.). Baluja et al. 
[Baluja and Fischer (2017)] trained several feedforward neural networks to generate 
adversarial samples, which can be used to attack one or more target networks. One pixel 
attack Su et al. [Su, Vargas and Sakurai (2019)] is a black-box attack method, which can 
be implemented by changing only one pixel’s value in the image. The core is to use the 
differential evolution algorithm to iteratively modify each pixel to generate sub-image, 
and compares them with the parent image. According to the selection criteria, the sub-
image with the best attack effect will be retained. 

2.2 Defenses against adversarial samples 
The existing defense methods are mainly divided into Akhtar et al. [Akhtar and Mian 
(2018)] three main directions: 1) Modified training/input; 2) Modified networks; 3) 
Network add-on. 

2.2.1 Modified training/output 
This method uses modified training during learning or modified input during testing.  
Adversarial training method aims at training data, by adding adversarial samples to the 
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training process to build a model with better robustness, so as to achieve the purpose of 
defending adversarial samples. According to the different types of adversarial samples, 
adversarial training can be divided into general adversarial training, PGD adversarial 
training, and ensemble adversarial training. Generally speaking, the defense methods of 
adversarial training mostly add adversarial samples in the process of adversarial training, 
and these adversarial samples are generated by attacking the model specified by 
themselves. But the defense method of ensemble adversarial training separates the 
process of adversarial training from that of adversarial samples, which increases the 
diversity of adversarial samples and improves the robustness of defense. However, 
Moosavi-Dezfooli et al. [Moosavi-Dezfooli, Fawzi, Fawzi et al. (2017)] points out that no 
matter how many adversarial samples are added, there are new adversarial samples that 
can fool the network again. 
The main idea of modifying the input method is trying to reduce the possible perturbation 
in test samples by different transformation methods, and then input the transformed 
samples directly into the original model for prediction. Dziugaite et al. [Dziugaite, 
Ghahramani and Roy (2016)] and others use JPG image compression method to reduce the 
impact of FGSM countermeasure disturbance on accuracy. Experiments show that this 
method is effective for some adversarial algorithms, but usually only using compression 
method is not enough, and the compression of images will also reduce the accuracy of 
normal classification, while small compression cannot remove adversarial perturbations. 
Luo et al. [Luo, Boix, Roig et al. (2015)] proposed that the foveation mechanism can be 
used to defend against adversarial samples generated by L-BFGS and FGSM. The 
hypothesis is that training a large number of data sets based on DNN classifier is robust to 
image scaling and transformation changes, where the confrontation mode does not have this 
feature. Pixel Defense Song et al. [Song, Kim, Nowozin et al. (2017)] uses the generation 
model to convert the confrontation samples into the normal sample space, and then 
converts the transformed samples into the original model for prediction. 

2.2.2 Modified networks 
This method mainly implements by modifying networks, e.g., by adding more layers, 
changing loss/activation function etc. 
Since most attack algorithms use the gradient information of the model to generate the 
adversarial samples, the gradient masking defense method can hide the gradient 
information in the model training, making it difficult for the attack algorithm to attack the 
model through the gradient solution method, thus leading to the invalidation of the attack 
method. Nguyen et al. [Nguyen, Wang and Sinha (2018)] introduced a mask-based 
defense against C&W attacks [Carlini and Wagner (2017)] by adding noise to the logic 
output of the network. Gu et al. [Gu and Rigazio (2014)] introduced Deep Contractive 
Networks, which uses smoothness penalty terms similar to Contractive Auto Encoders, so 
that the output change of the model is less sensitive to the input, thus achieving the 
purpose of hiding gradient information. 
The distillation defense Papernot et al. [Papernot, McDaniel, Wu et al. (2016)] method 
migrates knowledge of complex networks to simple networks. This knowledge is 
extracted in the form of a class probability vector of training data and fed back to the 
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training original model, which can withstand small-scale perturbations against the attack. 
DeepCloak Inci et al. [Inci, Eisenbarth and Sunar (2018)] adds a layer of mask 
specifically designed to adversarial sample training in front of the classification layer 
(usually the output layer). The added layer is explicitly trained by passing clean and 
adversarial image pairs forward, which encodes the difference between the output 
characteristics of the previous layers for these image pairs. The theory behind it is that the 
most important weights in the added layer correspond to the most sensitive characteristics 
of the network (in terms of combat manipulation). Therefore, when classifying, these 
features are forced to change the dominant weight of the added layer to zero. 

