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Abstract: Distributed Denial of Service (DDoS) attack has become one of the most 
destructive network attacks which can pose a mortal threat to Internet security. Existing 
detection methods cannot effectively detect early attacks. In this paper, we propose a 
detection method of DDoS attacks based on generalized multiple kernel learning (GMKL) 
combining with the constructed parameter R. The super-fusion feature value (SFV) and 
comprehensive degree of feature (CDF) are defined to describe the characteristic of attack 
flow and normal flow. A method for calculating R based on SFV and CDF is proposed to 
select the combination of kernel function and regularization paradigm. A DDoS attack 
detection classifier is generated by using the trained GMKL model with R parameter. The 
experimental results show that kernel function and regularization parameter selection 
method based on R parameter reduce the randomness of parameter selection and the error 
of model detection, and the proposed method can effectively detect DDoS attacks in 
complex environments with higher detection rate and lower error rate. 
 
Keywords: DDoS attack detection, GMKL, parameter optimization. 

1 Introduction 
A distributed denial of service (DDoS) attack is a network attack that causes bandwidth 
overload due to the use of traffic on the network, resulting in normal services not working 
properly. In recent years, attacks on broadcast systems, financial systems and Internet-
based services have grown geometrically [Lee, Baik, Kim et al. (2018)]. Furthermore, 
such attacks are devastating, wide-ranging, easy to implement, and difficult to track and 
prevent, posing a major threat to the Internet security and may even threaten the natural 
ecosystems [Ye, Cheng, Zhu et al. (2018)]. The Internet has long been plagued by DDoS 
attacks. Especially in recent years, DDoS attacks have escalated dramatically. For 
example, attacks on DynDNS services cut off common Internet services such as Amazon 
and GitHub which occurred on October 21, 2016. According to a Radware survey, DDoS 
was currently the biggest threat for organizations (50% of respondents in the survey) [Li, 
Wu, Yuan et al. (2018)]. According to the World Infrastructure Security Report, the 
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largest attack reported by a respondent in 2016 was 500 Gbps, with attacks reported by 
others were 450 Gbps, 425 Gbps, and 337 Gbps. According to the Abor network, which 
provides DDoS defense services, they have observed more than 124,000 DDoS attacks 
per week since 2016, and they believe that this number will have been growing rapidly 
[Bisson (2016); Yadav, Trivedi and Mehtre (2016)]. Different from other network attacks, 
DDoS attacks only need a large number of zombies and a small amount of cyber security 
knowledge then an effective attack can be launched [Wang, Zheng and Li (2017)]. This 
easy-to-follow network attack approach further enhances the power of DDoS attacks. 
Therefore, a timely and correct identification of DDoS attacks is imminent. 
Attack detection is one of the main DDoS defense mechanisms. However, in most cases, 
attack traffic is very similar to legitimate traffic. Attackers often use this feature to launch 
DDoS attacks. In most cases, low-rate and low-traffic attacks are often mistaken for 
legitimate activities at very early stages. Many researchers try to use different methods to 
detect DDoS attacks, but these methods still have some shortcomings. The collected data 
is characterized by high latitude and variable samples; the correlation between features is 
ignored, and some information is lost; the selection of kernel function is not the perfect 
theoretical basis, and the kernel function and regularization are not perfect. The selection 
of parameters is random, and manual optimization may be difficult, and the wrong 
selection of parameters will affect the accuracy of DDoS attack detection. 
In this paper, a method of DDoS detection based on generalized multiple kernel learning 
(GMKL) is proposed, and the above problems and shortcomings are analyzed and improved. 
This method consists of two stages: (1) extracting the traffic characteristics of normal 
networks, defining the superfusion feature value (SFV) and the comprehensive degree of 
feature (CDF) based on in-depth analysis of the traffic characteristics of normal networks; (2) 
to solve the problem of parameters selection, we propose the R parameter for kernel 
functions and regularization parameters. Based on the proposed features, an improved 
GMKL method is used to detect DDoS attack. The experimental results show that compared 
with support vector machine (SVM) and simple multiple kernel learning (SMKL) methods, 
our method can more accurately distinguish between normal flow and attack flow. 
The remainder of this paper is structured as follows. We describe related work in Section 
2. In Section 3, we present a detailed description of our proposed method, including the
feature selection, the architecture of the algorithm and the method to select the
combination of kernel function and regularization paradigm. Experimental setup and
results are presented in Section 4. This section also gives the results of comparison with
other different methods. Eventually, we draw a conclusion on our method in Section 5.

