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Abstract: This paper proposes the optimum controller for shunt active filter (SAF) to 
mitigate the harmonics and maintain the power quality in the distribution system. It consists 
of shunt active filter, Voltage Source Inverter (VSI), series inductor and DC bus and non-
linear load. The proposed hybrid approach is a combination of Particle Swarm 
Optimization (PSO) and Artificial Neural Network (ANN) termed as PSOANN. The PI 
controller gain parameters of kp and ki are optimized with the help of PSOANN. The 
PSOANN improves the accuracy of tuning the gain parameters under steady and dynamic 
load conditions; thereby it reduces the values of THD within the prescribed limits of IEEE 
519. The PSO optimizes the dataset of terminal voltage and DC voltage present in shunt 
active filter for different load condition. The optimized dataset acts as the input for the 
controller to predict the optimal gain with minimal error and to generate the optimized 
control signal for the SAF. The proposed methodology is modelled and simulated with the 
help of MATLAB/Simulink platform and illustrated the few test cases considered for 
exhibiting the performance of proposed hybrid controller. The experimental results are 
measured with developed laboratory prototype and compared with the simulation results to 
validate the effectiveness of the proposed control methodology. 
 
Keywords: Artificial neural network, particle swarm optimization, shunt active filter, 
voltage source inverter, total harmonic distortions. 

1 Introduction 
The power quality (PQ) issues have become a critical problem in distribution and 
transmission networks due to the extensive use of power electronics devices. The non-
linear loads connected to the power source/grid increases the harmonic content in the 
utility side. The power system network suffers from disturbance and losses due to the 
presence of harmonic contents produced by the non-linear loads. The utilization of power 
electronics-based controllers and non-linear loads lead to low power factor, an increase of 
neutral current, overheating, generates waveform disturbances in the power system 
[Terciyanli, Avci, Yilmaz et al. (2012); Mikkili and Panda (2012)]. The disadvantage in 
the fixed compensation technique is due to resonance conditions which are employing as 
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different load conditions [Zaveri and Chudasama (2012)]. In addition to the utilization of 
passive filter, hold only specific harmonic content in the distribution networks 
[Marzoughi, Imaneini and Moeini (2013)]. The generation of reference current using the 
component id-iq is presented to compensate for the unbalanced harmonic content [Panda 
and Mikkili (2013)]. The control strategies are employed to compensate for the current 
harmonics and selective harmonic elimination to improve the power factor [Usman and 
Musa (2013)]. The combination of fuzzy logic control and PI are employed to increase 
the reactive power compensation under various load conditions, thereby improving the 
filter performance [Patel and Panda (2014)]. The study investigates the performance of 
filter, voltage imbalance by employing the tuned passive filter along with the active filter 
[Lee, Wang, Li et al. (2015)]. By considering the different source voltage, the shunt 
filters are employed to improve the stability and reactive power to update the passive 
filter [Barghi Latran, Yoldas and Teke (2015)]. The various control strategies have been 
proposed and validated by the researches, such as reference current theory [Suresh and 
Singh (2014)], PLL based unit template generation [Patjoshi and Kanta Mahapatra 
(2013)], synchronous frame theory [Jain, Agarwal, Jain et al. (2016)] for estimation of 
compensation current. For regulation of DC voltage using the fuzzy logic controller [Yin, 
Lin, Li et al. (2015)] and artificial neural networks [Roy, Krishna Mandal, Chandra 
Mandal et al. (2018)] based controllers. Most of the researchers suggested the 
metaheuristic algorithm to solve the optimization and the gain parameters for PI such as 
Genetic Algorithm [Parithimar Kalaignan (2015)], gravitational search algorithm [Elsisi, 
Soliman, Aboelela et al. (2015)], Bacterial Foraging [Mohammadi (2015)], Ant colony 
optimization [Sakthivel, Vijayakumar, Senthilkumar et al. (2015)], Particle swarm 
optimization [Letha, Thakur and Kumar (2016)], Differential evolution [Biswas, 
Suganthan and Amaratunga (2017)], artificial bee colony [Baghaee, Mirsalim, 
Gharehpetian et al. (2017)] and Grasshopper optimization Algorithm [Barik and Das 
(2018)] are addressed to reduce the losses by determining the appropriate switching 
angles for generation of PWM pulses. These algorithms are combined towards the global 
optimization search for best validation and contrasted during the searching process of 
optimal parameters. The converging time required for the PSO is small compared to GA. 
The fitness value computed by PSO is larger, it leads to superior performance. By finding 
the appropriate values of Kp and KI, the cost function is minimized. A conventional PI 
controller is restricted to employed in non-linear control and open loop systems due to 
lacking in time and tuning process. In the traditional approach, the gain values may not 
give better performance under various dynamic conditions. In the proposed method the 
continuous assessment of gain values is employed through the PI controller used in Shunt 
active filter and also it improves the dynamic performance of the controller. The most of 
the researchers are inspired with ANN due to the self-learning ability, parallel computing 
in nature, acceptable performance with trained data and adaptation capability. ANN can 
deliver fast corrective action, under any distortion condition. The neuron weights are 
adjusted to lower the value of THD of the source current as per the IEEE standard 519 
[Arseneau, Heydt and Kempker (1997)]. In this proposed method, PSOANN approach is 
employed to reduce the THD level within the prescribed limits of IEEE 519 standards. 
The PSO algorithm is engaged to generate the optimum data set and ANN method is 
utilized to reduce the error signal, thereby generating the optimum PWM pulses for the 
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shunt active filter. The proposed controller has an ability to tune the open loop system 
and also consume less timing for tuning rather than the conventional PI controller. ANN 
is preferred mostly amount the researchers due to adoption capability, faster response and 
satisfactory performance. The trained data is very close to the test data acquired by the 
artificial neural network. The other methods have premature convergence problem 
compared to Particle swarm optimization (PSO). The combination of PSO and ANN 
doesn’t cause specific damage in optimization process but it takes more execution time 
and ability to compute in single optimization process. Section II covers the system 
descriptions. Section III delineates the proposed PGOANN controller. Section IV depicts 
the simulation results and verification of the proposed method. 