2.2.3 Network add-on 
This method mainly implements by using external models when classifying unseen examples. 
Akhtar et al. [Akhtar, Liu and Mian (2018)] proposed a defense framework, which 
attaches additional pre-input layers to the target network and trains them to correct the 
adversarial samples. The separation detector is trained by extracting the characteristics of 
input and output differences of training images. A single training network is added to the 
original model to achieve the method that does not need to adjust the coefficients and 
immune adversarial samples. Lee et al. [Lee, Han and Lee (2017)] trained a robust 
network against FGSM [Goodfellow, Shlens and Szegedy (2014)] attacks using the 
popular framework of GAN. During the training process, classifiers constantly try to 
classify clean and adversarial images correctly. 
The methods mentioned above are complete defense methods. Although the expectations 
of complete defense methods are high, many experiments show that the actual effect is 
not good enough. Therefore, researchers have proposed a variety of detection methods for 
adversarial samples. The detection-only method is used to judge whether the samples are 
adversarial samples, without the need to identify the real label of the samples. 
The Feature Squeezing Tuncay et al. [Tuncay, Demetriou, Ganju et al. (2018)] method 
uses two models to find out whether adversarial samples. Subsequent work shows that 
this method also has acceptable resistance to C&W attack. He et al. [He, Wei, Chen et al. 
(2017)] also combined feature compression with the integration method proposed in 
Abbasi et al. [Abbasi and Gagné (2017)] to show that defensive power does not always 
increase by combining them. Meng et al. [Meng and Chen (2017)] proposed a framework 
for classifying input images into adversarial or clean images using one or more external 
detectors. During the training process, the aim of the framework is to learn various kinds 
of clean images. Training the image's manifold measurements to distinguish whether the 
image is perturbed or not. Liang et al. [Liang, Li, Su et al. (2017)] trained a model to treat 
all input pictures as noisy, learning how to smooth them first, and then classifying them. 
The image perturbation is treated as noise, and these perturbations are detected by scalar 
quantization and spatial smoothing filtering respectively. The separated binary classifier 
is trained to use the proposed feature to counter the sample detector. Gebhart et al. 
[Gebhart and Schrater (2017)] regard the calculation of neural network as the information 
flow in the graph, and propose a method for detecting adversarial perturbations using 
persistent homology of the induced map. 
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3 Methodology 
3.1 Problem description 
3.1.1 Deep neural networks 

A DNN can be written as a function YXg →: , where X represents the input space and 
Y represents the output space. More detailed, for Xx∈ , we have Eq. (1), each if  
represents a layer, the last layer Lf outputs a vector of real numbers in the range [0,1] that 
add up to 1, which correspond to the class labels’ probability distribution. 

))))((...(()( 11 xfffxg LL −=                  (1) 

3.1.2 Gradient based attacks 
Since most DNN classifiers build the optimization model by maximizing the prediction 
probability of the classifier on the training set, or by minimizing the prediction difference 
between the loss and the label. A natural idea is to build a perturbed sample with a 
perturbationη to legal sample which could change the predictor probability of the classifier or 
to make the loss as large as possible. Moreover, the perturbation itself is limited to that cannot 
be perceived by humans, or cannot cause significant damage to the legal sample. Therefore, a 
norm constraint is usually imposed on η  (different norms have different effects). 

FGSM Goodfellow et al. [Goodfellow, Shlens and Szegedy (2014)] produces 
perturbations by maximizing the loss function. Obviously, the perturbation occurs in the 
direction of the gradient is the most effective perturbation, and a reasonable assumption 
in FGSM is that the existing image data is stored in a discrete manner, so for a 
disturbance in the same direction, it will not have a greater impact on vision. Therefore, 
FGSM obtains the disturbance η  by shifting the magnitude of εin the gradient direction 

of the legal sample x . Thus, the adversarial sample η+= xx ' , which is just equivalent 
to applying an infinite norm constraint to the perturbation. 

y))x,,J(sign( x θεη ∇⋅=                 (2) 

where y))x,,J(sign( x θ∇  describes the gradient direction of the loss function at point x , and 
ε  is the magnitude of the offset in this direction.η  is the pertubration generated by FGSM. 

