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Abstract: Current research is about the injection of a viscous fluid in the presence of a 
transverse uniform magnetic field to reduce the sliding drag. There is a slip-on both the 
slider and the ground in the two cases, for example, a long porous slider and a circular 
porous slider. By utilizing similarity transformation Navier-Stokes equations are 
converted into coupled equations which are tackled by Integral Transform Method. 
Solutions are obtained for different values of Reynolds numbers, velocity slip, and 
magnetic field. We found that surface slip and Reynolds number has a substantial 
influence on the lift and drag of long and circular sliders, whereas the magnetic effect is 
also noticeable. 
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1 2,β β  Slip factors µ  dynamic viscosity  

τ  Extra stress tensor I  Identity tensor 
p  pressure d  width 
, ,x y z  Space coordinates , ,u v w  Velocity function 

1 2,H H  Slip coefficient 
0v  Constant viscosity 

0B  Magnetic field 
1 2 3, ,ψ ψ ψ  Velocity Components 

η  Similarity variable ρ  Fluid Density 

l  Length d  width 
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1 Introduction 
It is well-established fact that moving body reduces the drag if it is elevated by a layer of 
air. There are different examples such as air-cushioned vehicles and air hockey, which 
reduces the frictional resistance of moving objects. Skalak et al. [Skalak and Wang 
(1975)] were the pioneers to study a three-dimensional flow arising between moving the 
porous flat plate and the ground. In the case of Newtonian fluids, past researches include 
the circular, long and elliptical porous sliders. A large literature is available related to the 
Long Porous Slider (LPS) [Skalak and Wang (1975); Khan, Wu, Faraz et al. (2011); 
Awati and Jyoti (2016); Faraz, Khan, Lu et al. (2019); Sinha and Adamu (2017); Khan, 
Faraz, Yildirim et al. (2011)] and the Circular Porous Slider (CPS) [Faraz (2011); Wang 
(1974, 1978, 2012); Madani, Khan, Mahmodi et al. (2012); Ghoreishi, Ismail and Rashid 
(2012)]. Naeem studied the influence of Reynolds number (R) on the CPS [Faraz (2011)] 
and the LPS [Faraz, Khan, Lu et al. (2019)]. Ghoreishi also studied the CPS [Ghoreishi, 
Ismail and Rashid (2012)]. Madani investigated a CPS by using Homotopy Perturbation 
Method (HPM) and also analyzed the lift and drag [Madani, Khan, Mahmodi et al. 
(2012)]. In a separate study, Khan also studied the effects of Reynolds number by using 
different analytical methods [Khan, Wu, Faraz et al. (2011); Khan, Faraz, Yildirim et al. 
(2011)]. Awati also investigated the lubrication of the LPS by using Homotopy Analysis 
Method (HAM) [Awati and Jyoti (2016)]. 
All the above-mentioned studies were done without slip condition on both the immobile 
ground and slider. Whenever the slip condition is particularly essential for super-
hydrophobic planes. It became/is difficult to have zero mean tangential velocity from 
where the fluid is injected when there is a slip. Furthermore, in order to minimize 
adhesion, the fluid could be a rarefied gas, where compact exterior could be coated with a 
material or the ground could be uneven such that an equivalent slip exists or there is a 
slip flow regime. Wang [Wang (2012)] discussed the slip effects but didn’t consider the 
effects of the transverse magnetic field [Turkyilmazoglu (2016, 2018, 2019a, 2019b)]. As 
the slow movement of a fluid may be characterized by streamlines, indicative of regular, 
orderly motion, called laminar flow. As the flow velocity is increased, or the space 
available made larger, there is a point where any small disturbance is amplified and the 
flow breaks up into turbulence. Then the velocity profile and all the other flow 
characteristics change radically. This is especially familiar in pipe flow, in the transition 
from laminar Poiseuille flow to turbulent flow. The criterion is the dimensionless 
Reynolds number, which indicates the relative importance of inertial and viscous forces. 
A magnetic field may be expected to stabilize a flow against the transition to turbulent 
flow. That is the reason why, cases of the magnetic field normal to the flow, have been 
studied, and the stabilizing effect observed. Experiments have been made that show this 
general result, but they are difficult and quantitatively not very conclusive. Similarly, 
another kind of instability occurs when there is a temperature gradient and a pressure 
gradient in the same direction, such as occurs in the lower atmosphere or in a pot of 
liquid heated on a stove. A magnetic field in the direction of the temperature and pressure 
gradient will hinder the transverse motion essential to convection, and make the 
convective “cells” narrower and less efficient, reducing the rate of energy transfer. 
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Therefore, the goal of the current work is to examine the impact of slip and Reynolds 
number when there is a transverse magnetic field on the performance of the porous slider. 
Literature survey clearly indicates that no solutions have been given for the three-
dimensional flows of this type with slip and a uniform magnetic field. Hence, the goal of 
the current research is to analyze the performance of the porous slider in the presence of 
slip and Reynolds number with a constant magnetic field and to assess their effects on the 
components of velocity lift and drag. 
Structure of the article is arranged as follows: In the introduction, we presented a brief 
history of the problem of the porous slider and its application. In second and third 
sections we discussed the formulation of the problem and the method to be used to solve 
the resulting problems of the long and the CPS. This paper adopted an Integral Transform 
Method (ITM) [Faraz, Khan, Lu et al. (2019)] that comprises both Variation Iteration 
Algorithm-II (VIM-II) and Adomian Decomposition Method (ADM) to reduce the 
computational work. VIM-II is the improved form of Variation Iteration Algorithm-I 
(VIM-I), proposed by Faraz in 2010 [Faraz, Khan and Austin (2010)]. Apparently, the 
final formulation of the proposed method has great symmetry with the existing methods 
such as VIM-I [El-Sayed and El-Mongy (2018); Wazwaz and Kaur (2019)] and ADM 
[Patel and Meher (2016); de Vargas Lisbôa and Marczak (2018); Turkyilmazoglu 
(2019c)] but this method does not need to calculate the Lagrange multiplier separately 
and gives a direct formulation of VIM-II, which avoids the unnecessary calculations, 
which is one of the goals of our study is to introduce a new method based on integral 
transformation to cover the shortcomings of the VIM-I, VIM-II, and ADM for solving 
nonlinear boundary value problems given in Eqs. (7), (8), (9), (12), (28), (29) and (32). 
The LPS solved by Khan et al. in 2011 [Khan, Wu, Faraz et al. (2011); Khan, Faraz, 
Yildirim et al. (2011)] involves unnecessary and repeated calculations. Similarly, section 
four five and six are related to problem formulation and solution of the long and the CPS 
respectively. Section seven is based on results and discussion and finally, the last part is 
the conclusion. 