2 System descriptions 
The proposed control system for Shunt Active Filter (SAF) is depicted in Fig. 1. The 
proposed structure consists of an active filter, voltage regulator, Point of common 
coupling (PCC), non-linear load, filter inductance and resistance, three phase PWM and 
DC voltage bus. The SAF is connected to the PCC through filter resistance and 
inductances for mitigating the current harmonic components. No need of additional 
components required for filtering the ripple contents generated by the inverter due to the 
high impedance of LC filter connected to the PCC. The diode bridge rectifier and RL load 
are employed as non-linear load to test the system performance.  

 

Figure 1: Schematic diagram of PSOANN based Shunt active filter 

2.1 Mathematical modelling of SAF 
The Shunt active filter is mathematically modeling by the kirchoff’s law in terms of 
differential equations expressed as  

FC
sy HF HF FC CRF My NFy y

dI
V L R I V V V

dt
= + + + +                  (1) 
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CRFy
FCy RF

dV
I C

dt
=                    (2) 

 1dc
dc

dc

dV
I

dt C
=

                  
(3) 

Assumption to be made in this analysis (i) Absence of zero sequence current and (ii) 
Balanced AC supply voltage. 
Three phase supply voltage is given by  

1 2 3 0S S SV V V+ + =                 (4) 

Three phase supply current is formulated by  

1 2 3 0S S SI I I+ + =                 (5) 

The voltage between the supply neutral and active filter is formulated by sub y=1,2 and 3 
in (1) 

3

1

1
3NF y

y
V V M

=

= − ∑    (6) 

The switching functions (Cs) of the inverter is formulated by  
'

'

1,  if S  is on and S  is off

0,  if S  is off and S  is on
s s

s
s s

C
= 
                

(7) 

