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Abstract: The lift force was reported not to be high enough to support the dragonfly’s 
weight during flight in some conventional investigations, and higher lift force is required 
for its takeoff. In this study, by employing a thin plate model, impact effect is investigated 
for the wing deformation in dragonfly flapping during takeoff. The static displacement is 
formulated to compare with the dynamical displacement caused by impact. The governing 
equation of motion for the impact dynamics of a dragonfly wing is derived based on 
Newton’s second law. Separation of variables technique and assumed modes method are 
introduced to solve the resulting equations. Further, lift force is presented for the cases of 
considering and without considering the impact on the wing flapping which indicates that 
the impact has prominent effects for the dragonfly’s aerodynamic performance. Numerical 
simulations demonstrate that considering the impact effect on the wing flapping can 
increase the wing deformation, which results in the rise of the lift force. The enhanced lift 
force is of critical importance for the dragonfly’s takeoff. 
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1 Introduction  
Dragonfly has excellent flying abilities because it can produce and control aerodynamic 
forces through a large variety of wingbeat kinematics. To explain the force production 
during dragonfly’s flight, in the early stage, Weis-Fogh [Weis-Fogh (1973)] proposed two 
mechanisms of lift generation referring to “clap and fling” and “flip” based on a quasi-
steady state model, in which the steady-state forces were assumed to be produced by the 
wing at each instantaneous position. Later on, Azuma et al. [Azuma, Azuma, Watanabe et 
al. (1985)] filmed the steady slow climbing flight of a dragonfly and explored the 
mechanical characteristics of its beating wings. Their results showed that the dragonfly 
performed low speed flight with ordinary airfoil characteristics, instead of adopting an 
abnormally large lift coefficient. Furthermore, Azuma et al. [Azuma and Watanabe (1988)] 
examined a dragonfly in free flight and found that the dragonfly could make steady 
trimmed flight at various flight speeds, from hovering to top speed, without using any novel 
unsteady aerodynamic force generated by a separated flow over the wings.  
Although the early investigations indicated that, based on the observations of wing 
kinematics, steady analysis could explain the lift generation for dragonfly’s flight, Norberg 
[Norberg (1975)] computed the average minimum force coefficients using steady-state 
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aerodynamics and at most only 40% of the upward force needed during hovering could be 
obtained. This concluded that the steady-state aerodynamics was incapable of explaining 
how the dragonfly supported its weight during hovering. Moreover, the required lift 
coefficients based on the quasi-steady state theory were reported to be higher than those 
actually measured [Ellington (1984a)]. Lehmann [Lehmann (2004)] pointed out that 
compared to the predictions from conventional steady-state aerodynamic theory, these 
unsteady aerodynamic mechanisms might account for the majority of total lift produced by 
a flying insect. On the basis of qualitative free- and tethered-flight flow visualization, 
Thomas et al. [Thomas, Taylor, Srygley et al. (2004)] testified the dragonfly’s flight using 
unsteady aerodynamic mechanisms to generate high-lift and leading edge vortices. Besides, 
an alternative lift-generating mechanism was proposed by employing the flow field during 
a complete cycle of the idealized wing motion performed in water and unsteady inviscid 
flow theory, based on which a plausible balance of horizontal forces and more than 
sufficient lift could be obtained [Savage (1979)].  
Quasi-steady and unsteady dynamics are often studied in the hovering motion along a 
horizontal stroke plane where the aerodynamic drag makes no contribution to the vertical 
force. While in the inclined stroke planes, the drag in the down- and upstrokes does not 
cancel each other, which may need to be considered in the computation of dragonfly’s lift 
generation. Sun et al. [Sun and Lan (2004)] analyzed the aerodynamic force generation and 
mechanical power requirements of a dragonfly in hovering flight. They concluded that 
during the hovering with a large stroke plane angle, the dragonfly used drag as a major 
source for its weight supporting force and the vertical force coefficient of a wing was twice 
as large as the quasi-steady value. Wang [Wang (2004)] presented that a dragonfly used 
drag to support about three quarters of its weight during hovering by calculating an 
idealized dragonfly wing motion. Wakeling et al. [Wakeling and Ellington (1997)] 
photographed the free gliding flight of the dragonfly and presented that the maximum lift 
coefficient recorded from these glides was 0.93. However, higher lift coefficient could be 
detected when considering the drag forces since the linear dependence of drag on velocity 
should be included to predict the parasite drag on dragonflies at non-zero body angles. 
Some other researchers studied the influences from the characterized details of the 
dragonfly wings. Combes et al. [Combes and Daniel (2003)] proposed that the 
aerodynamic force production was quite sensitive to subtle changes in the shape of insect 
wings. The highly corrugated dragonfly wings introduce a lightweight structure and 
produce at times higher lift and moderate drag compared to the profiled airfoil [Obata, 
Shinohara, Akimoto et al. (2014); Uppu, Manisha, Devi et al. (2018); Dwivedi and 
Bhargava (2019); Ho, New and Matare (2017)]. Zhao et al. [Zhao, Yin and Zhong (2010)] 
discovered the micro and nano structures and morphologies on the surfaces of the veins of 
dragonfly wings, in which spikes and ripple wave morphologies might contribute 
remarkably to the lift (thrust) mechanisms of dragonflies. Wang et al. [Wang and Zhong 
(2014, 2015, 2018)] presented that blood circulation in the veins of the dragonfly wings 
had a stabilization effect on the system, which supported the dragonfly could achieve active 
control by regulating the distribution of the blood in a dynamic process [Zhao, Yin and 
Zhong (2013)]. Hou et al. [Hou, Yin, Zhong et al. (2015a, b)] proposed a new torsion 
control mechanism generated by blood circulation and investigated the influences on the 
dragonfly wing’s vibration characteristics caused by the blood in veins. Besides, 
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interactions between the fore- and hindwings were also investigated for the lift of dragonfly 
wings. The interactions were first reported to be detrimental to the vertical force generation 
[Sun and Lan (2004)]. However, Usherwood et al. [Usherwood and Lehmann (2008)] 
subsequently proposed that, despite presenting no advantage in terms of lift, flying with 
two pairs of wings could be highly effective at improving aerodynamic efficiency and had 
the ability to control aerodynamic performance by modulating the phase lag between 
forewings and hindwings [Wang and Russell (2007); Maybury and Lehmann (2004); 
Salami, Ward, Montazer et al. (2019)].  
In most previous studies, the dragonfly wings were usually modeled as stiff, flat plates. 
However, more and more investigations presented that some bending and twist in flight 
had large aerodynamic effects [Alexander (2000); Zhu, Zhou, Wang et al. (2014); 
Shumway and Laurence (2019)] and the lift could be increased with a deformation [Du and 
Sun (2008)]. Most of the explorations examined the wing flexibility in aerodynamic 
analysis by solving the Navier-Stokes equations. Nevertheless, accumulated evidences 
from both experimental and theoretical studies proved that inertial deformation 
overshadowed aeroelastic deformation in wing functioning [Daniel and Combes (2002); 
Bergou, Xu and Wang (2007); Hedrick, Combes and Miller (2014)]. On the other hand, 
higher lift force is required for takeoff than hovering [Alexander (1984)] and clap-and-
fling is the most popular lift-generating mechanism in takeoff [Weis-Fogh (1973)]. Most 
of the conventional work detailedly studied the lift-generating in hovering after takeoff, 
while the required high lift force for dragonfly’s takeoff is still lack of investigation. 
Therefore, in this work, impact dynamics is first studied for the dragonfly’s wing flapping 
during takeoff. An impact model is set up and the governing equations of motion for the 
impulse loading and free vibration are formulated, where the rigid body rotation of the 
wing does not considered. Displacements and resulting lift forces considering and without 
considering the impact effect are simulated for comparison.  