Based on FGSM, many other methods for generating adversarial example are proposed. 
I-FGSM is an iterative form of FGSM, which apply FGSM multiple times with a step 
size ε , and do a clip after every iterative step, see Eq. (3) for an example. Through 
multiple steps and smaller movements, it is possible to construct a more accurate 
adversarial sample, but at the same time it also increases the computational complexity of 
the structure and slows down the construction. 

))),,(((,1 yxJsignxClipx adv
Nx
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adv
N θεε ∇⋅+=+               (3) 

DeepFool [Moosavi-Dezfooli, Fawzi and Frossard (2016)] is another iterative gradient 
based attack which solves the problem of choosing the perturbation coefficient ε in 
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FGSM, and achieves the attack on the general non-linear activation function by multiple 
linear approximations: 

))(())((sign  subject 

)(
)(minarg)( 2

2
2*

xfsignrxfto

w
w

xfrxr

≠+

−==⋅
                               (4) 

Here r is the best perturbation. DeepFool method will produce less perturbations but 
change label more sufficiently. 
Unlike the aforementioned attack methods, the perturbation generated by JSMA 
[Papernot, McDaniel, Jha et al. (2016)] is the gradient direction of the predicted value of 
the target class label, which called forward derivative, see Eq. (5) for an example. 
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It can be seen that the forward derivative is composed of the partial derivative value of 
the target class for each pixel. Therefore, the authors adopt a heuristic selection method 
called “saliency map”, by checking the perturbation the output of each pixel, to select the 
most suitable pixel to make the change. That is, the perturbed pixels selected by each 
iteration can increase the output value of the target class as much as possible, and have a 
negative effect on the rest of the class labels. 
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In fact, it is difficult to find the pixel satisfying the above conditions. Therefore, the 
authors proposed to find a set of pixel pairs instead of selecting a single pixel. 
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3.1.3 Evolutionary algorithms based attack 
Another widely used method to generate adversarial example is Evolutionary Algorithms. 
Evolutionary Computing is a mature global optimization method with high robustness 
and wide applicability. Differential evolution (DE) algorithm is an optimization 
algorithm. It guides the direction of optimization search through the group intelligence 
generated by the mutual cooperation and competition among individuals within the group. 
The basic idea of the algorithm is, during each iteration, generate a new individual by 
summing the vector difference between any two individuals in the population and the third 
individual from the randomly generated initial population, see Eq. (8) for an example. 
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Then generate the new individual and the corresponding individual in the 
contemporary population. 
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In comparison, if the fitness of the new individual is better than the fitness of the current 
individual, the old individual is replaced by the new individual in the next generation, 
otherwise, the old individual is still preserved. Through continuous evolution, retaining good 
individuals, eliminating inferior individuals, and guiding search to the optimal solution.  
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For using DE to generate adversarial images, we can formulate it as Eq. (11). 
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where f is the target image classifier, ),...,()( 1 neeXe = is an additive adversarial 
perturbation according to X , and adv  means the target class. Finally, d is the limitation 
of maximum modification. 
For One-pixel-attack, d will be set as 1, and we need to update )(xe iteratively to 
validate whether the attack is success or not. 