The dynamic model of the filter is expressed as 
3

1

1 1
3

cy CRFy syHF
Cy y y dc

HF HF HF HFy

dI V VR I C C V
dt L L L L=

 
 = − − − +
 
 

∑              (8) 

The function of the switching state is given by the equation  
3

1

1
3my y y

y
q C C

=

 
 = −
 
 

∑                   (9) 

where m=0 or 1. 
The model of SAF in three phase reference frame is denoted by the equation 

2
1 1 1

1 12
1C C dc s

HF HF C m
HF

d I dI dV dV
L R I q

dt C dt dtdt
= − − +              (10) 

2
1 2 2

2 22
1C C dc s

HF HF C m
HF

d I dI dV dV
L R I q

dt C dt dtdt
= − − − +             (11) 

The transformed model is obtained through SRF is represented by the equations 

mqdc md
d q

dc dc

qdV q
I I

dt c C
= +                   (12) 
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1CHFd
d CRFq

HF

dV
I V

dt C
ω= +                     (13) 

1
q CRFd

HF

dVq I V
dt C

ω= −                 (14) 

The switching functions for the steady-state are given as 
* *

*
*

1d CHFdHF HF
nd d q sd

HF HF HFdc

dI VL RD I I V
dt L L LV

ω
 

= − − + − + 
             

(15) 

**
*

*
1CHFqdHF HF

nq q d sq
HF HF HFdc

VdIL RD I I V
dt L L LV

ω
 
 = − − − − +
             (16)

 

The supply currents (IS1, IS2, IS3) and supply voltage (VS1, VS2, VS3) and Vdc of the inverter 
are employed to generate the appropriate PWM signal for the VSI. The values of Id and Iq 
are extracted from the supply currents is formulated by the equation 

( ) ( )
( ) ( )

1

2

30

2 2sin( ) sin3 3
2 2 2cos( ) cos cos3 33

1 2 1 2 1 2

s s s
d S

q s s s S

S

t sin t t
I I
I t t t I

II

π πω ω ω

π πω ω ω

 − +
     
     = − +     
                    

(17) 

The values of reference currents Id and Iq are decomposed and equated as 

d dDC dAC

q qDC qAC

I I I
I I I
     

= +     
                   

(18) 

Later, the reference frame currents are calculated as follows    

( ) ( )
( ) ( )
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q
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t t

ω ω
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π πω ω

 
        = − −         + +  

           (19) 

The reference voltage is obtained from the equation, 

 
* .S V SV K I=               (20) 

The gain parameter (kv) is depending on the response of the voltage and damping factor 
defined as kp and ki. The gain parameters are obtained through the proposed optimization 
algorithm. The approach of PSOANN is clearly delineated in the following section.  

3 PSOANN based prediction of gain parameters 
The PI gain parameters are optimized with the help of PSO and ANN method are shown 
in Fig. 2. This method enhances the accuracy of parameter prediction in SAPF. The 
PSOANN is employed to generate the optimum PWM pulses for the inverter. The 
accurate optimal solution is obtained by executing the PSO algorithm for the maximum 
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number of iterations. The output of the particle swarm optimization (PSO) is acting as the 
input for the artificial neural network (ANN) controller for predicting the exact PWM 
pulse with minimum error tolerance. The observation of the approach shows that the 
harmonic distortion is minimized in the distribution network.  