2 Static displacement of the cantilever plate  

 

 
 
 
 

Figure 1: Model of a dragonfly wing 

As shown in Fig. 1, wing flapping is modeled as a fixed axis rotation around y -axis during 
the dragonfly’s takeoff, and the wing is modeled by a cantilever thin plate. Based on the 
measurement of Takahashi et al. [Takahashi, Sato, Matsumoto et al. (2014)], the equivalent 
distribution load acting on the plate during the takeoff can be assumed as  

q0 
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( ) 0, xq x y q
l

=   (1) 

where ( ),q x y  is the load per unit area, l  is the length of the plate and 0q  is a constant. 
The equilibrium equation for a thin plate can be expressed as 
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where sw   is the static transverse displacement, 3 2/12(1 )D Eh ν= −  is the flexural 
rigidity of the plate in which E  is the Young’s modulus, ν  is the Poisson’s ratio and h  
is the thickness of the plate. The boundary conditions of the cantilever plate are 
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in which b  is the width of the plate. The two free corners ( ),0l  and ( ),l b  require 

( )
2
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− =
∂ ∂

  (7) 

Solution of Eq. (2) can be expressed as [Chang (1980)]  
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where 

,j i
j L i b
b L
π πα β= =   (9) 

and the coefficients , , ,j i jc b r η  can be obtained from substituting the solution (8) into 
the following boundary conditions equations  
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The resulting equations for obtaining the coefficients can be found in the appendix A. 
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3 Impact dynamics of the cantilever plate 

 
Figure 2: A thin plate subjected to transverse distributed load 

Consider a rectangular thin plate of uniform thickness h   as shown in Fig. 2. The 
( )0xoy z =  plane coincides with the mid-plane of the thin plate. Based on Kirchhoff thin 

plate theory, the governing equation of a thin plate subjected to dynamical load can be 
formulated as [Chu, Wang, Zhong et al. (2014)] 
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where w   is the tranverse displacement of the thin plate, ρ   is the density of the plate and 
( ), ,p x y t   is the dynamical load per unit area, which represents the action force from the 

dragonfly’s wing flapping. When considering the rectangular impulsive load, for 0t t≤  , 

( ) 0, , xp x y t p
l

= , and for 0t t> , ( ), , 0p x y t = . Here 0t  is the action time of impulsive load.  