3.2 Perceptual hash 
In Section 3.1, we can find that whether it is a gradient-based attack or an evolution-
based attack, in the process of generating an effective adversarial sample, it adopts an 
iterative verification method, that is, repeatedly adding the perturbations to original 
image, and judging whether the attack is successful or not according to the output of the 
target DNN model. Therefore, our idea is to destroy the iteration process, so that the 
attack algorithm cannot obtain the prior knowledge from the previous image to update the 
generation process of adversarial perturbations, therefore the attack falls into a blind state. 
By using this method, we can ensure DNN classifiers’ prediction of the perturbed sample 
and the original sample are coincident, which leads to the failure of the attack algorithms 
and the success of defending DNN-based models. Combining with the previous work of 
our research group, we find that perceptual hash is a suitable choice. 
Perceptual hash is a method of generating digital fingerprints for multimedia data, Fig. 3 
is an example. In the field of images, its function is to generate a “fingerprint” string for 
each image and then compare the fingerprints of different images. The closer the result is, 
the more similar the images are. It is mainly used for similar image searching or target 
tracking. An image is a two-dimensional signal that contains components of different 
frequencies. The area with small brightness change is the low-frequency component, 
which describes a wide range of frame information. The areas with intense brightness 
changes (such as the edges of objects) are high-frequency components, which describe 
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the specific details of the image. Calculating the perceptual hash process of an image is a 
process of extracting its low-frequency information. Moreover, it uses a Discrete Cosine 
Transform (DCT) to obtain the low-frequency components of the image. DCT is an 
image compression algorithm that transforms an image from the pixel domain to the 
frequency domain, redundancy and correlation information is removed from the image. 
Hamming distance is commonly used in the perceptual hash comparison, which 
represents the number of two words (same length) corresponding to different bits, after 
counting XOR operation result, we can obtain the Hamming distance. 

 
Figure 3: Illustration of perceptual hash generation process. In the image composed of 
DCT coefficients, the upper left corner of each small block is a DC coefficient, and the 
other parts of the small block are AC coefficients. There is not only brightness 
information around the object (cat), but also texture information, so the values of DC and 
AC are very large 

3.3 Method and settings 
Fig. 4 is an illustration of our method. It can be divided into judgment layer and time layer. 

3.3.1 Judgment layer 
Before the input layer of the DNN-based model, we introduce the concept of judgment 
layer. The main function of the judgment layer is to determine whether two images are 
similar or not, If the judgment is similar, the previous image's label will output directly, 
otherwise, the latter image will be inputted to DNN normally. Here we mainly use two 
methods to judge similarity: 1) perceptual hash; 2) comparison of spatial pixel values. 

 
Figure 4: Illustration of our proposed defense method. The main idea (described using 
blue color) is to destroy the process of perturbations’ generation, so that the clean image 
and the perturbed image have the same label. (For better description, we make the 
perturbations easy to observe.) 
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In perceptual hash, firstly, the high-frequency and detail information is removed by size 
scaling. then convert the image into a grayscale image and calculate the DCT coefficient. 
According to the DCT coefficient, the average value is calculated in the 16*16 region of 
the lowest frequency. Then, the value in the matrix is compared with the average value 
repeatedly. If the value is greater than the average, the bit is set to ‘1’, and if it is smaller, 
it is set to ‘0’, thus, we can get perceptual hash values. Hamming distance between two 
pictures can be calculated after the perceptual hash value of two pictures are obtained, 
which is recorded as hashN . 

As for the comparison of spatial pixel values, we cycle to compare the corresponding spatial 
pixels of the two images and record the different spatial pixels as pixelN . In the aspect of 

similarity determination, the threshold thresholdN is set up by comparing hashN and pixelN . 

Obviously, there are three cases for hashN and three cases for pixelN compared with 

the thresholdN , so there are nine cases in total. Here, for security, we only let the latter image 

enter the network when hashN and pixelN  are both larger than the thresholdN . 

We set up an area to store the RGB values of the previous image (Image 1), and its 
corresponding label, while the latter image (Image 2) is the same. In the initialization 
operation, the RGB values and the labels of Image 1 and Image 2 are all None. When the 
previous image enters the judgment layer, since it must be different from the None value, 
the label is output by the network normally. At this time, the RGB values of Image 1 are 
replaced with the previous image, and the label is the previous image’s label. 
Subsequently, the latter picture is input to the judgment layer, the Image 2 value is 
updated, and the label is waiting to be output. Then, there will be two cases, described in 
Algorithm 1 and Fig. 5. 

 
Figure 5: Illustration of the judgment layer. The process of calculating perceptual hash is 
described using blue color, while the process of calculating spatial pixel values is 
described using dark red color 

1) The latter image is a perturbed sample-In this case, the judgment layer calculates 
hashN and pixelN according to the values of Image 1 and Image 2. Since the change is 

small, the judgment layer will determine that the two images are similar, thus outputting 
the label of Image 1 as the output of Image 2 and updating the value of Image 1. 
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2) The latter image is a normal sample-In this case, since both images’ hashN and pixelN are 

larger than the thresholdN , the judgment layer determines that the two images are not similar, 
then Image 2 is input to the network and output normally, that its normal label will be 
obtained, then simultaneously updates the value and the label of Image 1 as Image 2. 