3.1 PSO for dataset generation 
The particle swarm optimization is initiated with a group of random variables and then 
searches for the optimal solutions (19). In each iteration, PSO updates the generation by 
two best values. The first one is the best solutions (fitness) it is termed as Pbest and the 
iterated value is stored. The second-best value is termed as global best value gbest, it is 
tracked by the optimizer.  
The value of the kth particle is represented by xk=(xk1, xk2,…..xkd) in the d-dimensional 
space. Recorded value is represented by the equation 
Pbest = (Pbestk1, Pbestk2 ,…… Pbestkd)             (21) 
The best particle is identified in the global is termed as gbestd. The velocity of the kth 
particle is represented by  
Vk=(Vk1, Vk2,…….. Vkd)                   (22) 
The current velocity is used to calculate the modified position and velocity of each 
particle. Then the distance is calculated from Pbestkd to gbestd is formulated by the equation, 

( 1) ( ) ( ) ( )
1 , 2 ,, , ,,

( )( ) ( )(g )t t t t
bestk m bestk mk m k m k mk m

v wv c rand P x c rand x+ = + − + −                                      (23) 
( 1) ( ) ( 1)
, ,,
t t t

k m k mk m
x x v+ += +                 (24) 

The optimum solutions are computed with the help of PSO with minimal error and then 
the system is engaged to choose the appropriate gain parameters. 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

. .

. .

. . . .

. . . .

. .

n n
i i ip p p

n n
i i ip p p

i

m m m m mn mn
i i ip p p

k k k k k k

k k k k k k
X

k k k k k k

 
 
 
 

=  
 
 
 
               

(25) 

 
Table 1: Parameters of PSO Algorithm 

 
Parameters Values 
Population size 30 
No of iterations  100 
Wmin 0.7 
Wmax 0.1 
C1=C2 1.5 
Min offset 200 
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Figure 2: PSOANN tuning Approach for shunt active filter 

3.2 Control scheme of ANN 
The parameters of proposed algorithm were chosen by off-line assessment using PSO 
technique. The neural network architecture used in this work is feed-forward network (3 
node in the input layer, 20 nodes in the hidden layer, and 1 node in the output layer). The 
number of hidden layer is decided by the performance optimization of error function and 
the training period. Cross Validation test is used to validate the selected hidden layers. 
The hidden layer of the neural network is employing the sigmoid function and shown to 
be very influential enough to harvest a haphazard mapping among variables. The 
activation function used at this juncture is the standard sigmoidal function with range 
between 0 and 1. To train the artificial neural network, a direct learning strategy is 
employed. Levenberg-Marquardt backpropagation (LMBP) algorithm is used to update 
the weights of the neural network. The optimized gain parameters are employed as the 
input of the ANN and the network is trained by Levenberg Marquardt Back Propagation 
algorithm (LMBP) due to the dynamic response and satisfactory performance. The output 
of the ANN is employed to provoke the three phase reference currents [Roy, Krishna 
Mandal, Chandra Mandal et al. (2018)]. LMBP algorithm is apt for the different loading 
conditions. The algorithm is the combination of Guass newton and Gradient descent 
methods with advantages of global and local conveyance properties. To avoid 
overtraining of data, bidirectional recursive neural network is employed for adaptive 
adjustment of weight through the entire process. 
Step 1: According to available information, the network is trained to produce the control 
pulse (z) with time interval x(t) as the input. 
Step 2: The error of the target x(1), x(2)…. x(n) is determined by the formula 

1 ( arg ) (out)

2 ( arg ) (out)

( arg ) (out)

(1) (1)

(2) (2)

(n) (n)

NN t et NN
error

NN t et NN
error
n NN t et NN

error

LMBP z z

LMBP z z

LMBP z z

= −

= −

= −

                                                     (26) 

Step 3: Above equation is engaged to determine the network output, 
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1 1
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a w

a w
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=
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∑

∑

                (27) 

where a is the node bias function of 1,2, and n. 
Step 4: The weight of each neuron is computed by new oldh h h= + ∆  

(k)

1 2

(k)

2

(k)

1

1z(1)
1 exp( z(1) z(2))

1z(2)
1 exp( z(2) z(n))

1z(n)
1 exp( z(n) z(1))

NN

n n

NN

n nn

NN

nn n

h h

h h

h h

=
+ − −

=
+ − −

=
+ − −

               (28) 

Step 5: The adjustment of weight is computed by  

 

1
1

1
2

. (1).

. (2).