Based on separation of variables technique [Wang, Hu, Zhong et al. (2009, 2010)], the 
solution of Eq. (11) takes the form 
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where ( ),j x yφ   is the approximation function, and ( )jd t   is the node coefficient. 

Substituting Eq. (12) into Eq. (11), multiplying the equation by ( ),i x yφ  and integrating 
it from 0x =  to l  and 0y =  to b , we obtain the discretized equation of motion 
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The approximation function can be expressed as  
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The initial conditions ( ) ( )0 , 0j jd d  can be obtained as follows 

( )
( ) ( )

( )
0 0

2

0 0

, ,0 , d d
0

, d d

b l

j
j b l

j

w x y x y x y
d

x y x y

φ

φ
= ∫ ∫

∫ ∫
  (20) 

( )
( ) ( )

( )
0 0

2

0 0

, ,0 , d d
0

, d d

b l

j
j b l

j

w x y x y x y
d

x y x y

φ

φ
= ∫ ∫

∫ ∫



   (21) 

When 0t t≤ , the initial conditions are 
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When 0t t> , the initial conditions are 
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where lw  and lv  are generic constants and 1 0t t t= − . 

4 Lift force for the plate 

 

 

 

 

 

Figure 3: Schematic for the flapping of a wing model around a fixed axis 

 

 

 
 

Figure 4: Model of wing flapping 
 

 
Figure 5: Schematic of wing model and incoming flow 

For studying the lift force of the wing, the flapping wing is also modeled by a thin plate as 
shown in Figs. 3 and 4, and a simplified aerodynamic model is used for numerical 
evaluation [Tang, Dowell and Hall (1999); Dardel and Bakhtiari-Nejad (2010); Dimitriadis, 
Giannelis and Vio (2018)]. The verification of this simplified model compared to the 
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experimental data was presented in Bao [Bao (2007)]. The fixed axis and the incoming 
flow are along oy direction. As shown in Fig. 5, 0u  is the velocity of the incoming flow, 
v  is the flapping velocity, u  is the relative velocity of the fluid, and θ  is the angle of 
attack. Based on the Kutta-Jowkowski theorem [Anderson (1989)], the lift for a model 
section can be expressed as 

2
0 0d d sin dL u x bu xρ πρ θ= Γ =   (24) 

where 0ρ   is the fluid density, b   is the chord length of the thin plate, and Γ   is the 
circulation. The component perpendicular to the direction of the flow is 
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The added mass effect originated from the nonuniform motion can be written as [Bao 
(2007)] 
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Eqs. (28) and (29) give the ratio of the lift forces 
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where sL  is the lift force without considering the impact effect and mL  is the maximum 
lift force considering the impact effect. For the wing flapping considering impact influence, 
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5 Numerical simulations 

 

 

 

 

 

 

Figure 6: Rectangular impulse 

Consider a rectangular thin plate subjected to a rectangular impulsive load as shown in Fig. 
6. Span length and chord length of the plate are 0.030 ml =  and 0.009 mb =  , 
respectively. Thickness of the plate is 45 10  mh −= ×  . Density of the plate is 

3 31.2 10 kg mρ = ×  . Young’s modulus is 7.8 GpaE =  and Poisson’s ratio is 0.3ν =  
[Ellington (1984b)]. The density of air is 3

0 1.29 kg mρ = . For comparing the dynamical 
displacement and static displacement, we set 0 0p q= . The initial displacement is =0lw . 

