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Abstract: A general and new explicit isogeometric topology optimisation approach with 
moving morphable voids (MMV) is proposed. In this approach, a novel multiresolution 
scheme with two distinct discretisation levels is developed to obtain high-resolution 
designs with a relatively low computational cost. Ersatz material model based on Greville 
abscissae collocation scheme is utilised to represent both the Young’s modulus of the 
material and the density field. Two benchmark examples are tested to illustrate the 
effectiveness of the proposed method. Numerical results show that high-resolution 
designs can be obtained with relatively low computational cost, and the optimisation can 
be significantly improved without introducing additional DOFs. 

Keywords: Isogeometric analysis (IGA), multiresolution, moving morphable voids 
(MMV), topology optimisation. 

1 Introduction 
Topology optimisation (TOP) is a powerful tool aiming at finding the best layout of 
material in a prescribed design domain. Compared with the only size or shape optimisation, 
TOP can provide a conceptual design for a product without a priori assumption of structural 
configuration and connectivity, and often achieve better performance. Density-based TOP 
approaches, such as the homogenization method [Bendsoe and Kikuchi (1988)], SIMP 
method [Bendsøe and Sigmund (2004)], ESO/BESO method [Huang and Xie (2007)], has 
been successfully applied to various structural design problems [Wang, Arabnejad, Tanzer 
et al. (2018)]. The topology in Density-based TOP approaches is represented by the 
material distribution via discretised cells with reasonable resolution. When utilising these 
methods, some vital numerical issues have gained much concern, such as grey transition 
regions and mesh dependency. In order to overcome these issues, nodal based implicit 
schemes are proposed. The most representative approaches are projection method [Guest, 
Prévost and Belytschko (2004)] and level set method(LSM) [Wang, Wang and Guo (2003); 
Allaire, Jouve and Toader (2004)]. Parameterised level set method [Wei, Li, Li et al. 
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(2018); Liu, Li, Wei et al. (2018)] is also popular in TOP community since it could tackle 
re-initialisation and avoid solving the Hamilton-Jacobi equation. Heaviside projection 
and level set function are employed to generate crisp and smooth structural boundaries. 
However, both the density-based method and the implicit method are not consistent with 
modern computer-aided-design (CAD) modelling systems. To tackle this problem, Guo et 
al. [Guo, Zhang and Zhong (2014)] developed a kind of Lagrangian approaches named 
Moving Morphable Components (MMC) method [Zhang, Zhang and Guo (2016)], which 
adopt a number of structural components with explicit geometry descriptions as 
fundamental building blocks of optimisation. Since complex topological shapes and 
boundaries are rigorously represented by parameterised geometries [Van Miegroet and 
Duysinx (2007)] and Boolean operations [Burla and Kumar (2008)], it could reduce 
problem dependency and the computational burden [Dunning (2017)], and allow for a 
relative high flexibility [Deng and Chen (2016)], deformability [Bujny, Aulig, Olhofer et 
al. (2017)] and smooth boundaries. This idea has also been investigated to realize the 
size, shape and topology optimisation together for truss structures [Wei, Ma and Wang 
(2014)].  Besides, Norato and his colleagues also developed a similar explicit topology 
optimisation method, which is called the geometric projection method [Norato, Bell and 
Tortorelli (2015); Zhang, Norato, Gain et al. (2016)]. MMC method has gained much 
attention in most recent years, and interested readers could refer to Du et al. [Du and Zhu 
(2019); Zhang, Li, Zhang et al. (2016); Wang, Long, Hoang et al. (2018)] for the 
application of MMC in various design problems. 
As the dual method of MMC, the Moving Morphable Voids (MMV) [Zhang, Yang, Zhou 
et al. (2017)] method is also proposed to do topology optimisation. The structure 
boundaries in MMV method are parameterised with closed B-spline curves (CBS) 
[Zhang, Zhao, Gao et al. (2017)], and the topology change can also be implemented 
through boundary variation and void insert/merge. MMV has been successfully applied in 
additive manufacturing-oriented design [Liu, Du, Zhang et al. (2017)], boundary dependent 
problem [Zhou, Zhang and Zhu (2019)] and geometrically nonlinear problem [Xue, Liu, 
Zhang et al. (2019)]. When the explicit description is utilised, both MMC and MMV are 
capable of describing the geometry clearly with a small number of design variables. 
Since the topology description model is fully decoupled with the FEA model, special 
attention should be paid to take advantage of the explicit boundaries. Actually, several 