2 Problem formulation 
As discussed above, in this study we will consider velocity slip condition. Navier 
introduced the slip condition for the first time as follows: 
u Hς=  (1) 
In Eq. (1) tangential velocityu is proportional to the shear stress and tangential velocity 
are directly proportional to each other with H  as the constant of proportionality which is 
actually a slip coefficient. In order to ignore the end effects, it is assumed that the gap 
between slider and ground is quite small as compared to the slider’s lateral dimension. 
We tried to study both the CPS and LPS. 
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(a) (b) 

Figure 1: (a): Schematic diagram of moving the long porous slider; (b): Schematic 
diagram of moving the long circular slider 

We take the incompressible and steady flow of a viscous fluid between a porous (long 
and circular) slider and the ground in the presence of a uniform magnetic field as shown 
in Fig. 1. Length and width are quite big as compared to the width d . The slider moves 
with velocity components and elevated because of injection of fluid from its bottom with 
a magnetic field which is applied externally. In order to avoid the induced magnetic field 
formed by the movement of fluid, it is assumed that the magnetic Reynolds number is not 
very big. Furthermore, the induced and imposed electric field are supposed to be 
negligible, therefore the electromagnetic body force per unit volume simplifies

( )0F v B B,em σ= × ×  where ( )0B= 0,0, B  is the magnetic field. Under the above-stated 
assumptions and conditions, Navier Stokes equations take the following form:                                                 

2 2 2
20
02 2 2

1u u u p u u uu v w B u
x y z x x y z

συ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (2) 

2 2 2
20
02 2 2

1v v v p v v vu v w B v
x y z y x y z

συ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (3) 

2 2 2
20
02 2 2

1w w w p w w wu v w B w
x y z z x y z

συ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (4) 

where ( , , )u v w are the velocity components in Cartesian coordinate ( ), , ,x y z where ρ ,
p and υ are density, pressure and kinematic viscosity respectively. Law of conservation 

of mass is as follows: 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (5) 

The system of equations in a steady, compressible, laminar boundary layer is composed 
of two fundamental equations. Those are the continuity equation and the momentum 
equation. The solutions of these equations, when solved simultaneously for a two-
dimensional boundary layer, are the velocity in the ,x y and z direction ( ), ,u v w . The 
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system of equations is a system of partial differential equations (PDE) and is usually 
difficult to solve. Therefore, sophisticated transformation methods, called similarity 
transformations are introduced to convert the original partial differential equation set to a 
simplified ordinary differential equation (ODE) set. To do so we introduce the following 
similarity transformations [Faraz, Khan, Lu et al. (2019)]. 