Algorithm 1 The Proposed Defense Method 
INPUT:  Image 1, Image 2-Image 1 is the previous image which sends to DNN-based 
image classifiers, while Image 2 is the latter image. 
OUTPUT:  Ytrue-the true label of the unknown image Image 2. 

1:   Nhash1←calc_perceptualHash(Image 1) 
2:   Nhash2←calc_perceptualHash(Image 2) 
3:   Npixel←calc_pixleDiff(Image 1, Image 1) 
4:   LabelImage 1←DNN_predictLabel(Image 1) 
5:   if HammingDistance(Nhash1,Nhash2)>Nthreshold and Npixel>Nthreshold then 

6:       Ytrue←DNN_predictLabel(Image 1) 
7:       Image 1←Image 1 
8:       LabelImage 1←Ytrue 
9:   else # two images are similar  
10:     Ytrue←LabelImage 1 

11:     Image 1←Image 1 
12:     waitTime=True 
13: end if 
14: return Ytrue 

3.3.2 Time layer 
After the judgment layer, a time layer will be connected. The main function of the time 
layer is to make it impossible for the opponent to analyze the defense method according 
to time. According to the previous analysis, it is known that direct output image label will 
be much faster than normal. In order to reduce the possibility of being analyzed and to 
confuse the opponent more, the concept of time layer is proposed. Specifically, according 
to the average time of normal training as a standard, when two images are similar, the 
time layer will wait for a period of time according to the difference until the time is 
correct, and then return the label to users. During the experiment, we found that the 
proposed defense method only takes 0.016 seconds on average compared with the non-
defense method. Note that this is a value independent of the sample size of the image, so 
its time complexity is O(1). On the other hand, compared with the time required to 
predict an image (e.g., Densenet needs 1.43 seconds), the defense time is insignificant. 
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4 Evaluation and results 
To verify the performance of the proposed method, we reproduce a white-box attack 
(JSMA) and a black-box attack (One Pixel Attack) respectively as the defense targets. As 
mentioned before, JSMA is a gradient-based attack which generates perturbations by 
calculating the gradient of the DNN while One Pixel Attack is an evolutionary-based attack 
that the attack cannot obtain any information about our model, including the gradients. 

4.1 Experiment details 
Dataset. We used the CIFAR-10 dataset and loaded the dataset using the Paddle 
framework and the Keras framework. The dataset contains 60,000 RGB color images, 
which are 32*32 and divided into 10 categories include: airplane, car, bird, cat, deer, dog, 
frog, horse, boat, truck. 
Models. For JSMA, we used the CIFAR-10 dataset to train 3 DNN models as designated 
image classifiers to be attacked. For One Pixel Attack, the number of DNN models are set 
to 6. In the process of model building, we restore the initialization process of parameters in 
the original model as much as possible to maintain the accuracy of the model. 
Equipment. Our experiments were carried out on Intel (R) Core (TM) i7-7700 with 3.6 
GHz CPU, GTX1080 Ti with 11 G GPU and 32 G memory using Ubuntu 18.04 as the 
operating system. 
Setup. In general, when calculating the perceptual hash, the image will be cropped to 32*32, 
but as mentioned in Section 4.1, the image size of CIFAR-10 is 32*32, so we adjust the size 
of the image that calculates the perceptual hash to 16*16. On the other hand, for One Pixel 
Attack, we can set the threshold to be very low, such as 1%, but in the actual experiment, 
this threshold will not have a good effect on other attacks, in order to improve the robustness 
of the DNN model, we set the threshold to 10% of the total pixels of the cropped image, so 
that we can defend against a variety of attacks on DNN-based image classifiers. 