2 Related work 
With the development of DDoS attack intrusion detection technology, current research of 
DDoS attack detecting is still grim. There are still high misdiagnosis rate and omissive 
judgment rate in network traffic processing and new DDoS attack detection. Nowadays, 
summing up the researches on detecting technology for DDoS attack, they are usually 
implemented based on different network environment. According to the network 
environment, these methods can be divided into three categories: detection methods in 
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the conventional network environment, the cloud environment, and the software-defined 
network (SDN) environment. 
(1) A conventional network environment refers to an open system interconnection (OSI) 
based Internet environment commonly used on the Internet today. A novel method based 
on k-nearest neighbor traffic classification and correlation analysis which was used as a 
way to detect DDoS attack was proposed by Xiao et al. [Xiao, Qu, Qi et al. (2015)]. By 
utilizing the entropy difference between business streams, a universal detection algorithm 
is proposed by Behal et al. [Behal and Kumar (2017)] which could detect different types 
of DDoS attacks. A framework was proposed by Han et al. [Han, Bi, Liu et al. (2017)] 
which was based on Spark’s new DDoS attack detection system including information 
entropy-based algorithm and dynamic sampling k-means parallel algorithm. The method 
proposed by Hoque et al. [Hoque, Kashyap and Bhattacharyya (2017)] is a real-time 
detection method for DDoS which can identify DDoS attack and generate high detection 
accuracy. Chen et al. [Chen, Wu, Ye et al. (2013)] proposed a new detection model based 
on conditional random field (CRF) which combined signature based and anomaly based 
detection methods into a hybrid system. 
(2) The development of cloud computing and the maturity of cloud technology have 
gradually increased the importance of cloud security issues and become an important 
factor restricting the development of cloud computing. DDOS detection is required in 
fields such as cloud robots [Liu, Wang, Liu et al. (2019)]. A dynamic resource allocation 
mechanism is proposed by Yu et al. [Yu, Tian, Guo et al. (2014)] which is based on the 
dynamic allocation of idle resources from the cloud to the victim machine, and that will 
acquire the quality of service. A method of filtering out high-data packets proposed by 
Daffu et al. [Daffu and Kaur (2016)] can avoid DDoS attack in the cloud environment. 
Another method to detect DDoS attack is proposed by Himadri et al. [Mondal, Hasan, 
Hossain et al. (2017)] using fuzzy logic in the cloud environment. Karnwal et al. 
[Karnwal, Sivakumar and Aghila (2012)] proposes the DDoS attack defense methods 
under the cloud computing platform XML and HTTP. A novel collaborative solution 
framework proposed by Somani et al. [Somani, Gaur, Sanghi et al. (2017)] is based on 
multi-level alert flows for DDoS attack of cloud services. 
(3) SDN separates the control plane of the network from the data forwarding plane, and it 
can allocate and schedule network resources flexibly and efficiently. It has been widely 
used in the network field, but it also brings new security problems. Researchers have also 
done a lot of research on its network security. An architecture proposed by Gharakheili et al. 
[Gharakheili, Bass, Exton et al. (2014)] includes a cloud-based front-end user interface and 
a back-end SDN-based API that allows ISPs to permit users to customize their home 
network experience. A method for analyzing the behavior of DDOS attacks under SDN is 
proposed by Dayal et al. [Dayal and Srivastava (2017)], and the detection characteristics of 
DDOS are defined. Seeber et al. [Seeber and Rodosek (2014)] believe that SDN provides a 
new opportunity for network security in cloud scenario, because SDN based cloud provides 
greater flexibility and faster response when conditions change. An intelligent elastic risk 
assessment method proposed by Mihai-gabriel et al. [Mihai-Gabriel and Victor-Valeriu 
(2014)] is based on neural network and risk theory in SDN environment. 
Although the above methods can extract representative features and have high detection 
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accuracy in their specific application environments, the correlation between features is 
neglected and part of the information is lost [Cheng, Yin, Liu et al. (2009a, b); Cheng, 
Tang and Yin (2017); Cheng, Liu and Tang (2018)]. In recent years, there are some 
problems of feature matching and feature selection in many fields [Li, Qin, Xiang et al. 
(2018); Cai, Wang, Zheng et al. (2013); Fang, Cai, Sun et al. (2018)]. For attack detection, 
the importance of different features is also different. When multiple features are used to 
describe the information of DDoS attack, if only multiple simple combinations are 
combined into one feature vector, there are obvious disadvantages: The coefficient of 
each feature cannot be adjusted, which to some extent affects the later detection 
efficiency. Moreover, when the sample features involve a large scale and the spatial 
distribution of multi-dimensional data is uneven in high-dimensional feature space, using 
the conventional single-kernel method to process the sample cannot achieve the ideal 
detection effect [Petkovic, Basicevic, Kukolj et al. (2018)]. Most importantly, there is no 
perfect theoretical basis for the selection of kernels. The selection of kernels and 
regularization parameters is random. Manual optimization may be difficult, because it is 
also difficult to select and combine proper kernels and regularization paradigms [Cheng, 
Xu, Tang et al. (2018)]. 
In order to solve the above problems, we propose a new DDoS attack detection method. 
By defining two complementary eigenvectors, i.e., SFV and CDF, and then propose R 
parameter for the selection of kernel function and regularization parameter. Finally, based 
on the proposed feature, we adopt an improved GMKL algorithm. By comparing with 
other experimental methods, our method has greatly improved the recognition rate of 
normal flow and attack flow.  