( ) ( ) ( )/
1 3 2 3( ), , .Wu U x v V w W

d
ψ η ψ η ψ η ψ η= + = = −  (6) 

where
W
d

η = . By using Eq. (6) into Eqs. (2)-(4), we get the following ordinary 

differential equations 

( )/ / / / / / 2 /
3 3 3 3 3 3
iv R Mψ ψ ψ ψ ψ ψ= − +  (7) 

( )/ / / / 2
1 1 3 3 1 1R Mψ ψ ψ ψ ψ ψ= − +   

 

(8) 

( )/ / / 2
2 1 2 2R Mψ ψ ψ ψ= − +

 
(9) 

where R  is the Reynolds number ( /R Wd υ= ). Boundary conditions at 0z = and 
z d= are given in Eqs. (10) and (11) respectively.  

1 1, , 0u vu U H v V H w
z z

µ µ∂ ∂
= + = + =

∂ ∂
        (10) 

2 2, 0,u vu H v H w W
z z

µ µ∂ ∂
= − = − = = −

∂ ∂
        (11) 

Here 1H , 2H and µ ρυ= are slip coefficients and viscosity respectively. Eqs. (10) and 
(11) gives 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

/ / /
3 1 3 3

/ / /
3 3 2 3

/ /
1 2 1 1 1 1

/ /
2 2 2 2 1 2

0 0 , 0 0,

1 1, 1 1 ,

1 1 , 0 1 0 ,

1 1 , 0 1 0 .

ψ βψ ψ

ψ ψ β ψ

ψ β ψ ψ βψ

ψ β ψ ψ βψ

= = =

= = −

= − − =

= − − =

        (12) 

where 1 1 2 2/ , /H d H dβ µ β µ= = are slip factors. Eqs. (7)-(9) and (12) will be solved 
by using ITM. We can deduce the expression for pressure from Eqs. (2)-(4) as follows: 

2 2
21

2 2
W xp ww A

d z
γ

ρ
Λ ∂

− = + − +
∂

        (13) 

where , AΛ are constants and 

( ) ( )( ) ( )2 2/ / / / / / / / / /
3 3 3 3 3 3

1 10 0 .
R R

ψ ψ ψ ψ ψ ψΛ = − − = −         (14) 
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If we take 2l  as the width of the slider with ambient pressure 0ρ , then Eq. (13) gives 

( )2 2 2

0 2 .
2

W x l
p p

d
ρ
Λ −

− = −         (15) 

The relationship between depth and lift can be expressed as follows: 

( )
1 2 3

0 2
1

2 .
3
W lL p p dx
d

ρ

−

= − = Λ∫         (16) 

where ( )2 3 22 / 3W l dρ  is a normalized factor. The relationship between depth and drag 

in the 1x − direction is 

( )
1

/
1

1

2 1 .x z d

u UlD dx
z d

µµ ψ
=

−

∂
= − = −

∂∫         (17) 

Similarly 2 /Ul dµ  is normalized factor of drag in the x − direction, which is ( )/
1 1ψ−

and for 2x − direction, ( )/
2 1ψ− is a normalized drag: 

( )
1

/
2

1

2 1 .y z d

v VlD dx
z d

µµ ψ
=

−

∂
= − = −

∂∫         (18) 

3 Integral transform method 
Let us assume the general nonlinear second-order differential equation 

( ) ( ) ( )( )/ / /, ,fψ η η ψ η ψ η=  (19) 

with corresponding boundary conditions 

( )
( )

0 0

0 0

:

:

η α ψ α α

η β ψ β β

= =

= =
 (20) 

Integrating Eq. (19) with respect toη from 0α toη twice yields 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
0

/ /
0 0 0 , ,f t d

η

α

ψ η ψ α η α ψ α η ζ ψ ζ ψ η ζ= + − + −∫  (21) 

( ) ( ) ( ) ( ) ( ) ( )( )
0

/ /
0 0 , ,f d

η

α

ψ η α η α ψ α η ζ ζ ψ ζ ψ ζ ζ= + − + −∫  (22) 

By using the second boundary condition we can evaluate ( )/
0ψ α  which is 

( ) ( ) ( ) ( ) ( )( )
0

0

/ /
0 0 0 0 0 , ( ),f d

β

α

ψ β β α β α ψ α β ζ ζ ψ ζ ψ ζ ζ= = + − + −∫  (23) 
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( )
( ) ( ) ( ) ( )( ) ( )