effective schemes have been proposed to handle clear boundaries and cut elements. The 
most representative approaches are Finite Cell Method and the extended Finite Element 
Methods [Wei, Wang and Xing (2010)]. They have been utilised in the boundary 
sensitive scenarios like the stress problems [Zhang, Li, Zhou et al. (2018)]. Both of the 
two methods rely on the partition of sub-elements and adaptive integration to identify the 
discontinuity inside the cut elements. Recently, the multi-resolution scheme [Nguyen, 
Paulino, Song et al. (2010)] has also been introduced to the MMC-based approach to get 
high-resolution optimisation results with sufficient small size geometry features. The 
basic idea behind this is to use the independent functional spaces for structural analysis 
and the description of material distribution. Following this idea, Wang et al. [Wang, 
Kang and He (2013)] and He et al. [He, Kang and Wang (2014)] have successfully 
improved the computational accuracy and the geometrical description quality of design 
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boundaries with adaptive refinement, the geometrically nonlinear topology optimisation 
is also achieved with meshless analysis. 
IGA is a computational approach proposed by Hughes et al. [Hughes, Cottrell and 
Bazilevs (2005)]. The aim of IGA is to employ the same basis functions (e.g., NURBS) 
to bridge the gap between FEA and computer-aided design (CAD) [Cottrell, Hughes and 
Bazilevs (2009)]. Comparing with FEA, IGA is capable of eliminating geometry errors 
from mesh discretisation and solving problems that require high-order derivative of 
variables. Besides, it requires much fewer DOFs for an analysis. 
As an ideal alternative for FEM, IGA has received great attention from researchers in the 
field of shape optimisation [Wang, Abdalla and Turteltaub (2017); Wang, Turteltaub and 
Abdalla (2017)] and topology optimisation [Wang, Wang, Xia et al. (2018)]. For density-
based methods, Kumar et al. [Kumar and Parthasarathy (2011)] and Qian et al. [Qian 
(2013)] used high-order B-spline basis functions to form the density of FEM elements. 
Hassani et al. [Hassani, Khanzadi and Tavakkoli (2012)] employed NURBS to 
approximate the density field. Dedè et al. [Dedè, Borden and Hughes (2012)] combined 
IGA with a phase-field model. Liu et al. [Liu, Yang, Hao et al. (2018)] utilised the 
isogeometric topology optimisation (ITO) to solve stress constrained problems. Gao et al. 
[Gao, Gao, Luo et al. (2019)] enhanced the smoothness and continuity with Shepard 
function and high-order NURBS basis functions. To accelerate the computation, Wang et 
al. [Wang, Liao, Ye et al. (2020)] proposed a high-efficiency ITO scheme, which takes 
full use of three methods: multilevel mesh, MGCG, and local-update strategy. Regarding 
LSM, Wang first carried out ITO under LSM scheme [Wang and Benson (2016a, 
2016b)]. Lately, the GPU parallel strategy was also introduced to accelerate the 
optimisation [Xia, Wang, Wang et al. (2017)]. Different optimisation problems 
[Ghasemi, Park and Rabczuk (2017); Jahangiry and Tavakkoli (2017)] were also 
considered with LSM-ITO approach. IGA has also been successfully combined with 
MMC [Hou, Gai, Zhu et al. (2017); Xie, Wang, Xu et al. (2018)]. Moreover, the 
aforementioned MTOP scheme also shows its merits when applied to IGA [Lieu and Lee 
(2017b)]. The IGA-MTOP scheme also shows effectiveness in optimising multi-material 
structures [Lieu and Lee (2017a)] and spatially graded hierarchical structures [Xu, Wang 
and Xie (2019)]. Although IGA-MTOP shows excellent performance, it has only been 
applied in density-based methods. An extension with ersatz material model needs to be 
made to use multiresolution IGA in the explicit topology optimisation scheme.  
In this work, a general and new explicit isogeometric MMV optimisation (IGA-TOP-
MMV) method is proposed, where the ersatz material model and Greville abscissae 
collocation scheme are utilised to combine IGA with MMV-TOP. To ensure the 
optimisation can be significantly improved without fine analysis mesh, a multiresolution 
optimisation scheme is suggested under the proposed explicit isogeometric MMV 
framework. Thus, topological geometry with explicit boundaries can be identified by 
high-resolution material mesh. Benefitting from this scheme, we can obtain high-
resolution designs with a relatively low computational cost. 
The remainder of this paper is organized as follows: Section 2 gives a brief introduction 
to the MMV-based TO with CBS, NURBS basis and a general formulation of ITO-
MMV. Section 3 presents the IGA-MTOP-MMV based design framework and its 
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combination with the ersatz material model. Sections 4 provides two benchmark cases. 
Finally, Section 5 draws a conclusion. 