3 DDoS attack detection model based on R-GMKL 
3.1 Feature extraction 
After analyzing the characteristics of the attack stream, based on our previous work 
[Cheng, Zhang, Tang et al. (2018)], we made the following definitions. Assume that 
network flow T in a certain unit of time F is 

1, 1 1 1 2, 2 2 2 ,( , , ), ( , , ),....., ( , , )n n n nt s d p t s d p t s d p< > , where i i i it s d p、 、 、 denotes the 
time, source IP address, destination IP address, and port number of the ( 1, 2,....., )i i n= -
th data packet respectively. The class with all IP address having IP address as  iA  and 

destination IP address  jA  is ( , )i jSD A A , the class with all data packets with source IP 

address as  iA  are ( )iIPS A , and all data packets with destination IP address as jA  are 

D( )jIP A . Remember that the source IP address ( )iIPS A  makes the class ( )iIPS A  and 

class ( )iIPD A  non-null packets to be ( )iIF A ; note that the source IP address ( )iIPS A  

that makes class ( )iIPD A  empty in class iA  is ( )iSH A , and the number of different 

port numbers in ( )iSH A  is denoted as ( ( ))iPort SH A . In class ( )iIPD A , the 

destination IP address iA  that is null in class ( )iIPS A  is ( )iDH A , and the number of 
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different port numbers in ( )iDH A  is denoted as ( ( ))iPort DH A . 

Definition 1. If there are different destination IP addresses jA  and kA , making classes 

( , )i jSD A A  and ( , )i kSD A A  are not empty, then delete the class where all source IP 

address iA  packets reside. 

Assume that the last remaining class 1 2, ,....., ,mACS ACS ACS  is the address correlation 
degree that defines the network flow. 

( )
1

m

F i
i

ACD W ACS
=

=∑                                                      (1) 

where 1 1 1( ) ( ) (1 ) ( ), (0 1)i i iW ACS Port ACS Packet ACSθ θ θ= + − < < , ( )iPort ACS  

is the number of different port numbers in class iACS , ( )iPacket ACS  is the number of 

data packets in class iACS , and 1θ  is the weighted value. 

Definition 2. If all the packets whose destination IP address is jA  form only a unique 

class ( , )i jSD A A , delete the class where the packet with the destination IP address is jA . 

Assuming that the last remaining class is 1 2, ,....., lSDS SDS SDS , classify the l  classes, 
that is, classify the data packets of the same class with the same destination IP address 
into the same class. The class of all data packets with the IP address of jA  is ( )SDD Aj . 

The class 1 2, ,....., mSDD SDD SDD  is defined as the IP Flow Features Value (IP Flow 
Characteristics Value) of the network flow. 

( )
1

( )
m

F i
i

FFV CIP SDD m
=

= −∑                           (2) 

( )iCIP SDD  in  eq.2 are counted by: 

( )
( )

2 2
1

( ) ( ( )) (1 ) ( ( ) 1)
iNum SDD

i i j i
j

CIP SDD Num SDD OA Pack A OB Port SDDθ θ
=

= + + − −∑  

2(0 1)θ≤ ≤                                                                                              (3) 

where ( )iNum SDD  is the number of different source IP in iSDD , 

3

3

( ) ( ) /
( ( ))

0 ( ) /
j j

j
j

Pack A Pack A t
OA Pack A

Pack A t
θ
θ

∆ >
=  ∆ ≤

, ( )jPack A is the number where IP 

equals jA in iSDD , 3θ is threshold, 

4

4

( ) ( ) /
( ( ))

0 ( ) /
i i

i
i

Port SDD Port SDD t
OB Port SDD

Port SDD t
θ
θ

∆ >
=  ∆ ≤

, ( )iPort SDD  is the 



1428                                                                        CMC, vol.62, no.3, pp.1423-1443, 2020 

number of different target port in iSDD , 4θ  is threshold， t∆ is sampling interval. 

Definition 3. Assume the IF flow as 1 2, ,..., MIF IF IF , SH flow as 1 2, ,..., SSH SH SH , DH 

flow as 1 2, ,..., DDH DH DH , then define IP Flow Interaction Behavior Feature, IBF as  

1 1

1 (| | ( ( )) ( ( )))
1

S D

i i
i i

IBF S D over Port SH over Port DH
M = =

= − + +
+ ∑ ∑                       (4) 

5

5

/
over( )

0 /
x x t

x
x t

θ
θ

∆ >
=  ∆ ≤

, where 5θ  are threshold. M  in Eq. (4) means the total IF 

flow in OP within t∆ , |S-D|  means the absolute value of the difference between the 
number of source IP addresses and the number of destination IP addresses for all HF 
flows in t∆ . 