0

0

/ /
0 0

0 0 0 0

1 , ( ),f d
β

α

β α
β ζ ζ ψ ζ ψ ζ ζ ψ α

β α β α
−

− − =
− − ∫  (24) 

Substituting Eqs. (24) into (22) results as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0

0 0

/
0 0

0 0 0 0

1 , ( ) , ,f t dt f d
β η

α α

β α
ψ η α η α β ζ ψ ζ η ζ ζ ψ ζ ψ ζ ζ

β α β α

 −
= + − − − + − 

− −  
∫ ∫  (25) 

( ) ( ) ( ) ( )( )

( ) ( )( )
( )

( )( ) ( )( )
( )

( )( )
( )

0

0

/
0

0
0

0 0

0 0 0 0
0

0 0

0 0
0

0 0

, , ( ),

( , ) ,

,

K f d

K

β

α

ψ η ψ η η ζ ζ ψ ζ ψ ζ ζ

η α β α
ψ η α

β α

η ζ β α η α β ζ
η ζ α ζ η

β α

η α β ζ
η ζ β

β α

= −

− −
= +

−

− − − − −
= < <

−

− −
= < <

−

∫

 (26) 

4 ITM solution for the long porous slider 
Eq. (26) is the standard form of Variation Iteration Method-II [El-Sayed and El-Mongy 
(2018); Wazwaz and Kaur (2019); Faraz and Khan (2012)]. After applying the aforesaid 
method, Eqs. (7) to (9) can be expressed as follows: 

 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

3 1
1 2 2 1 / / / / / /

3 3 3 3 3
11 0

23 3 2
3 22 1 2 1

11 13
11 11 11 11

323
2 2 1

12
11 11

3
3

2 1 3 1 2 2
,

A

1 2 2 1 2
, 1 C 1 C

3! 2A A 3! 2A A

21 C , 0
3! A A 3!

1 C
3!

K R d

K

η β β η β η β
ψ η η ζ ψ ψ ψ ψ ζ

η β ηβ β ηβη η ηη ζ ζ ζ

η ζη β ηβ βηζ ζ η

ηζ

− + + + + +  = + − 

 + +  
= − − − + − − + +   

  

− 
+ − − + + + < < 

 

= −

∫

( ) ( ) ( )

( )

2 3 2
22 1 2 1

11 13
11 11 11 11

23
2 2 1

12
11 11

1 2 2 1 2
1 C

2A A 3! 2A A

21 C , 1
3! A A

η β ηβ β ηβη ηζ

η β ηβ βηζ η ζ

 + +  
− − + − − + +   

  
 

+ − − + + < < 
 

 

(27) 

where 
( )( ) ( ) ( ) ( )2 1 2 1 1

11 12 13 11 1 2 1 2
11 11 11

3 1 2 1 2 2 3 6 3 6
C 1,C ,C ,A 1 4 12

A A A
β β β β β

β β β β
+ + + +

= − = = = + + +  (28) 
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( ) ( )

( ) ( ) ( )

( ) ( )

1
/ /2

1 1 3 3 1
1 2 0

1 2 2

1 2 1 2

1 2 2

1 2 1 2

1 ,
1

1 1
( , ) , 0

1 1
1 1

, 1
1 1

K R d

K

η βψ η η ζ ψ ψ ψ ψ ζ
β β

β ζ β η ζ β
η ζ η ζ ζ η

β β β β
β ζ β η ζ β

η ζ
β β β β

− +  = + − + +

− + − +
= + − − < <

+ + + +

− + − +
= + < <

+ + + +

∫

 (29) 

( ) ( )

( ) ( ) ( )

( ) ( )

1
/2

2 3 2
1 2 0

1 2 2

1 2 1 2

1 2 2

1 2 1 2

1 ,
1

1 1
( , ) , 0

1 1
1 1

, 1
1 1

K R d

K

η βψ η η ζ ψ ψ ζ
β β

β ζ β η ζ β
η ζ η ζ ζ η

β β β β
β ζ β η ζ β

η ζ
β β β β

− +  = −  + +

− + − +
= + − − < <

+ + + +

− + − +
= + < <

+ + + +

∫

 (30) 

Furthermore, we can write Eqs. (27) to (30) in an iteration form as follows  

( ) ( )

( ) ( )( )

( ) ( ) ( ) ( ) ( )

( )