2 Theoretical basis 
2.1 MMV-based TO 
As described in Guo et al. [Guo, Zhang and Zhong (2014); Zhang, Zhang and Guo 
(2016)], unlike the traditional topology optimisation method where continuous structures 
are represented by element densities (in SIMP and evolutionary structural optimisation 
approach) or nodal values of a level set function, the geometry components or voids 
based method was recently developed to solving the topology optimisation in an explicit 
and geometrical way. For the two-dimensional structures in MMV method, the voids are 
formulated with a set of parametrised closed curves iC  (i=1, …, nv). They are allowed to 
move, deform, overlap and merge in the design domain freely. Optimised structural 
topology is obtained by changing the positions and evolving the boundaries of these voids. 

2.1.1 Geometric description of moving morphable voids 
Here the parameterised topology description function (TDF) is used to describe the shape 
and topology of moving morphable void. For example, the TDF iT  of the i-th void can be 
expressed as  

( )
( )
( )
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i i
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   (1) 

where D denotes the fixed design domain, Ω and ∂Ω are the sub-domain occupied by the 
embedded hole and its boundary.  
For a design domain involving n  voids, the TDF of the whole structure can be expressed 
according to the Boolean operations of all the voids: 
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where 
1

n
v

k
k=

Ω = Ω


 represents the region occupied by voids.  This means that, if a point x 

lies inside one of MMVs, then the corresponding value of TDF will be less than zero. If a 
point x is located at the boundary of one of MMVs, then the corresponding value of TDF 
will be equal to zero. If a point x is outside MMVs, then the corresponding value of TDF 
will be greater than zero. 
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Figure 1: Topology defined by moving morphable voids 

In this work, the closed B-spline (CBS) curve is adopted to parameterise the boundary of 
voids. A CBS defined in the polar form can be defined as  
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= ∑    (4) 

 i is the index of the CBS, j is the index of a knot of the CBS. i
jr  is the distance parameter 

for the control points j in the i-th CBS, which is also considered as the design variable of 
the optimisation. Control points are restricted along the equally spaced radial direction 
with respect to the central point ( ),i ix y . θ in polar coordinate is computed in Cartesian 
coordinate by 
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The corresponding B-spline basis functions ,B j p  of degree p in Eq. (4) are defined with 
the recursive averaging formula [Piegl and Tiller (2013)]: 
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  (6) 

Thus, the parameterised TDF of arbitrary point ( ),x y for the i-th void can be expressed as 

( ) ( )( ) ( ), , ,penal penal
i i iT x y C x y D x yθ= −    (7) 

where ( ) ( )2 2
i i iD x x y y= − + − . penal  is a penalty parameter, which is set to be 1penal =  

in our implementation. For example, the centre of the void 4Ω  is 4O , the regularised signed 
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distance of point A and B are ( )4 , 0A AT x y <   and ( )4 , 0B BT x y > , as shown in Fig. 1. 

In order to guarantee the smoothness and unified continuity of the closed curve, the 
periodic closed B-spline curves (PCBS), also named unclamped closed B-spline curves 
[Yoely, Amir and Hanniel (2018)], are suggested [Du, Yao, Zhao et al. (2019)]. 

 
 

(a) (b) 

Figure 2: Illustration of Cubic PCBS with Control points iP  

Fig. 3 shows the difference between the clamped CBS and unclamped PCBS. The knot 
vectors in PCBS are periodically repeated before and after the original knot span, then 
periodic behaviour can be achieved through the repeat of the basis function. Thus, the 
periodic B-spline satisfy the following condition: 

( ) ( )p p
i i nB Bξ ξ+=    (8) 

For illustration purpose, Fig. 2, shows a mapping relation of a cubic PCBS from 
Cartesian coordinate Orθ  to xOy , where the figure on the left is the cubic PCBS in the 
Cartesian coordinate system xOy , the figure on the right is the cubic PCBS in the 
Cartesian coordinate system Orθ . By differentiating Eq. (7) with respect to distance 
design variable jd , the derivative of iT  with respect to jr  gives 
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(a) (b) 

  
(c) (d) 

Figure 3: Univariate basis functions and their derivatives for clamped and unclamped 
B-spline 

2.1.2 Problem formulation based on MMV 
Generally, the topology optimisation problem under MMV-based solution framework can 
be stated as follows: 
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where { }1, , , ,i i i i i
nx y r r=Z  , 1, ,i nv=   is the vector of design variables describing the 