. (n).

r error

r error
n

n r error

h L z LMBP

h L z LMBP

h L z LMBP

∆ =

∆ =

∆ =        

 

 

       (29) 

Step 6: Above steps are repeated to minimize the LMBP error (LMBP<0.1). 

 
(a) 
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(b) 

Figure 3: (a) Structure of ANN; (b) Flowchart of the PSOANN approach 

The successful completion of ANN training, the desired control signal is generated by the 
shunt active filter. The structure of ANN and flowchart of the proposed control scheme of 
PSOANN approach is shown in Figs. 3(a) and 3(b). 
The performance of the ANN is evaluated by Root Mean Square Error (RMSE), 
coefficient of determination (R2) and Mean Absolute Error (MAE) 

,
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y y
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Table 2: ANN parameter for the training 

Parameters Values 
Input layer 3 
Hidden layer 20 
Output layer 1 
Training function LMBP 
Performance function 
Activation function 

Minimized mean square (MSE) 
Tansig/Tansig/Purelin 

Maximum epochs 253 
Learning rate Lr 0.04 
Performance goal 1e-6 

Success rate 98.9 
Running time 3.08 seconds 
RMSE 0.1211 
R2 0.9998 
MAE 0.1194 

 
The upper and lower limits of gain parameters are determined as a result of PSOANN 
approach. The values are denoted in Tab. 3. 

Table 3: Decision variables for Gain parameter 

Limits Kp Ki 

Upper 1.48 1.92 
Lower 0.04 0.49 

4 Results and discussion 
An efficient PSO algorithm with ANN based shunt active filter is proposed for the 
reduction of harmonics in distribution system. Here the proposed system is modelled and 
simulated in MATLAB/SIMULINK platform. The outcome of the control metholodgy is 
validated by utilizing the four test cases with different combination of non-linear loads 
and also compared with existing methodologies such as PSO, ANN & Conventional PI 
Controllers. The hardware implementation of the proposed methodology is done using 
Xilinux Spartan 3E FPGA board. Fig. 4 shows the internal structure of the simulation 
circuit diagram for proposed optimum controller. The system specification parameters are 
specified in Tab. 4. For test case 1 to 3, the supply voltage is assumed to be balanced and 
the supply voltage assumed to be unbalanced in test case 4. The viability of the proposed 
methodology is illustrated by four test cases which are depicted as follows: 
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Test case 1: Three phase rectifier with DC motor with balanced supply voltage 
Test case 2: Three phase unbalanced RL Load with balanced supply voltage 
Test case 3: Three phase rectifier with DC motor and unbalanced RL Load with balanced 
supply voltage 
Test case 4: Three phase rectifier with DC motor with unbalanced supply voltage 

 
Figure 4: Internal structure of the proposed system  

Table 4: System specifications 

Parameters Values 
Source Supply voltage: 120 V, 50 Hz 

Ls: 0.15 mH, Rs: 0.1 Ω  
Shunt Active filter DC link capacitor (Cdc): 35 µF,  

Reference DC link voltage (Vdc): 220 V 
Filter Lf: 25 mH, Rf: 1.5 Ω 

Unbalanced supply voltage Phase A: 100 V Phase B:120 V Phase C: 80 V 
Load (i) Three phase rectifier with DC load 

(ii)Unbalanced RL Load 
Phase A: 15 Ω and 12.5 mH 
Phase B: 10 Ω and 8.5 mH 
Phase C: 20 Ω and 16.5 mH 
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        Figure 5: Waveforms of proposed system without SAF 

The proposed system is simulated without shunt active filter and the obtained waveform 
is shown in Fig. 5. The analysis of the test case 1 using balanced supply voltage and three 
phase rectifier with DC motor is depicted in the Fig. 6, the waveforms of Phase A-Vsa, Isa, , 