1
/ / / / / /

3, 1 3,0 3, 3, 3, 3,
0

3
1 2 2 1

3,0
11

23 3 2
3 22 1 2 1

11 13
11 11 11 11

23
2 2 1

12
11 11

,

2 1 3 1 2 2
A

1 2 2 1 2
, 1 C 1 C

3! 2A A 3! 2A A

21 C
3! A A

n n n n nK R d

where

K

ψ ψ η ζ ψ ψ ψ ψ ζ

η β β η β η β
ψ

η β ηβ β ηβη η ηη ζ ζ ζ

η β ηβ βηζ

+
 = + − 

− + + + + +
=

 + +  
= − − − + − − + +   

  

 
+ − − + +



∫

( )

( ) ( ) ( ) ( )

( )

3

23 3 2
3 22 1 2 1

11 13
11 11 11 11

23
2 2 1

12
11 11

, 0
3!

1 2 2 1 2
1 C 1 C

3! 2A A 3! 2A A

21 C , 1
3! A A

η ζ
ζ η

η β ηβ β ηβη η ηζ ζ

η β ηβ βηζ η ζ

−
+ < <


 + +  

= − − − + − − + +   
  

 
+ − − + + < < 

 
 

(31) 
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( )

( ) ( ) ( )

( ) ( )

1
/ /

1, 1 1,0 1, 3, 3, 1,
0

2
1,0

1 2

1 2 2

1 2 1 2

1 2 2

1 2 1 2

,

1
1

1 1
( , ) , 0

1 1
1 1

, 1
1 1

n n n n nK d

where

K

ψ ψ η ζ ψ ψ ψ ψ ζ

η βψ
β β
β ζ β η ζ β

η ζ η ζ ζ η
β β β β

β ζ β η ζ β
η ζ

β β β β

+  = + − 

− +
=

+ +

− + − +
= + − − < <

+ + + +

− + − +
= + < <

+ + + +

∫

      
(32) 

( )

( ) ( ) ( )

( ) ( )

1
/

2, 1 2,0 3, 2,
0

2
2,0

1 2

1 2 2

1 2 1 2

1 2 2

1 2 1 2

,

1
1

1 1
( , ) , 0

1 1
1 1

, 1
1 1

n n nK d

where

K

ψ ψ η ζ ψ ψ ζ

η βψ
β β
β ζ β η ζ β

η ζ η ζ ζ η
β β β β

β ζ β η ζ β
η ζ

β β β β

+  = −  

− +
=

+ +

− + − +
= + − − < <

+ + + +

− + − +
= + < <

+ + + +

∫

 (33) 

5 Circular porous slider 
From Fig. 1(b), we can see the circular slider, where L  the radius of the slider which we 
assume comparatively is bigger than the width. Since slider is levitated so we fix our axes 
on the slider such that the ground is moving with a velocity component in x − direction. 
For the circular slider, we use the following similarity transform [Patel and Meher (2016)]. 

( ) ( ) ( )/ /
5 4 4 4( ), , 2 .W Wu U x v y w W

d d
ψ η ψ η ψ η ψ η= + = = −  (34) 

with the help of Eq. (34), Eqs. (2)-(4) takes the following form 
// / 2 /

4 4 4 42 0iv R Mψ ψ ψ ψ− − =  (35) 

( )/ / / 2
5 5 4 4 5 52 0R Mψ ψ ψ ψ ψ ψ− − − =

 
(36) 

3

2 2 2
21 2
3 3,

( ) 1
2 2 x

W x xp x x C
d

γ
ρ

Λ +
− = + − +         (37) 

in which ,CΛ are constants and 
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( )( ) ( )2/ / / /
4 4

10 0 .
R

ψ ψΛ = −         (38) 

the boundary condition is that on 3 0 & :x d=  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

/ / /
4 1 4 4

/ / /
4 4 2 4

/ /
5 2 5 5 1 5

0 0 , 0 0,

1 1/ 2, 1 1 ,

1 1 , 0 1 0 .