TDF of the i-th PCBS void, ,i ix y  are the coordinates of void centre, i
jr  is the distance 

parameter of the void. ( )Obj Z  is the objective function which evaluates the structural 
performance, UZ  is the admissible set of the design vector Z . jg  are the constraint 
functions. 
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To ensure the optimisation problem can be solved by using gradient-based optimisation 
algorithms like the method of moving asymptotes (MMA) [Svanberg (1987)], the 
minimum Boolean operation in Eq. (2) needs to be smoothly approximated by an 
envelope function like KS function [Li, Li, Gao et al. (2015)], R function [Xie, Wang, Xu et 
al. (2018)] and p-norm [Zhang, Zhou and Zhu (2017)]. In the present work, the following 
well-known KS function is used. Thus, the minimum of T  in Eq. (2) can be approximated 
with T : 

( )( )
1

1 ln j i
nv k T

j
T e

k
⋅ −

=

  = −   
  

∑    (11) 

where k  is the control number, set to be 40 in this work. nv  is number of voids as stated 
in Eq. (10). 

2.2 IGA for structural analysis 
Here we use NURBS-based IGA for structural analysis. In IGA, the given geometry and 
the unknown solution space are represented by the same NURBS basis functions. 
This concise introduction starts from the well-known Cox-de Boor recursion formula 
described in Eq. (6). To keep consistency with conventional denotation in IGA, we use the 
parametric coordinates ξ  and η  instead of polar coordinates θ  in Eq. (6). By introducing a 
positive weight iw  to each B-spline basis function, a NURBS basis function is defined as 
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By employing the tensor product of univariate basis functions ( )p
iB ξ  and ( )q

jB η  in 

two parametric dimensions ξ  and η  corresponding to two knot vectors 
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The bivariate rational basis functions for a NURBS surface are then given as 
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It is noted that the continuity and support of NURBS basis function are the same as for B-
splines. Furthermore, when all the weights of control points have an equal positive 
constant value, the NURBS basis functions degenerate into the B-splines functions.  
A NURBS surface is a bivariate piecewise rational function of the form: 
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where ,i jP  are the control points.  

3 IGA-MTOP-MMV design framework 
3.1 IGA-MTOP scheme 
The classic ersatz material approach has been widely applied in many TO frameworks 
with immersed boundaries. This method is only applicable when the mesh is fine enough, 
because the mesh cannot recognise the structural features smaller than the mesh width. 
For example, in the top row of Fig. 4, three distinct structural patterns are identified the 
same in a coarse background mesh, because ersatz material property can be seen as the 
average of the element nodes and the differences of the three patterns are contained inside 
the elements. In such a circumstance, the background does not have enough resolution to 
distinguish the geometry features of three structural patterns. This could be a very 
noticeable problem, especially, the explicit description of MMV is totally decoupled from 
the background mesh, and is able to produce arbitrary small features. So, in MMV-TOP 
scheme, there is a demand for high resolution of the geometry [Liu, Zhu, Sun et al. (2018)]. 
When the background mesh is further refined, as shown in the bottom row of Fig. 4, the 
sub-elements (material elements) with the dashed line are capable of identifying the 
structural details. However, the fine mesh also means a large scale equilibrium equation, 
which is an obstacle of the computing efficiency. Thus, a multiresolution scheme is 
proposed to sense the material distribution with high-resolution without introducing 
DOFs to keep the computational cost at a relatively low level. Since the fine mesh is only 
used to identify the material distribution, and the analysis is still implemented on the 
coarse mesh, the multiresolution scheme does not enlarge the scale of the discretised 
equilibrium equation. 

 
(a) (b) (c) 

Figure 4: Identification of structural details in multiscale scheme 

Zoom in  
Analysis Element i 

Material Element j 
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3.1.1 Space discretisation 
The critical point of the multiresolution scheme is that one should make sure that the 
difference between the different high-resolution designs obtained using such schemes can 
be observed in the analysis results. To implement IGA-MTOP, a further variable 
parameter space is introduced to identify material distribution constructed with MMV. 
The same number of elements discretised for the analysis is again used in this space. To 
efficiently obtain high-resolution designs, each element is subdivided into ns ms×  
subelements in the 𝜉𝜉 and 𝜂𝜂 directions, respectively. These subelements are called material 
elements hereafter in this article. An illustration of the analysis mesh and material mesh 
under the IGA-MTOP scheme is illustrated in Fig. 5. These functions can be easily 
obtained using the k-refinement strategy in the IGA, which has detailed in Hughes et al. 
[Hughes, Cottrell and Bazilevs (2005)]. 