ILa, Iinj and Vdc is shown respectively. The waveform clearly shows that the load current is 
highly affected by harmonics due to dc load fed by three phase rectifier, maximum value 
of THD in the load current is 8.21% in phase A and C, likewise the maximum value of 
THD in the source current is 0.35 in phase B. The reduction of THD is depending on the 
injection of the shunt active filter. By that, the stability of the proposed controller is 
validated by reducing the THD value. 
The analysis of the test case 2 using balanced supply voltage and unbalanced RL load is 
depicted in Fig. 7, the waveforms of phase A -Vsa, Isa, ILa, Iinj and Vdc are shown 
respectively. In this case, maximum value of THD in load current is 1.13% in phase C, 
likewise the maximum value of THD in the source current is 0.68 in phase A. The 
suitable current is generated by the SAF and injected in to distribution system to 
minimize the value of THD. The waveform clearly shows that the source current is 
balanced and the power factor for phase A is 1 and phase B & C is 0.998. 
The Fig. 8 depicts the analysis of the test case 3 using balanced supply voltage and 
combination of test case 1 and 2, also it shows the waveforms of phase A -Vsa, Isa , ILa, Iinj 
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and Vdc. This case clearly shows that the phase A has 0.86% of maximum value of THD 
in source current and the phase B has 1.64 as the maximum value of THD in the load 
current. The power factor for phase A is 0.999, phase B is 0.996 and phase C is 0.998. 

 
Figure 6: Va(V), Isa(A),ILa(A), IInj(A), Vdc(V) of PSOANN-PI Controller for test case 1 
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Figure 7: Va(V), Isa(A),ILa(A), IInj(A), Vdc(V) of PSOANN-PI Controller for test case 2 

 

 
Figure 8: Va(V), Isa(A),ILa(A), IInj(A), Vdc(V) of PSOANN-PI Controller for test case 3 
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Figure 9: Va(V), Isa(A),ILa(A), IInj(A), Vdc(V) of PSOANN-PI Controller for test case 4 

The quick response of dc link voltage for test case from 1 to 4 is depicted in Fig. 10. The 
proposed PSOANN control algorithm is analyzed by employing different combination of 
nonlinear loads and it shows that gain parameters are quickly optimized within 0.04 seconds.  

 
Figure 10: Comparison of dc voltage for various test cases 
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Figure 11: Convergence characteristics of dc voltage for multiple techniques 

The convergence characteristic of dc voltage with multiple techniques shows that 
PSOANN sketches the superior performance in stabilizing the system rapidly shown in 
Fig. 11. The proposed PSOANN controller shows the settling time more than 8 and 0.2 
times for increasing load and more than 11.5 and 0.62 times for decreasing load 
compared to PSO, ANN and conventional PI controller respectively. It shows that the 
implementation of PSOANN based estimation of PI controller values is suitable for shunt 
active filter.  Fig. 12 describes the total harmonic distortion value for test case 2. 

 
Figure 12: Total harmonic distortion for test case 2 

The THD values of test case 1-4, the source and load current for the three phases are 
clearly depicted in Tab. 5 & Fig. 13. The three phase values of power factors for the test 
1-4 is delineated in Tab. 6 & Fig. 14. The optimization parameters using PSOANN is 
illustrated in the Tab. 7. Tab. 8 & Fig. 15(a) clearly illustrate the comparison of THD 
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value with existing methods and manifest that PSOANN optimization is superior among 
all. Fig. 15(b) shows the convergence characteristics of proposed method, case 2 
representing the best THD at all iteration are compared with the other methods. The 
proposed method takes only 15 iterations to obtain the best THD, but the GA, BF and 
ACO take 22, 30 and 34 iterations, respectively. When compared with other methods, the 
PSOANN has a better convergence rate as it takes a lower number of iterations to achieve 
the best solution. The permissible limit of THD is 6.66% for current ratio as per the IEEE 
519-2014 Standard 2018 [Mahaboob, Ajithan and Jayaraman (2019)]. The THD values 
obtained through PSOANN is lower than the current methodologies as per IEEE 519 
standard and promising sinusoidal source current. 