ψ βψ ψ

ψ ψ β ψ

ψ β ψ ψ βψ

= = =

= = −

= − − =

        (39) 

To normalize the lift, integrate over the bottom of the slider, as a result, we get the 
normalized factor 2 4 / 4W l dπρ   

( )02 4 3

4 1 .
s

dL p p ds
W l Rπρ

= − = Λ∫∫         (40) 

The relationship between depth and drag in the 1x -direction is 

/
, 52 3

1 (1).x z x
s

dD H ds
Ul R

ψ
πµ

= = −∫∫         (41) 

6 ITM solution for the circular slider 
After applying the aforesaid method, Eqs. (35), (36) and (39) can be expressed as follows: 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

3 1
1 2 2 1 / / /

4 4 4
11 0

23 3 2
3 22 1 2 1

11 13
11 11 11 11

323
2 2 1

12
11 11

23
3

11

2 1 3 1 2 2
, 2

2A

1 2 2 1 2
, 1 C 1 C

3! 2A A 3! 2A A

21 C , 0
3! A A 3!

1 C
3!

K R d

K

η β β η β η β
ψ η η ζ ψ ψ ζ

η β ηβ β ηβη η ηη ζ ζ ζ

η ζη β ηβ βηζ ζ η

ηηζ

− + + + + +
 = + − 

 + +  
= − − − + − − + +   

  

− 
+ − − + + + < < 

 

= − −

∫

( ) ( ) ( )

( )

3 2
22 1 2 1

13
11 11 11 11

23
2 2 1

12
11 11

1 2 2 1 2
1 C

2A A 3! 2A A

21 C , 1
3! A A

β ηβ β ηβη ηζ

η β ηβ βηζ η ζ

 + +  
− + − − + +   

  
 

+ − − + + < < 
 

 

(42) 

where 
( )( ) ( ) ( ) ( )2 1 2 1 1

11 12 13 11 1 2 1 2
11 11 11

3 1 2 1 2 2 3 6 3 6
C 1,C ,C ,A 1 4 12

A A A
β β β β β

β β β β
+ + + +

= − = = = + + +  (43) 
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( ) ( )

( ) ( ) ( )

( ) ( )

1
/ /2

5 4 5 4 5
1 2 0

1 2 2

1 2 1 2

1 2 2

1 2 1 2

1 , 2
1

1 1
( , ) , 0

1 1
1 1

, 1
1 1

K R d

K

η βψ η η ζ ψ ψ ψ ψ ζ
β β

β ζ β η ζ β
η ζ η ζ ζ η

β β β β
β ζ β η ζ β

η ζ
β β β β

− +  = + − + +

− + − +
= + − − < <

+ + + +

− + − +
= + < <

+ + + +

∫

 (44) 

Furthermore, we can write Eqs. (42) and (44) in an iteration form as follows  

( )

( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1
/ / /

4, 1 4,0 4, 4,
0

3
1 2 2 1

4,0
11

23 3 2
3 22 1 2 1

11 13
11 11 11 11

323
2 2 1

12
11 11

, 2

2 1 3 1 2 2
2A

1 2 2 1 2
, 1 C 1 C

3! 2A A 3! 2A A

21 C
3! A A 3!

n n nK R d

where

K

ψ ψ η ζ ψ ψ ζ

η β β η β η β
ψ

η β ηβ β ηβη η ηη ζ ζ ζ

η ζη β ηβ βηζ

+  = + − 

− + + + + +
=

 + +  
= − − − + − − + +   

  

− 
+ − − + + + 

 

∫

( ) ( ) ( ) ( )

( )

23 3 2
3 22 1 2 1

11 13
11 11 11 11

23
2 2 1

12
11 11

, 0

1 2 2 1 2
1 C 1 C

3! 2A A 3! 2A A

21 C , 1
3! A A

ζ η

η β ηβ β ηβη η ηζ ζ

η β ηβ βηζ η ζ

< <

 + +  
= − − − + − − + +   

  
 

+ − − + + < < 
 

 

(45) 

( )

( ) ( ) ( )

( ) ( )

1
/ /

5, 1 0 5, 4, 4, 5,
0

2
5,0

1 2

1 2 2

1 2 1 2

1 2 2

1 2 1 2

, 2

1
1

1 1
( , ) , 0

1 1
1 1

, 1
1 1

n n n n nf K d

where

K

ψ η ζ ψ ψ ψ ψ ζ

η βψ
β β
β ζ β η ζ β

η ζ η ζ ζ η
β β β β

β ζ β η ζ β
η ζ

β β β β

+  = + − 

− +
=

+ +

− + − +
= + − − < <

+ + + +

− + − +
= + < <

+ + + +

∫

 
(46) 

One can use any software to solve Eqs. (40) and (41) by using ITM. In our study, we 
have used MATHEMATICA. 
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7 Results and discussion 
ITM has been applied to compute the solution of the problems given in Eqs. (7)-(9), (12), 
(35), (36), and (39). Obtained solutions have been presented in the form of tables and 
graphs. Tabs. 1 and 2 display the effects of the slip on the dynamic properties of a slider. 