3.1.2 Representation of material distribution 
In order to represent the material distribution with refined material elements, the 
collocation scheme [Xie, Wang, Xu et al. (2018)] is utilised in this research. Specifically, 
Greville abscissae is adopted to identify the element density of the material elements with 
the ersatz material model. The j-th background element in the i-th analysis element is 
denoted as element (i, j), as shown in Fig. 4(b). The Young’s modulus and density of 
each material element can be calculated as  
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in which, ,i j
coln  and icol  are the number and index of the collocation points, 0E  is 

Young’s modulus of the solid material, ( ),i j
icolH T  is the regularized Heaviside value of 

icol-th collocation point, 2reg =  is the regularised parameter. ,i j
icolT  is TDF of the 

collocation point, which can be calculated with  
It is approximated with the following formula: 
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  (18) 

In Eq. (18), ε  is a small positive parameter, which ensures the nonsingularity of the 
global stiffness matrix. The level of regularization is controlled by the parameter h . 
The Greville abscissae for each material elements can be constructed with the refined 
knot vectors. For a degree-p NURBS with n  control points and a length of 1n p+ +  
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knot vector { }1 2 1, , , n pξ ξ ξ + +Ξ =  , the Greville abscissae can be defined as 

( )1 2
1

i i i i pp
ζ ξ ξ ξ+ + += + + +    (19) 

 
Figure 5: Distinct meshes for analysis and material in IGA-MTOP scheme 

The stiffness contribution of each sub-element towards its analysis element can thus be 
calculated as 
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where ,i jΩ  is the j-th sub-domain of the i-th element, as shown in Fig. 5(d). J  is the 
index of the Gaussian integration points, Jw  is the weight. ,i j

gpN  is the number of 

Gaussian points, which can be calculated as ( )( ), 1 1i j
gp p qN = + + . J  is the Jacobian 

determinant of the geometry mapping. iB is the element strain-displacement matrix 
composed of the basis derivatives of the i-th analysis element: 
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I  is the index of control points on the analysis mesh. ,i jD  is the constitutive matrix, 
which is defined as 
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D    (22) 

The Young’s modulus ,i jE  is calculated from Eq. (16). Since the Gaussian quadrature of 
each material elements can be calculated and stored before the optimisation in the linear 
problems, the computation cost is considerably saved. 

3.2 Sensitivity analysis 
For simplicity, the compliance minimization under a volume constraint is solved in this 
article. The discrete equilibrium equation is reformulated as 

1

nel
i

i=
= =∑KU K U F    (23) 

in which K , U  and F are the global stiffness matrix, the displacement vector and 
external force vector, respectively. nel  is the number of analysis elements, iK is the 
stiffness matrix of i-th analysis element, it equals to the sum of the stiffness of all 
material elements (shown in Figs. 5(d) and 5(c)): 

,
ns ms

i i j

j

×

= ∑K K    (24) 

The objective function for the compliance minimisation can be stated as 

1

nel
T i
i i

i
C

=

=∑U K U    (25) 

Furthermore, the sensitivity of the structural compliance with respect to a design variable 
d  can be expressed as 

1

inel
T
i i

i

C
d d=

∂ ∂
= −

∂ ∂∑ KU U    (26) 

here d represent the coordinates of centres or the control radius. The derivation of i-th 
element stiffness matrix iK with respect to a design variable d , namely i d∂ ∂K in Eq. 
(26), can be obtained according to Eqs. (16) and (24) as 
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The sensitivity of the volume can also be expressed: 
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4 Numerical experiments 
In this section, two numerical examples in 2D are provided to demonstrate the 
effectiveness and efficiency of the developed IGA-MTOP-MMV based design 
framework. First, the material description ability of the multiresolution scheme is 
validated, to find out whether detailed geometry features can be recognised by finer 
mesh. Then, a classic topology optimisation test example is employed to figure out the 
effectiveness of the proposed multiresolution isogeometric topology optimisation method 
based on moving morphable voids. 

4.1 Material field sensing test 
The multiresolution scheme in this research is proposed to sense the distribution of 
material more accurately. Thus, the experiment in this section is arranged to test the 
representing ability of the material mesh with different resolution. 

  
(a) (b) 

Figure 6: Material distribution of the design domain 

As shown in Fig. 6(a), the design domain is quarter annulus that removes a rectangle and 
a circle, where the quarter is initially constructed by 9 control points (Fig. 6(a)). The 
positions of the rectangular and circular hole in the design domain are depicted in Fig. 6(b). 
The goal of this example is to approximate the material field as close as possible with 
different material mesh. The collocation points are used to collocate the material field. 
The material distribution is visualised in Figs. 7(a)-7(d). The material interface is also 
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contoured to compare with the original material-remove area illustrated in Figs. 7(e)-7(h). 
As can be observed in (e), the 32×32 mesh can generate a sufficiently good 
approximation of a circle area. However, it cannot approximate the rectangle well. When 
the resolution is increased, the approximation is also improved. The 64×64 mesh 
coincides most of the boundary with the rectangle except for the sharp corner. As for 
128×128 and 256×256, they are capable of fitting the material field very well. 