Table 5: THD Comparison for various techniques 

Cases Method 

THD THD 
Source Current (%) Load Current (%) 

Phase 
A 

Phase 
B 

Phase 
C 

Phase 
A 

Phase 
B 

Phase 
C 

Case 1 PSOANN 0.32 0.35 0.32 8.21 8.20 8.21 
 PSO 0.51 0.56 0.59 8.48 8.47 8.48 
 ANN 0.66 0.66 0.68 8.52 8.52 8.51 
 PI 0.91 0.92 0.91 8.89 8.89 8.90 
Case 2 PSOANN 0.68 0.67 0.67 1.12 1.12 1.13 
 PSO 0.83 0.82 0.83 1.34 1.34 1.35 
 ANN 0.76 0.75 0.75 1.20 1.20 1.21 
 PI 1.02 0.89 0.91 1.82 1.92 1.78 
Case 3 PSOANN 0.85 0.83 0.86 1.56 1.64 1.59 
 PSO 0.94 0.93 0.98 1.81 1.77 1.94 
 ANN 0.97 0.96 0.91 1.72 1.81 1.89 
 PI 1.20 1.11 1.29 2.54 2.27 2.39 
Case 4 PSOANN 1.11 1.02 1.16 5.64 6.12 5.89 
 PSO 1.77 1.68 1.89 5.96 6.85 6.67 
 ANN 1.72 1.54 1.75 5.81 6.69 6.56 
 PI 2.10 2.23 2.17 6.21 6.48 6.37 
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Figure 13: THD Comparison chart for various techniques 

Table 6: PF Comparison for various techniques 

Cases Method 
Power Factor 

Phase A Phase B Phase C 
Case 1 PSOANN 0.999 1 0.997 

 PSO 0.956 1 1 
 ANN 1 1 0.968 
 PI 0.956 1 0.956 

Case 2 PSOANN 1 0.998 0.998 
 PSO 1 0.998 0.991 
 ANN 1 0.998 0.993 
 PI 1 0.998 0.997 

Case 3 PSOANN 0.999 0.996 0.998 
 PSO 0.967 0.996 0.991 
 ANN 0.999 0.992 0.997 
 PI 0.947 1 0.952 

Case 4 PSOANN 1 0.998 1 
 PSO 1 0.963 1 
 ANN 1 0.943 1 
 PI 0.995 0.991 1 
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Figure 14: Power factor comparison chart for various techniques 

 
Table 7: Comparison of PI values 

 
Methods Kp KI 

PSOANN 0.1 1 
PSO 1.24 1.73 
ANN 0.82 1.2 
Conventional PI 1 1 

 
Table 8: Comparison of THD with other techniques 

 
Solution techniques  THD % 

(Test case 2) 
PSOANN 2.2 
PSO  4.55 
ANN  2.9 
ACO [Sakthivel, Vijayakumar, Senthilkumar et al. 
(2015)] 

3.72 

BF [Mohammadi (2015)] 3.71 
ZN [Parithimar Kalaignan (2015)] 7.57 
GA [Parithimar Kalaignan (2015)] 4.55 
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(a) 

 
(b) 

Figure 15: (a) Comparison of PSOANN with other techniques; (b) Convergence rate vs. 
iteration comparison with other methods 