The response to the rectangular impulsive load can be divided into two phase: the first 
phase corresponding to the forced vibration phase in the interval during which the load acts, 
and the second phase corresponding to the free-vibration which follows. During Phase I 
( 0t t≤ ), the system is subjected to the rectangular impulse load as shown in Fig. 6 where 

( ) 0, , xp x y t p
l

=  . During Phase II ( 0t t>  ), the free vibration occurs depending on the 

displacement ( )0w t  and velocity ( )0w t  existing at the end of Phase I. Under different 
impulsive loads, the maximum dynamical displacements and static displacements, tip 
displacements and lift forces for vibrational plate are displayed in Figs 7-9, respectively. 
These demonstrate that maximum dynamical displacements are bigger than the static 
displacements, and when load increases, the dynamical displacement increases which leads 
to the rise of the lift force. Under different loads, the ratios between lift forces considering 
and without considering the impact are shown in Tab. 1. These indicate that the ratio 
decreases with the increase of the load. Under different initial velocities, displacements 
shown in Figs 10 and 11 reveal that higher initial velocity results in higher vibration 
response and bigger lift force can be observed as shown in Fig. 12. The ratios of lift forces 
are further exhibited in Tab. 2. When 0 00.001273 s= 2=0.3159t T T≥  in which 0T  is the 
period of the lift force and T  is the period of the plate vibration, the peak value of the lift 
force corresponding to a given impulsive load 0 5p =  and initial condition 0.02lv =  can 
be obtained. When 0 0.3159t T≤  , the maximum dynamical displacements, tip 
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displacements and lift forces for the free vibration of the plate are presented in Figs. 13-15 
to describe the free vibration after the impulse, respectively. When the time of impulse 0t
increases ( 0 0.3159t T≤  ), the maximum dynamical displacements and lift forces also 
increase. Since T  is quite small for this system, generally, the impulsive loading time can 
exceed 0.3159T  and maximum lift force can be achieved. Therefore, when considering 
the impact effect bigger maximum dynamical displacement and higher lift force can be 
obtained compared to the case without considering the impact. 

  
Figure 7: Comparisons of maximum dynamical displacement and static displacement 
under different loads when 0.02lv =  

  

Figure 8: Tip displacements for vibrational plate under different loads when 0.02lv =  

  

Figure 9: Lift forces for vibrational plate under different loads when 0.02lv =  
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Table 1: Ratio of lift forces under different loads 
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Figure 10: Comparisons of maximum dynamical displacement and static displacement 
under different initial velocities when 0 5p =  

  
Figure 11: Tip displacements for vibrational plate under different initial velocities when

0 5p =  

  

Figure 12: Lift forces for vibrational plate under different initial velocities when 0 5p =  
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Table 2: Ratio of lift forces under different initial velocities 

0 5p =  
0.02lv =  0.1lv =  0.2lv =  

4.0911ξ =  4.4934ξ =  5.5252ξ =  

  
Figure 13: Comparisons of maximum dynamical displacement and static displacement 
under different time of impulse loading when 0 5p = , 0.02lv =  

  
Figure 14: Tip displacements for vibrational plate under different time of impulse loading 
when 0 5p = , 0.02lv =  

  
Figure 15: Lift forces for vibrational plate under different time of impulse loading when

0 5p = , 0.02lv =  

0 0.005 0.01 0.015 0.02 0.025 0.03
x (m)

0

1

2

3

4

5

6

D
is

pl
ac

em
en

t(m
)

10 -6

w
m ( t 0

=0.1250 T)

w
m ( t 0

=0.2500 T)

w
m ( t 0

=0.3159 T)

w
s

0 0.005 0.01 0.015 0.02

t
1

(s)

-1

-0.5

0

0.5

1

1.5

2

Ti
p 

D
is

pl
ac

em
en

t(m
)

10 -5

w
m ( t 0

=0.1250 T)

w
m ( t 0

=0.2500 T)

w
m ( t 0

=0.3159 T)

0 0.005 0.01 0.015 0.02

t
1

(s)

-1

0

1

2

3

L
(N

)

10 -8

w
m ( t 0

=0.1250 T)

w
m ( t 0

=0.2500 T)

w
m ( t 0

=0.3159 T)



 
 
 
902                                            CMES, vol.122, no.3, pp.889-906, 2020 

6 Conclusion 
In this work, impact effect is studied to evaluate the dynamical response for the dragonfly’s 
wing flapping during takeoff. The governing equations of motion for the impulse forced 
vibration and free vibration are formulated. Lift forces are computed based on the 
dynamical displacements. When considering the impact effect during the dragonfly’s wing 
clapping, the response has two phase, in which phase I is corresponding to the forced 
vibration raised by the impulse, and phase II is corresponding to the free vibration raised 
by the initial vibration existing at the end of Phase I. When 0 0 2t T≥ ( 0T  is the period of 
the lift force), the system can achieve maximum lift force, which is several times higher 
than that obtained from the static deformation. When 0 0 2t T< , higher lift force can be 
received with the increase of the impulsive loading time. In general, we may attain 
maximum lift force since the period of the system T   is quite small and 0T T<  . 
Compared to the static displacement and the resulting lift force in the conventional model, 
it can be concluded that the model considering the impact effect in dragonfly’s wing 
clapping during takeoff can get higher lift force for the system.  
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Appendix A 
The resulting equations for obtaining the coefficients , , ,j i jc b r η  in Eq. (8) are expressed 
as follows: 
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