Definition 4. Assume that the resulting SD classes are 1 2, ,..., LSD SD SD , and IF classes 

are 1 2, ,..., LIF IF IF . The number of packets of source IP address iA  in class iIF  is 

recorded as iSN , where i 1, 2,..., M= , the number of packets of all interworking flow 

classes is denoted as SN, and the source semi-interactive flow class is 1 2, ,..., SSH SH SH , 

The number of different port numbers in class iSH  is denoted as o ( )iP rt DH , where 

i 1, 2,..., S= . The destination semi-interactive class is 1 2, ,..., DDH DH DH , the number 

of different port numbers in class iDH  is denoted as o ( )iP rt DH , where i 1,2,..., D= . 

The weighted value of the abnormal number of all SH class packets is 

( )
1

( )
s

SH i
i

Weight oversh Packet SH
=

= ∑                                                                           (5) 

The anomalous weighted number of all SD class packets is 

( )
1

( )
L

SD i
i

Weight oversd Packet SD
=

= ∑                                                                            (6) 

The abnormal weighted value of the number of packets of network flow F in unit time T is 
( )packet SD SD SDWeight flag Weight Weight Weight= +                                                     (7) 

where 6

6

, /
( )

0, /
x x t

oversh x
x t

θ
θ

>
=  ≤





 ， 7

7

, /
( )

0, /
x x t

oversd x
x t

θ
θ

>
=  ≤





， 

0, 0
( )

1, 0
x

flag x
x
>

=  =
,  is sampling time period, 6θ , 7θ  are SH-type packet number 

abnormality threshold; ( )iPacket SD  is the number of packet in iSD , i 1, 2,..., l= . The 
number of different ports in the HF class (SH class and DH class) of the interflow IF 
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which is anomalously weighted is  

1 1

( ( )) ( ( ))
S D

port i j
i j

Weight overp Port SH overp Port DH
= =

= +∑ ∑                                      (8) 

where 8

8

, /
( )

0, /
x x t

overp x
x t

θ
θ

>
=  ≤





, t∆  is sampling time period, 8θ  are SH-type packet 

number abnormality threshold. 
In this part we define IP Flow Multi-feature Fusion, MFF as 

S
1

port packet
F

Weight Weight
MFF

M
+ +

=
+

                                                                           (9) 

where
, 1

( )
1, 1
x x

f x
x
≥

=  ≤
. 

Definition 5. Remember that all source semi-interactive flows SH are 1 2, ,..., SSH SH SH . 
For the SH flows, classify the SH flows with the same destination IP address in the same 
class, and note that the number of SH flows with different source of IP addresses and the 
same destination IP address iA  is ihn , with the same destination IP address iA . The 

class in which the SH stream resides is denoted as ( , )i iHSD hn A , where i 1, 2,..., l= . 

Assume that all HSD classes are 1 2, ,..., kHSD HSD HSD  and the number of different 

destination port numbers in the class iHSD  is expressed as ( )iPort HSD , where 
i 1, 2,..., K= . Then define IP Flow Address Half Interaction Anomaly Degree, HIAD as: 

( )( )( )
1

k

F i I
i

HIAD hn weight Port HSD
=

 = + 
 
∑                                                           (10) 

where 9

9

, /
( )

0, /
x x t

weight x
x t

θ
θ

>
=  ≤





，  is sampling time period, 9θ  is the port threshold 

for different destinations. 
Definition 6. 

( )
1

HIADSFV HIAD FFV
FFV

= +
+

                                                                              (11) 

By analyzing the characteristics of attack flow and normal flow on the key nodes close to 
the attack target, the FFV reduces the interference of the normal flow for the multiple 
attack characteristics of the attack flow and detects attacks on key nodes close to the 
attack target. For the phenomenon that some of the aggregated attack flows are mixed in 
a large number of normal flows, the suspicious flow in the network flow is separated 
based on the semi-iterativeness of the attack flow source address, and the HIAD 
combines the source-destination IP address asymmetry of the attack flow, source address 
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distribution, destination address concentration, and high traffic burstiness. 
The SFV not only utilizes the asymmetry, distribution and concentration of the IP address 
of attack flow, but also takes the influencing factors of some attack flows mixed in the 
normal background flow into full consideration, which makes the feature expression 
more perfect. 
Definition 7. 

ln( 1)
2

ACD MFFCDF IBF+
= + +                                                                          (12) 