Table 1: Properties of the long porous slider. Normalized lift Λ , normalized 1x −

direction drag, and normalized 2x − direction drag 

    Present    [10]  

1 2,β β  2M  R Λ  /
1 (1)ψ−  /

2 (1)ψ−  R Λ  /
1 (1)ψ−  /

2 (1)ψ−  

0, 0 0 0.2 62.334 0.8962 0.9322 0.2 62.33 0.896 0.932 
- - 0.5 26.341 0.7601 0.8364 0.5 26.34 0.760 0.836 
- - 2.0 8.4123 0.3348 0.4675 2.0 8.412 0.334 0.467 
- - 5.0 4.9172 0.0632 0.1238 5.0 4.917 0.063 0.123 
- - 20 3.2678 0 0 20 3.267 0 0 
- - 50 2.9092 0 0 50 2.909 0 0 

0.1, 0.1 2 0.2 39.27 0.743 0.780 / / / / 
- 4 0.5 16.78 0.626 0.704 / / / / 
- 6 2.0 6.596 0.4372 0.2536 / / / / 
- 10 5.0 3.436 0.3245 0 / / / / 
 20 20.0 2.440 0.1520 0 / / / / 
 50 50.0 2.240 0 0 / / / / 

0.1, 1 2 0.2 20.31 0.424 0.463 / / / / 
- 4 0.5 8.859 0.357 0.436 / / / / 
- 6 2.0 3.159 0.160 0.321 / / / / 
- 10 5.0 2.050 0.035 0.123 / / / / 
 20 20.0 1.513 0 0.0632 / / / / 
 50 50.0 1.391 0 0.012 / / / / 

0.1, 10 2 0.2 5.316 0.064 0.082 / / / / 
- 4 0.5 2.702 0.046 0.080 / / / / 
- 6 2.0 1.413 0.013 0 / / / / 
- 10 5.0 1.175 0.002 0 / / / / 
 20 20.0 1.068 0 0 / / / / 
 50 50.0 1.047 0 0 / / / / 

1, 1 2 0.2 9.727 0.275 0.315 / / / / 
- 4 0.5 4.591 0.210 0.288 / / / / 
- 6 2.0 2.048 0.068 0.172 / / / / 
 10 5.0 1.569 0.011 0.047 / / / / 

 20 20.0 1.355 0 0 / / / / 
 50 50.0 1.315 0 0 / / / / 
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Table 2: Properties of the circular porous slider. Normalized liftΛ , normalized drag
/
5 (1)ψ−  

   Present  [10]  

1 2,β β  2M  R Λ  /
5 (1)ψ−  Λ  /

5 (1)ψ−  

0, 0 0 0.2 30.783 0.9141 30.78 0.914 
- - 0.5 12.793 0.7978 12.79 0.797 
- - 2.0 3.8332 0.3923 3.833 0.392 
- - 5.0 2.0195 0.0852 2.019 0.085 
- - 20 1.3491 0 1.349 0 
- - 50 1.1945 0 1.194 0 

0.1, 0.1 2 0.2 19.33 0.761 / / 
- 4 0.5 8.089 0.663 / / 
- 6 2.0 2.503 0.310 / / 
- 10 5.0 1.445 0.1014 / / 
 20 20.0 0.994 0 / / 
 50 50.0 0.908 0 / / 

0.1, 1 2 0.2 9.853 0.441 / / 
- 4 0.5 4.130 0.394 / / 
- 6 2.0 1.288 0.129 / / 
- 10 5.0 0.752 0.0145 / / 
 20 20.0 0.529 0 / / 
 50 50.0 0.483 0 / / 

0.1, 10 2 0.2 6.438 0.084 / / 
- 4 0.5 2.699 0.076 / / 
- 6 2.0 0.841 0.015 / / 
- 10 5.0 0.488 0 / / 
 20 20.0 0.338 0 / / 
 50 50.0 0.305 0 / / 

1, 1 2 0.2 4.611 0.294 / / 
- 4 0.5 2.043 0.244 / / 
- 6 2.0 0.776 0.0215 / / 
 10 5.0 0.549 0 / / 

 20 20.0 0.466 0 / / 
 50 50.0 0.453 0 / / 

It shows that normalized lift and drag goes down as the slip and/or Reynolds number 
goes up (see Tabs. 1 and 2). The lift (per area) of a strip slider is much greater than the 
circular slider, whenever the drag remains the same in both cases. The effect of slip could 
be substantial, dropping the drag much more than the lift. 
Furthermore, the effects of the transverse magnetic field and Reynolds number on typical 
velocity profile are displayed in Figs. 2 to 23 for the strip and circular slider. From Figs. 2 
to 22, the effects of the transverse magnetic field and Reynolds number can be summed 
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up as follows. For small magnetic field and Reynolds number, the velocity profile is 
almost linear or parabolic. In case of the large magnetic field and Reynolds number, a 
boundary layer occurs near the ground. 