4.2 Results of JSMA 
First, we reproduce JSMA using AdvBox [Dou, Wang and Hao (2019)] and randomly 
selected 500 nature images in the CIFAR-10 test dataset to attack 3 different DNN 
models without adding our proposed defense. Then we use JSMA and the same 500 
images to attack the same DNN models added with “judgment layer” and “time layer” to 
verify whether the defense is effective. 
In order to ensure the accuracy, we use different attack parameter θ , which represents the 
amount of the selected features that to perturb. Generally, different θ  will cause different 
attack-success-rate, as shown in Fig. 6, there is a positive correlation between them. 
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Figure 6: Illustration of the attack-success-rate by changing the attack parameter. The 
blue “cnn” represents a DNN model which has two convolutional layers and two fully 
connected layers that we trained. The results of LeNet and ResNet are shown in orange 
and gray respectively 

As shown in Fig. 7, the attack-success-rate of all the DNN models we tested has 
decreased significantly. Specifically, the average attack-success-rate for cnn dropped 
from 59% to 37%, while LeNet dropped from 74% to 50%, ResNet dropped from 38% to 
23%. The results show that our method is effective. More details are shown in Tab. 1. 

 
Figure 7: Results of using the proposed method to defend against JSMA. The original 
average attack-success-rate for DNN models are expressed in blue, while the red color 
shows average attack-success-rate after using our defense method 

 



                                                                      CMC, vol.62, no.3, pp.1365-1386, 2020 1380 

Table 1: Detailed results of JSMA 

 Model Value of θ Attack-success-rate 
(without defense) 

Attack-success-
rate 

(Our method) 
0 cnn 0.1 0.554 0.374 
1 cnn 0.2 0.586 0.368 
2 cnn 0.3 0.602 0.374 
3 cnn 0.4 0.62 0.376 
4 lenet 0.1 0.716 0.498 
5 lenet 0.2 0.738 0.49 
6 lenet 0.3 0.74 0.504 
7 lenet 0.4 0.78 0.502 
8 resnet 0.1 0.37 0.232 
9 resnet 0.2 0.374 0.224 
10 resnet 0.3 0.376 0.228 
11 resnet 0.4 0.38 0.228 

4.3 Results of one pixel attack 
As for One Pixel Attack, we reproduce the method and attack 6 different DNN models 
without adding our proposed defenses. The attack methods include targeted and non-
targeted attack. For targeted attack, if the predicted label is consistent with the specified 
label, the attack is successful, and we also randomly selected 500 nature images for 
testing in the CIFAR-10 test dataset. For non-targeted attack, when any the predicted 
label is inconsistent with the true label, the attack is successful, and we randomly selected 
100 original images trying to perform all labels (excluding real label).  Then we use One 
Pixel Attack to attack the same DNN models added with “judgment layer” and “time 
layer” to verify whether it is as effective as the white-box attack. 

4.3.1 Targeted attack 
As shown in Fig. 8, the attack-success-rate of all 6 different DNN models we tested has 
decreased significantly. The model with the maximum decline was DenseNet, dropped 
from 19% to 2% (as high as 88%), while LeNet has the minimum decline (65%), dropped 
from 43% to 15%. Specifically, the average attack success rate dropped from 24% to 7% 
after using our defense methods. More details are shown in Tab. 2. 
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Figure 8: Results of using the proposed method to defend against One Pixel Attack’s 
targeted attack. The original average attack-success-rate for DNN models are expressed in 
blue, while the red color shows average attack-success-rate after using our defense method 

Table 2: Detailed results of One Pixel Attack’s targeted attack 
 Model Number of pixels 

to perturb 
Attack-success-rate 
(without defense) 

Attack-success-
rate 

(Our method) 
0 lenet 1 0.15 0.12 
1 lenet 3 0.59 0.15 
2 lenet 5 0.56 0.18 
3 pure_cnn 1 0.07 0.03 
4 pure_cnn 3 0.17 0.05 
5 pure_cnn 5 0.21 0.06 
6 net_in_net 1 0.03 0.04 
7 net_in_net 3 0.32 0.06 
8 net_in_net 5 0.39 0.10 
9 resnet 1 0.12 0.04 
10 resnet 3 0.33 0.07 
11 resnet 5 0.34 0.10 
12 densenet 1 0.03 0.00 
13 densenet 3 0.24 0.04 
14 densenet 5 0.30 0.04 
15 wide_resnet 1 0.01 0.03 
16 wide_resnet 3 0.19 0.04 
17 wide_resnet 5 0.22 0.06 