Among them, the ACD comprehensively reflects the essential characteristics of DDoS 
attack flow, such as the flow burstiness, flow asymmetry and the distribution of source IP 
address, which is the most highly correlated with the victim-side attack flow and can 
directly affect the normal traffic change. The normal users and the DDoS attackers of 
fake source IP addresses show different characteristics in the interaction behavior of 
sending and receiving data packets. The nature of normal user network interaction 
behavior and attacker network interaction behavior in transmitting and receiving data 
packets is analyzed. The IBF reflects the characteristics of different network interaction 
behaviors between normal flow and attack flow. Based on the different behavior of the IP 
address and port number in the normal flow and DDoS attack flow, some essential 
features such as the flow asymmetry of the DDoS attack flow, the distribution of the IP 
address, the concentration of the attack target and sudden high traffic, the MFF can 
effectively separate normal and attack flows at the attack source, and better reflect the 
different characteristics of normal and attack flows. 
The CDF combines different DDoS attack flow characteristics, such as communication 
asymmetry and source IP address distribution. By comparing the behavioral 
characteristics of normal and attack flows, we can see that the CDF completely covers the 
characteristics of the DDoS attack stream. Experiments show that SFV and CDF have 
better effects on feature extraction. 
Based on the characteristics of DDoS attack traffic, GMKL detection model is applied to 
normal network packet traffic to detect the occurrence of DDoS attack. According to the 
characteristics of network communication, two feature values of SFV and CDF are 
proposed. The characteristics of normal traffic network traffic have certain regularity. 
When the change range of normal network traffic is abnormal, it can be judged that a 
DDoS attack has occurred. 

3.2 Model building and parameter setting  
Combining the two proposed features, the SFV and the CDF, and the GMKL we 
introduced, we performed parameter optimization, combined with optimized parameters, 
and trained the R-GMKL classifier using the feature training set to obtain the model for 
detection. Finally, using the test set to verify the model performance of the detection 
model, this completes the attack detection model optimized by the R-GMKL algorithm. 
Equations in display format are separated from the paragraphs of the text. Equations 
should be flushed to the left of the column. Equations should be made editable. Displayed 
equations should be numbered consecutively, using Arabic numbers in parentheses. See 
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Eq. (1) for an example. The number should be aligned to the right margin. 
On the basis of the work [Varma and Babu (2009); Jain, Vishwanathan and Varma 
(2012)], this research is carried out. Multiple kernel learning (MKL) is defined as follows: 
given training set 1 1 2 2 3 3T {( , ), ( , ), ( , ) ( , )}n nx y x y x y x y=  , test set ' ' '

1 2{ , , }sC x x x=  , 

where i
dx ∈ , '

k
dx ∈ , ( 1, 1)iy ∈ − + ,   is a real set, d as a data dimension, 

1,2, ,i n=   , 1,2, ,k s=  . ' ' '
1 2( , ), ( , ), ( , )MK x x K x x K x x is the kernel function for 

d d×  ,  1 2, Mφ φ φ is the kernel map corresponding to each function. In the classic 
multicore learning framework SMKL, the hyperplane's objective function is: 

1

( ) ( , ( ))
M

m m
m

f x x bω φ
=

= +∑                                                                                               (13) 

where mω  is the weight of each kernel function, b  is offset. Introducing a relaxation 
factor  ξ ,  the objective function can be optimized to: 

m

n
2

m m iH
1 i-1

1 1min ( , , , ) +C
2

M

m m

b d
d

ψ ω ξ ω ξ
−

= ∑ ∑                                                             (14) 

s.t. 

i i
m=1

1

y ( ) y 1

1 0

0

M

m i i

M

m m
m

i

x b

d d

ω ϕ ξ

ξ
=


⋅ + ≥ −


 = ≥

 ≥



∑

∑ ，                                                                                      (15) 

Using the second-order alternating optimization, the above equation is organized into the 
optimization problem of the variable md , 

0 1

min ( ), 1
M

md m
J d d

≥
=

=∑                                                                                                       (16) 

s.t. 
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m

n
2

m iH, , 1 i-1

i i
m=1

1 1min +C
2

y ( ) y 1

0

m

M

b m m
M

m i i

i

d

x b

ω ξ
ω ξ

ω ϕ ξ

ξ

−


=




⋅ + ≥ −

 ≥



∑ ∑

∑                                                                                (17) 

The Lagrangian function is as follows: 

m

n m n
2

m i i i m iH
1 i=1 i=1 m=1 i=1

1 1L +C + 1- -y ( ) y +
2

M M

i m i i i
m m

x b
d

ω ξ α ξ ω ϕ ν ξ
−

= ⋅ +∑ ∑ ∑ ∑ ∑（ ）               (18) 

where i , iα ν  is the Lagrangian operator. For the partial derivative i , , ibω ξ  and let the 
derivative be 0, the obtained extreme conditions are brought into the Lagrangian, which 
can be further changed to: 

i,j=1 1

1max ( ) - ( , )
2

m n

i j i j d i j i
i

Q y y K x xα αα α
=

= +∑ ∑                                                           (19) 

s.t. 

i

1

0

0

( , ) ( , )

n

i i

i
M

d i j m m i j
m

y

C

K x x d k x x

α

α

=


=

 ≥ ≥

 =


∑

∑

                                                                                     (20) 

The gradient descent method is used to derive the d of ( )J d  , update d , make d  and α  

alternate optimization. And find an optimal solution *
1 2= , , nα α α α⋅⋅ ⋅（ , ）. 