  
Figure 2: Similarity function /

3ψ  for no-
slip 

Figure 3: Similarity function 2ψ  for no-slip 

  
Figure 4: Similarity function 1ψ  for no-
slip 

Figure 5: Similarity function /
3ψ  with slip 

  
Figure 6: Similarity function 2ψ  with 
slip 

Figure 7: Similarity function 1ψ  with slip 
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Figure 8: Similarity function /

3ψ  with 
slip 

Figure 9: Similarity function 2ψ  with slip 

  
Figure 10: Similarity function 1ψ with 
slip 

Figure 11: Similarity function /
3ψ with slip 

  
Figure 12: Similarity function 1ψ  with 
slip 

Figure 13: Similarity function /
3ψ with slip 
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Figure 14: Similarity function /

4ψ with 
no-slip 

Figure 15: Similarity function 5ψ with slip 

  
Figure 16: Similarity function /

4ψ  with 
slip 

Figure 17: Similarity function 5ψ with slip 

  
Figure 18: Similarity function /

4ψ  with 
slip 

Figure 19: Similarity function 5ψ  with slip 
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Figure 20: Similarity function /

4ψ  with 
slip 

Figure 21: Similarity function 5ψ  with slip 

  
Figure 22: Similarity function /

4ψ  with 
slip 

Figure 23: Similarity function 5ψ  with slip 

For strip slider, the effect of Reynolds number, in case of slip and the magnetic field is 
shown in Figs. 5 to 13. It is observed that the velocity profile is very much changed. Figs. 
6, 7, 9 and 10, 12 and 13 display that slips near the ground reduce the lateral velocity 
much more than slip on the slider. Moreover, increasing the magnetic parameter 
decreases the lateral velocity components further. Similarly, the effects of Reynolds 
number on typical velocity distribution is displayed in Figs. 14 to 23 for the circular 
slider. The behaviour of velocity profiles is similar for stipe and circular slider in case of 
no-slip (see Figs. 2, 3, 14 & 15). Also, velocity profiles are behaving in a similar fashion 
as stipe slider i.e., parabolic or linear for low Reynolds number and for large Reynolds 
number boundary layer formed near the surface. Figs. 16 to 23 determine the effect of the 
slip parameter on the velocity components corresponding to different values of the 
Reynolds number. These pictorial descriptions demonstrate that velocity profiles decrease 
with an increase in slip parameters and this decrease become even further after applying 
the magnetic field. This is due to the fact that slip hinders the fluid particles and displays 
the motion in the vicinity. 
These results qualitatively agree with expectation since the application of a transverse 
magnetic field normal to the lateral flow directions has a tendency to create a drag-like 
Lorentz force. This force decreases the lateral velocity components. Lift and drag 
components are important physical quantities for a porous slider. It is interesting to note 
that the lift is free of translation, but the drag components and depend on the crossflow. 
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The effectiveness of a porous slider can be enhanced by making the ratio of friction force 
to lift smaller. As pointed out by Khan et al. [Khan, Faraz, Yildirim et al. (2011)], porous 
slider should be operated at cross-flow Reynolds number less than unity for optimum 
efficiency. Tab. 1 shows that the fact that porous sliders should be operated at small 
values of still remains valid even when an external uniform magnetic field is applied. 
Moreover, from the optimum efficiency point of view, it is more efficient to move a flat 
slider on a fluid subject to a magnetic field with high intensity. 

8 Conclusions 
In this study, we have compiled different studies altogether. Different researchers have 
analyzed fluid flow on stripe slider, without slip and some were interested only in circular 
slider without slip. Wang presented the comparative study of both stripe and circular 
slider and added velocity slip but did not cover the effects of the magnetic field. We were 
concerned with a theoretical investigation of the steady three-dimensional flow of a 
viscous fluid between a porous slider and ground in the presence of a transverse uniform 
magnetic field with velocity slip. The effects of values physical parameter like Reynolds 
number and magnetic parameter on the lateral velocity profiles, lift and drag components 
were presented in graphical and tabular form in the presence of velocity slip. It is hoped 
that the results of the present study would be useful for the understanding of various 
technological problems related to porous sliders, where magnetic and velocity slip are the 
main physical parameters.  
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