 
Figure 16: Neutral current before and after compensation 
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The performance of shunt active filter is captivated by measuring the neutral current 
shown in Fig. 16. After the gating pulse is applied to the VSI, the neutral current becomes 
zero. It is due to adjustable nature of neural network.  
A laboratory prototype is implemented to validate the shunt active filter with PSOANN 
based PI control algorithm using Xilinux Spartan 3E FPGA board depicted in Fig. 16. 
The switching of voltage source inverter for SAF is performed using PWM, which 
controls the source current.  
The experimental results are delineated for the control of DC link voltages under various 
load current variations. Fig. 17 shows the laboratory prototype system parameters. The 
control of SAF is implemented through proposed algorithm using space vector pulse 
width modulation method and it is employed to switching the VSI of shunt active filter, 
which is controls the source current (Is) to follow the derived value of reference source 
current (Is). The three-phase source currents are predicted using current transformers 
(CTs), three-phase source voltage and DC link voltage are predicted using voltage 
transducer. The predicted signals are conveyed to the ADC card of FPGA board. The 
three phase unit vector template is generated with help of three phase source voltage. The 
reference value is compared with the actual value of DC link voltage and the generated 
error signal is handled through proposed controller. In order to generate the reference 
source current, peak value of the source current is multiplied by unit vector template. The 
VSI switching signals are generated by using proposed control algorithm based reference 
current extraction and space vector pulse width modulation. These switching signals are 
used to perceive the Shunt active filter. 

 
Figure 17: Experimental prototype  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18: Experimental results for increasing and decreasing DC link voltage for two 
different load conditions (Phase A-RMS voltage of 100 V/div, RMS Supply current of 2 
A/div, time 10 ms/div & Vdc-200 V/div, time-200 m/sec) 

Figs. 18(a) & 18(b) depicts the load current before compensation, source current after 
compensation, and injected current under the increasing of load current. Figs. 18(c) & 
18(d) depicts the load current before compensation, source current after compensation, 
and injected current under the decreasing of load current.  
The effectiveness of the proposed control algorithm has shown in figures. The Fig. 19(a) 
depicts the source voltage and current before compensation in phase A and the Fig. 18(b) 
shows after compensation waveform in phase A. 
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(a) 

  
(b) 

Figure 19: Before and after compensation  

 

(a) 

 

(b) 

Figure 20: THD value before and after compensation 

Fig. 20 clearly shows that the total harmonic distortion (THD) of Is before compensation 
is 26.3% and later it has reduced to 2.2% after compensation. It will show the superior 
performance of the control algorithm employed in the shunt active filter. 

5 Conclusion 
In this paper, the control algorithm of PSOANN is proposed for the SAF, to reduce the 
total harmonic distortion in the source side of the distribution system. The PSOANN 
techniques are employed to find the lower and upper bound values of the PI controller for 
the shunt active filter. It is evident that the simulation and experimental result of dc bus 
voltage response of PSOANN based SAF offers faster convergence rate, high filtering 
capability and superior performance. The multiple test cases are simulated with balanced 
and unbalanced voltage supply are illustrated and evident that the value of the THD is 
reduced for various load conditions. The experimental investigation for the suitability of 
PSOANN optimized control algorithm has been demonstrated for different load 
conditions. The result of this investigation is found to be an apt choice for estimating the 
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gain coefficients of PI control-based Shunt active filter. 
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Appendix A. Nomenclature 
VS1,VS2,VS3 Source voltage 

IS1,IS2,IS3 Source currents 
VMy phase voltage 
Vsy Source voltage 

y denotes the phase 
LHF, RHF, CRF equivalent parameters values of harmonic filters 

IFC Filter current 
Vdc DC link capacitor voltage 
Idc Capacitor current 

Cdc Shunt Capacitor 
VNF voltage between the neutral and active filter 

Cs switching functions 
Ss and Ss’ Switches of the inverter 

qmy phase(y) and the switching function 
Vs* Reference voltage 
Id,Iq   Reference current (direct axis and quadrature axis) 

VCHFd,  VCHFq   Reference voltage across the filter 
kv Gain parameter 
N No of particles in the group 
D Dimensions 
T iterations 

( 1)
,
t

k mv +  Velocity of each particle k at iteration t 

c1,c2 Acceleration constant 
rand( ) Random number between 0 and 1 

Vkd Current position of particle at each iteration 
Pbestk Best previous position of kth particle 
Gbestk Best particle in global population 

z(n)NN(out) Network current output  
z(n)NN(tar) Target value of each node 

Δh Change in weight with reference to each output 
N No of data sample  

ypre,i Predicted value 
ymea,i Measured value 

yi Sample data value 
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