That is, the original objective function eventually becomes: 

*

1 1

( ) ( , )
n M

i i m d i j
i m

f x y d K x x bα
= =

= +∑ ∑                                                                            (21) 

where jx C∈  . When judging the category of the test set data, simply bring the test set data 

into the jx  above formula to determine the category corresponding to the measured data. 

Algorithm 1: R-GMKL  
Input: train-set (x), train-label(y) 
Output: ω , b , d , R, ( )F x  

Processing: 
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Initialization: mω , mb , md , iξ , 0m = , 0i =  

while m M≤  

  ( )mK k d←  

Using SVM classifier and selecting a kernel function K and then can obtain *α  

   
* *

1
1( )
2

k k t
m m m k k

r Hd d s
d d

α α+

∂ ∂
= − −

∂ ∂  
   Project 1md +  onto the feasible set if any constraints are violated 
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Since the goal of our algorithm is to find the best compromise between the classification 
accuracy of the SVM and the number of corresponding sample selection features. By 
iteratively selecting an individual, the higher the classification accuracy rate produced by 
the classifier while selecting fewer feature numbers, the higher the fitness. The fitness 
function we define is as follows: 
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                                                                                      (22) 

where = *H dω ; B b= , ω , b  represents the weight and bias value learned in SVM, 
and d represents the weight of each kernel. 
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Our algorithm will continue to optimize (1) by the gradient descent algorithm, so as to 
continuously update the parameters ω , b , d in addition we will linearly combine the 
kernel function and the regularization term, and finally get the minimum value of R. The 
specific process is as follows: 
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Figure 1: DDoS attack detection model based on R-GMKL 

The R-GMKL model actually solves the problem of two-class classification in machine 
learning. The detection task can be completed only by the judgment of attack. Under 
normal circumstances, the detection model detects that the network traffic does not have 
characteristic abnormality within a certain period of time. Set the detection model output 
flag to 1. In the case of attack, set the out-put flag of the detection model to be different 
from the normal condition flag, set to -1. By setting these two aspects, it can be 
characterized whether the network is attacked or not. With the use of the real attack 
detection model, it is determined whether the flag value outputted after the traffic 
characteristic data is abnormal after being input into the attack detection model, and the 
attack detection task can be completed. 

4 Experiment 
4.1 Experimental data set and evaluation criteria 
This article uses the CAIDA “DDoS Attack 2007” dataset, which records about one hour of 
DDoS anonymous traffic attacks on August 4, 2007. The total size of the data set is 21 GB, 
which is approximately 1 hour (20:50:08 UTC - 21:56:16 UTC). In order to more reasonably 
evaluate the effectiveness of the experiment, we used three indicators to fully demonstrate its 
detection performance. The evaluation criteria used in this paper include detection rate (DR) 
and error rate (ER). The calculation formulas for DR and ER are as follows: 

TNDR
TN FN

FN FPER
TP FP TN FN

 = +
 + =
 + + +

                                                                                                (25) 

where TP indicates that the number of normal test samples that are correctly marked, FP 
indicates the number of normal test samples that are incorrectly marked, TN indicates the 
number of attack test samples that are correctly marked, and FN indicates the number of 
attack test samples that are incorrectly marked. The experiment uses the above three 
evaluation criteria to compare with the original methods, the SVM method and the 
SMKL method to verify the effectiveness of the algorithm. 
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4.2 Experimental results and analysis 
We did three sets of experiments. The first group is in the normal network flow, the 
second group is when a large number of background streams are mixed with a small 
number of attack streams, and the third group is when a large number of attack streams 
are mixed with a small number of normal streams. The basis of the experiment is to 
obtain the positive and negative sample sets by extracting the feature data of the attack 
stream and the normal stream.  
Fig. 2 is a comparison of the network data stream and the feature values extracted herein. 
Fig. 2(a) shows the number of network stream packets with an acquisition time of 116 s and 
a sampling time of 1 s. Fig. 2(b) and Fig. 2(c) respectively sample the normal stream and 
the attack stream and calculate the SFV and CDF time series. The feature extraction period 
is set to 1 s, and a total of 116 positive samples and 116 negative samples are extracted.  

 
Figure 2(a): The network traffic of normal flow and attack flow

 
Figure 2(b): The SFV of normal flow 
and attack flow 

 
Figure 2(c): The CDF of normal flow 
and attack flow 

Figure 2: The comparison of network traffic and eigenvalues between normal flow and 
attack flow 

Fig. 2(a) shows that if the number of data packets is only counted for the network stream, 
the value is too large, which leads to an increase in computer memory consumption when 
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calculating the normal flow and the attack flow. As can be seen from Fig. 2(b), the data 
of the normal stream is always in a stable state. After early data, this feature can greatly 
differentiate between normal traffic and abnormal traffic, and more greatly influence the 
classifier to make better decisions. The data of the attack stream is mainly between 200 
and 300, and the resolution is strong. As shown in Fig. 2(c), the attack stream feature 
values are concentrated between 250 and 300, and the normal stream data fluctuates 
within a small range. However, this does not affect the model's classification of normal 
and attack streams. Using SFV and CDF as features can significantly reflect the 
difference between attack traffic and normal traffic. In addition, in general, the data of the 
attack stream is evenly distributed, and the normalization effect is good in further work 
because the extremum is small and easy to standardize. 
Through analysis, we find that the SFV and CDF features are interrelated and 
complementary. They can show great differences between normal flow and attack flow, 
and correctly classify normal flow data and attack flow data. 