4.3.2 Non-targeted attack 
As shown in Fig. 9, our method to defend against One Pixel Attack’s non-targeted attack 
is as effective as targeted attack. The DNN model with the maximum decline was 
DenseNet, dropped from 57% to 9% (as high as 84%), while LeNet has the minimum 
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decline (61%), dropped from 83% to 32%.  Specifically, the average non-targeted attack-
success-rate dropped from 59% to 14% after using our defense methods. Notice that 
whether it is a targeted attack or a non-targeted attack, the best and worst DNN models 
are DenseNet and LeNet respectively. Through experiments, we found that DenseNet and 
LeNet represent the highest and lowest accuracy of the 6 DNN models. So we infer that 
for One Pixel Attack, the effectiveness of our proposed defense method is relevant to the 
accuracy of the model. More details are shown in Tab. 3. 

 
Figure 9: Results of using the proposed method to defend against One Pixel Attack’s 
non-targeted attack. The original average attack-success-rate for DNN models are 
expressed in blue, while the red color shows average attack-success-rate after using our 
defense method 

Table 3: Detailed results of One Pixel Attack’s non-targeted attack 

 Model Number of 
pixels to 
perturb 

Attack-success-rate 
(without defense) 

Attack-success-rate 
(Our method) 

0 lenet 1 0.63 0.212 
1 lenet 3 0.92 0.328 
2 lenet 5 0.93 0.416 
3 pure_cnn 1 0.13 0.064 
4 pure_cnn 3 0.58 0.092 
5 pure_cnn 5 0.63 0.116 
6 net_in_net 1 0.34 0.066 
7 net_in_net 3 0.73 0.102 
8 net_in_net 5 0.73 0.134 
9 resnet 1 0.34 0.072 

10 resnet 3 0.79 0.124 
11 resnet 5 0.79 0.16 
12 densenet 1 0.31 0.052 
13 densenet 3 0.71 0.092 
14 densenet 5 0.69 0.132 
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15 wide_resnet 1 0.19 0.052 
16 wide_resnet 3 0.58 0.092 
17 wide_resnet 5 0.65 0.132 

5 Conclusion and future work 
In this paper, we proposed a method to defend against adversarial samples based on 
perceptual hashing. The main idea is to destroy the process of iterative perturbation 
generation used by some attack methods, that we can ensure the label outputted by DNN 
is correct whether it’s a perturbed image or a clean image, so as to achieve the purpose of 
defense. We provide experimental evidence not only on a white-box attack, but also a 
black-box attack. The results show that for JSMA, in the best case, our method can 
reduce the attack-success-rate by 40% of 3 different DNN models. For One Pixel Attack 
with 6 mainstream DNN-based models, the best case can reduce the attack-success-rate 
of targeted attack by 100% and that of non-targeted attack by 90%. Compared with the 
existing defense methods, the proposed defense method greatly reduces the 
computational consumption and does not need to add any other auxiliary networks, so it 
has the characteristics of effective, flexible and inexpensive. Therefore, our work 
provides a new way for defending against adversarial samples and can be used as a 
complement to other defense methods. 
The reason why there are adversarial samples is that the training dataset cannot cover all 
the possibilities, and even only cover a small part, so it is impossible to train a DNN 
model covering all the features of the samples. On the other hand, when training DNN-
based classification models, the goal is how to classify better, so the DNN model will 
maximize the distance between samples and boundaries, and expand the space of each 
class area. The advantage of this is that it makes classification easier, but the 
disadvantage is that it also includes a lot of space in each area that does not belong to this 
class. So it is necessary to make the perturbation magnitude of model misjudgment larger. 
in other words, make the model more robust. 
In the future, we will make experiment with models trained on other JPEG datasets (such 
as ILSVRC) and other attack methods, then trying to encrypt and save the perceptual 
hash values of specific images, and using a more efficient hash function to retrieve the 
images in the judgment layer. In this way, even if the adversaries trying to bypass our 
defense methods illegally, it cannot attack the model successfully. 
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