    

(a) 32×32 (b) 64×64 (c) 128×128 (d) 256×256 

    

(e) 32×32 (f) 64×64 (g) 128×128 (h) 256×256 

Figure 7: Approximation of the material field with different mesh 

It can be observed that finer meshes can describe the material distribution more precisely, 
which verifies our expectation. In the next subsection, the refined material mesh is 
utilised in the optimisation with MMV. 

4.2 Quarter annulus 
In this section, a quarter annulus with unit concentrated load and the boundary conditions 
are defined in Fig. 8(a), and two indices r and R are set as 5 and 10, respectively. All 
physical quantities are assumed to be dimensionless. The Young’s moduli and Poisson's 
ratio for solid material are set to be 1 and 0.3, respectively. The thickness of the plate is 
also defined as 1. Its 64×64 IGA mesh is shown in Fig. 8(b). The degrees are set to 

3p q= = , and the number of Gaussian points for each material element is 16. The 
maximum material volume fraction is set as 40%. 
In order to show the influence of the resolution, the analysis mesh is refined 0, 1 and 2 
times, resulting in the material mesh of 64×64, 128×128 and 256×256, respectively. For 
the convenience of observation, the PCBS are visualised with red curves. The initial 
layout of 25 voids is shown in Fig. 9(a). Each PCBS representing a void is constructed by 
14 control points. 
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(a) (b) 

Figure 8: Quarter annulus: isogeometric analysis (IGA) elements 64×64 

The optimisation results are shown and compared in Tab. 1. All three design cases can 
converge to clear topologies, which demonstrates the effectiveness of the presented 
optimisation method based on MMV. 

Table 1: The optimised design of quarter annulus in three cases 

Material 
Mesh 64×64 128×128 256×256 

Optimised 
topology 

   

Obj 80.008 73.679 72.225 

Time/ 
Iteration 3.831 s 4.14 s 4.826 s 

Num of 
iteration 293 257 200 

Due to the limited resolution, the 64×64 meshes generates a very coarse boundary and the 
largest compliance. The 128×128 mesh can achieve visible improvement in the objective 
and the smoothness of the boundaries, which shows the effectiveness of the proposed 
scheme. The 256×256 mesh further produces a structure with more details and the best 
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objectives among the three cases. All the cases share the same number of design variables 
and the same amount of analysis elements. No significant differences are found in the 
computation time of the MMA optimisation and the most time-consuming part of the 
IGA for the three cases. The difference lies in the calculation of TDF values and their 
derivatives of the collocation points. The 128×128 mesh case consumes the largest 
elapsed time, which takes only 25.97% more than the 64×64 mesh case. This example 
shows that the design can be significantly improved without refining the analysis mesh, 
just by using high-resolution material mesh. 
We do not try higher resolution, because there is a bound for the improvement of 
resolution. Detailed derivation and discussion about this bound can be referred in Gupta 
et al. [Gupta, van der Veen, Aragón et al. (2017)]. 

   

(a) Iter 0 (b) Iter 15 (c) Iter 30 

   

(d) Iter 60 (e) Iter 90 (f) Iter 120 

Figure 9: The intermediate structures during the optimisation 

The iteration process of structural topology for 128×128 mesh case is also visualised in 
Fig. 9 to give an insight into the optimisation process. 
It is seen that, from the beginning to the 30th iteration, these voids expand a little to fulfil the 
volume constraints. The dominant behaviour of the voids is the movement of the centres: 
they move to find the advantageous location. From the Iter60, the layout of the voids does 
not change very much, and the structure evolves mainly through the change of boundaries.  



 
 
 
Multiresolution Isogeometric Topology Optimisation                                        1135 

Due to the explicit representation of the boundary, the void boundary can be easily 
generated, and can then be further merged and smoothed. By utilising the algorithm 
explained in Du et al. [Du, Yao, Zhao et al. (2019)], the CAD friendly boundary can be 
obtained. Take the optimised results of 128×128 mesh case for example. Fig. 10(a) is the 
original optimised structure, Fig. 10(b) is the smoothed structure. Fig. 10(c) converts the 
intersected PCBS into continuous closed curves, which ensures every single hole in the 
structure can be represented by a single smoothed void. 