4.2.1 Eigenvalues in early attack 
In order to better illustrate the robustness of R-GMKL, our simulation has done the 
following three kinds of cases. The first case is early attack, the second is impulse attack, 
and the third case is intermittent attack. 

 
   Figure 3(a): The SFV of normal flow      

and attack flow in early attacks 

 
   Figure 3(b): The CDF of normal flow      

and attack flow in early attacks 

Figure 3: The eigenvalues of normal flow and attack flow in early attacks 

In this part of the experiment, the captured samples are 491 data samples with data 
concentration in the early stage of the attack (the attack behavior was detected at the 
beginning), including 211 normal sample data and 280 attack sample data. Select 344 
sample points as the training set and 147 sample points as the test set. 
As shown in Fig. 3(a), by computing SFV, our algorithm can detect attack flow 
signatures at an early stage. Although it does not have the same degree of discrimination 
as the CDF at the beginning, the eigenvalues of the attack are particularly concentrated, 
which is a good reflection of the difference between the normal sample and the attack 
sample. As shown in Fig. 3(b), by calculating the CDF, our algorithm can also detect 
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early attack stream samples. The normal stream samples and attack stream samples have 
strong discrimination, which is obviously different from the normal stream characteristics. 
Accuracy is used as an evaluation index. By comparing different kernel function 
parameters and R values under regularization parameters, we can select a combination 
with higher precision and retain parameters for comparison experiments. 

Table 1: The comparison of parameter selection results 

Group 1 2 3 4 

Kernel function 
parameter 

Product of 
RBF kernels 

Sum of RBF 
kernels 

Product of 
RBF kernels 

Sum of 
RBF 
kernels 

Regularization 
paradigm L1 L1 L2 L2 

R 0.49 0.71 0.84 1.08 
Accuracy (%) 93.2% 89.8% 88.4% 87.1% 

From Tab. 1, in the general network flow, the combination of the regularization 
parameter selection L1 and the kernel function Product of RBF kernels is selected, the R 
value is the smallest, and the accuracy is high, so in the general network flow, we select 
Product of the RBF kernels for the next experiment, as well as the L1 regularization 
parameters. In order to verify the superiority and reliability of R-GMKL algorithm in 
detecting DDoS attacks, classical methods such as GMKL, SMKL and SVM are 
compared, and the correctness of kernel function and regularization parameter selection 
methods are verified from DR and ER. The comparison results are shown in Tab. 2. 

Table 2: The comparison of attack detection algorithm 

 Simple MKL SVM R-GMKL 
DR (%) 79.8% 59.5% 88.1% 
ER (%) 11.6% 23.1% 6.8% 

From the comparison of the results in Tab. 2, it is found that the detection rate and the 
error rate of the DDoS attack detection method based on the R parameter optimization 
GMKL are 96.4% and 0.02%. Compared with the popular SVM and SMKL algorithms, it 
has higher detection rate and lower error rate. It can be concluded that the DDoS attack 
detection method based on R parameter optimization GMKL proposed in this paper can 
effectively improve the detection rate of DDoS attacks and reduce the error rate. It has 
better comprehensive performance, can effectively identify DDoS attacks, and provides 
new DDoS attack detection methods and means. 

4.2.2 Eigenvalues in impulse attack 
In this part of the experiment, a situation is simulated that a large number of normal flows 
are mixed with a small number of attack flows based on the sample points of the data set. 
There are 491 data samples, including 384 normal samples and 107 attack samples. 
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According to the selection method of Chapter 4.2.1, 344 samples were selected as 
training set and 147 samples were selected as test set. 

 
   Figure 4(a): The SFV of normal flow  

and attack flow in impulse attacks 

 
   Figure 4(b): The CDF of normal flow  

and attack flow in impulse attacks 

Figure 4: The eigenvalues of normal flow and attack flow in impulse attacks 

As shown in Fig. 4(a) and Fig. 4(b), we inject a small amount of attack streams into a 
large number of normal streams at the same time in order to distinguish between normal 
and attack streams in time. As shown in Fig. 4(a), the SFV characteristic enables the 
attack stream characteristic values to aggregate together, and the attack part tends to be 
more stable. Through the analysis of the data, this feature can distinguish the normal flow 
from the abnormal flow and have a great influence on the decision-making of the 
classifier. As shown in Fig. 4(b), normal traffic and attack traffic can be well separated by 
CDF features. As long as abnormal traffic is detected, CDF can accurately distinguish it 
from normal traffic characteristic values. 