5 Conclusions 
In this work, an MMV-based approach for IGA-MTOP scheme has been proposed. 
Firstly, the IGA is successfully applied in the MMV based method, which is helpful to 
the integration of TO and CAD. Secondly, the multiresolution scheme brings benefits to 
the efficiency and optimality of the optimisation. In the MTOP scheme, material mesh 
and the analysis mesh are separated. A fine material mesh is utilised to sense the material 
distribution more accurately, which is able to further release the advantages of the 
explicit nature of geometry description in the MMV-based solution framework. Since the 
analysis is still performed on the coarse mesh, high-resolution designs can be optimised 
with relatively low computational. The numerical examples also show that high 
resolution and more details can be obtained without introducing additional DOFs, which 
guarantees the efficiency of the scheme. The multiresolution IGA scheme is not only 
useful in MMV approach but also can be extended to MMC and level set methods which 
rely on the TDF value to describe the distribution of material. 

   

(a) (b) (c) 

Figure 10: Illustration of boundary smoothing for 128×128 case 

Although the proposed scheme shows some merits, there are still many works to be done 
in the future. Firstly, the MMV method is still initial dependent, including the number, 
position and shape of the initial voids. A new MMV scheme which automatically 
introduces new holes to the design domain is expected. Secondly, it is also worthy to 
combine the adaptive scheme with MMV to solve the boundary sensitive problems, e.g., 
stress constrained problems. Moreover, the method should be tested more in the 3D 
scenario, which makes it more applicable in practical issues. 

 



 
 
 
1136                                                                                  CMES, vol.122, no.3, pp.1119-1140, 2020 

Acknowledgement: The authors would like to thank Professor Krister Svanberg at KTH 
in Stockholm for providing the implementation of MMA. This work was supported in 
part by National Natural Science Foundation of China under Grant Nos. 51675525 and 
11725211. 

Conflict of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 

References 
Allaire, G.; Jouve, F.; Toader, A. M. (2004): Structural optimisation using sensitivity 
analysis and a level-set method. Journal of Computational Physics, vol. 194, no. 1, pp. 
363-393. 
Bendsoe, M. P.; Kikuchi, N. (1988): Generating optimal topologies in structural design 
using a homogenization method. Computer Methods in Applied Mechanics & 
Engineering, vol. 71, no. 2, pp. 197-224. 
Bendsøe, M. P.; Sigmund, O. (2004): Topology optimisation: theory, methods, and 
applications: Springer Berlin Heidelberg, Berlin, Heidelberg. 
Bujny, M.; Aulig, N.; Olhofer, M.; Duddeck, F. (2017): Evolutionary level set method 
for crashworthiness topology optimisation. ECCOMAS Congress 2016. pp. 309-322. 
Burla, R. K.; Kumar, A. V. (2008): Implicit boundary method for analysis using 
uniform B-spline basis and structured grid. International Journal for Numerical Methods 
in Engineering, vol. 76, no. 13, pp. 1993-2028. 
Cottrell, J. A.; Hughes, T. J. R.; Bazilevs, Y. (2009): Isogeometric analysis: toward 
integration of CAD and FEA: John Wiley & Sons. 
Dedè, L.; Borden, M. J.; Hughes, T. J. R (2012): Isogeometric analysis for topology 
optimisation with a phase field model. Archives of Computational Methods in 
Engineering, vol. 19, no. 3, pp. 427-465. 
Deng, J.; Chen, W. (2016): Design for structural flexibility using connected morphable 
components based topology optimisation. Science China Technological Sciences, vol. 59, 
no. 6, pp. 839-851. 
Du, B.; Yao, W.; Zhao, Y.; Chen, X. (2019): A moving morphable voids approach for 
topology optimisation with closed B-splines. Journal of Mechanical Design, 
Transactions of the ASME, vol. 141, no. 8, pp. 1-39. 
Du, X.; Zhu, F. (2019): A novel principal components analysis (PCA) method for energy 
absorbing structural design enhanced by data mining. Advances in Engineering Software, 
vol. 127, pp. 17-27. 
Dunning, P. D. (2017): Design parameterization for topology optimisation by 
intersection of an implicit function. Computer Methods in Applied Mechanics & 
Engineering, vol. 317, pp. 993-1011. 
Gao, J.; Gao, L.; Luo, Z.; Li, P. (2019): Isogeometric topology optimisation for 
continuum structures using density distribution function. International Journal for 
Numerical Methods in Engineering, vol. 119, no. 10, pp. 991-1017. 