Table 3: The comparison of parameter selection results. 

Group 1 2 3 4 
Kernel function 
parameter 

Product of RBF 
kernels 

Sum of RBF 
kernels 

Product of RBF 
kernels 

Sum of RBF 
kernels 

Regularization 
paradigm L1 L1 L2 L2 

R 1.10 1.62 2.98 1.92 
Accuracy (%) 96.6% 96.6% 91.84% 91.84% 

Tab. 3 describes the mixing of a small number of attack streams in a normal stream. 
Through observation, it can be found that the accuracy of the first group with the lowest 
R value is the highest after comparing four groups of experiments. L1 regularization was 
applied in the first two groups, and the accuracy of the two groups was the highest. It can 
be concluded that the generalization ability of L1 regularization is much better than that 
of L2 regularization when a large number of normal flows are mixed with a small number 
of attack flows. Therefore, we choose the combination of the first set of parameters for 
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the next experiment. 

Table 4: The comparison of attack detection algorithm. 

 Simple MKL SVM R-GMKL 
DR (%) 62.5% 59.4% 84.4% 
ER (%) 8.2% 8.8% 3.4% 

It can be observed from Tab. 4 that when a large number of normal flows are mixed with a 
small number of attack flows, the overall performance of the algorithm is R-GMKL, SMKL 
and SVM in order from high to low according to three evaluation criteria. As high as 84.4% 
detection rate can fully prove that R-GMKL can detect impulse attacks to some extent. 

4.2.3 Eigenvalues in intermittent attack 
Through the analysis of attack types and characteristics, we can know that some attacks 
are regularly presented, while some attacks are irregular, such as intermittent attacks 
caused by offensive and defensive confrontation. In one case, in order to avoid detection, 
a small attack will be launched first to see if it can be detected, and then continue to 
attack. Another case is that, because an attack is detected, it will immediately take 
another way to attack, switching between different attacks. In this part of the experiment, 
based on the sample points of the data set, there are 491 data samples, including 80 
normal samples and 411 attack samples. The selection method also uses 70% as training 
set and 30% as testing set. 344 samples are selected as training set and 147 samples are 
selected as testing set. 

 
Figure 5(a): The SFV of normal flow 
and attack flow in intermittent attacks 

 
Figure 5(b): The CDF of normal flow 
and attack flow in intermittent attacks 

Figure 5: The eigenvalues of normal flow and attack flow in intermittent attacks 

As shown in Fig. 5(a) and Fig. 5(b), the discrimination of SFV features is greater than 
that of CDF at the same attack data points. In the attack flow after normal flow, these two 
characteristics are concentrated and the representation ability is stable. CDF eigenvalues 
fluctuate greatly. Generally speaking, when a large number of attacks occur, both 
eigenvalues can detect the time point of attack in time. 
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Table 5: The comparison of parameter selection results 

Group 1 2 3 4 
Kernel function 
parameter 

Product of RBF 
kernels 

Sum of RBF 
kernels 

Product of RBF 
kernels 

Sum of RBF 
kernels 

Regularization 
paradigm L1 L1 L2 L2 

R 0.95 0.98 0.96 0.97 
Accuracy (%) 88.44% 87.76% 87.76% 87.76% 

Tab. 5 shows the case where a small amount of normal flow is trapped in the attack 
stream. By observation, the smallest R value is the first group, and its corresponding 
accuracy is also the highest. Therefore, in this case, we choose the Product of RBF 
kernels and the L1 regularization parameters for the next experiment. 

Table 6: The comparison of attack detection algorithm 

 Simple MKL SVM R-GMKL 
DR (%) 78.9% 78.9% 86.2% 
ER (%) 17.7% 17.7% 11.6% 

As can be seen from Tab. 6, when a large number of attack streams are mixed with a 
small amount of normal flow background, the detection ability of SVM and SMKL are 
equal, and the detection rate of R-GMKL is higher than that of the former two, and the 
error rate is lower. 
In summary, on the basis of data set, this paper simulates three kind cases of attacks: 
early attack, impulse attack and intermittent attack. R-GMKL method has the highest 
detection rate and the lowest error rate. The experimental results show that the smaller 
the R value, the higher the accuracy, which provides a scientific method for the selection 
of the kernel function and regularization parameters. In addition, the proposed method 
based on R parameter optimization GMKL is proved to be robust. 

5 Conclusion 
Aiming at the problems of single DDoS attack detection method, such as single attack 
type, high false negative rate and false positive rate, we propose a DDoS attack detection 
method based on GMKL. Two characteristics of SFV and CDF for describing the 
characteristics of network flow are defined. Based on these two features, a DDoS attack 
detection model based on R parameter optimization GMKL is established. A method for 
kernel function and regularization parameter selection is proposed, which reduces the 
human-induced error to a certain extent and provides a scientific basis. The experimental 
results show that the proposed method can detect DDoS attacks effectively and early, and 
have higher detection rate and lower false negative rate than similar methods. 
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