 
 
 
Multiresolution Isogeometric Topology Optimisation                                        1137 

Ghasemi, H.; Park, H. S.; Rabczuk, T. (2017): A level-set based IGA formulation for 
topology optimisation of flexoelectric materials. Computer Methods in Applied 
Mechanics & Engineering, vol. 313, pp. 239-258. 
Guest, J. K.; Prévost, J. H.; Belytschko, T. (2004): Achieving minimum length scale in 
topology optimisation using nodal design variables and projection functions. 
International Journal for Numerical Methods in Engineering, vol. 61, no. 2, pp. 238-254. 
Guo, X.; Zhang, W.; Zhong, W. (2014): Doing topology optimisation explicitly and 
geometrically-a new moving morphable components based framework. Journal of 
Applied Mechanics, vol. 81, no. 8, pp. 81009. 
Gupta, D. K.; van der Veen, G. J.; Aragón, A. M.; Langelaar, M.; van Keulen, F. 
(2017): Bounds for decoupled design and analysis discretisations in topology 
optimisation. International Journal for Numerical Methods in Engineering, vol. 111, no. 
1, pp. 88-100. 
Hassani, B.; Khanzadi, M.; Tavakkoli, S. M. (2012): An isogeometrical approach to 
structural topology optimisation by optimality criteria. Structural and Multidisciplinary 
Optimisation, vol. 45, no. 2, pp. 223-233. 
He, Q.; Kang, Z.; Wang, Y. (2014): A topology optimisation method for geometrically 
nonlinear structures with meshless analysis and independent density field interpolation. 
Computational Mechanics, vol. 54, no. 3, pp. 629-644. 
Hou, W.; Gai, Y.; Zhu, X.; Wang, X.; Zhao, C. et al. (2017): Explicit isogeometric 
topology optimisation using moving morphable components. Computer Methods in 
Applied Mechanics & Engineering, vol. 326, pp. 694-712. 
Huang, X.; Xie, Y. M. (2007): Convergent and mesh-independent solutions for the bi-
directional evolutionary structural optimisation method. Finite Elements in Analysis and 
Design, vol. 43, no. 14, pp. 1039-1049. 
Hughes, T. J. R.; Cottrell, J. A.; Bazilevs, Y. (2005): Isogeometric analysis: CAD, 
finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in 
Applied Mechanics & Engineering, vol. 194, no. 39-41, pp. 4135-4195. 
Jahangiry, H. A.; Tavakkoli, S. M. (2017): An isogeometrical approach to structural 
level set topology optimisation. Computer Methods in Applied Mechanics & Engineering, 
vol. 319, pp. 240-257. 
Kumar, A. V.; Parthasarathy, A. (2011): Topology optimisation using B-spline finite 
elements. Structural and Multidisciplinary Optimisation, vol. 44, no. 4, pp. 471-481. 
Li, H.; Li, P.; Gao, L.; Zhang, L.; Wu, T. (2015): A level set method for topological 
shape optimisation of 3D structures with extrusion constraints. Computer Methods in 
Applied Mechanics & Engineering, vol. 283, pp. 615-635. 
Lieu, Q. X.; Lee, J. (2017a): A multi-resolution approach for multi-material topology 
optimisation based on isogeometric analysis. Computer Methods in Applied Mechanics & 
Engineering, vol. 323, pp. 272-302. 
Lieu, Q. X.; Lee, J. (2017b): Multiresolution topology optimisation using isogeometric 
analysis. International Journal for Numerical Methods in Engineering, vol. 112, no. 13, 
pp. 2025-2047. 



 
 
 
1138                                                                                  CMES, vol.122, no.3, pp.1119-1140, 2020 

Liu, C.; Du, Z.; Zhang, W.; Zhu, Y.; Guo, X. (2017): Additive manufacturing-oriented 
design of graded lattice structures through explicit topology optimisation. Journal of 
Applied Mechanics, Transactions ASME, vol. 84, no. 8, 081008. 
Liu, Y.; Li, Z.; Wei, P.; Wang, W. (2018): Parameterised level-set based topology 
optimisation method considering symmetry and pattern repetition constraints. Computer 
Methods in Applied Mechanics & Engineering, vol. 340, pp. 1079-1101. 
Liu, H.; Yang, D.; Hao, P.; Zhu, X. (2018): Isogeometric analysis based topology 
optimisation design with global stress constraint. Computer Methods in Applied 
Mechanics & Engineering, vol. 342, pp. 625-652. 
Liu, C.; Zhu, Y.; Sun, Z.; Li, D.; Du, Z. et al. (2018): An efficient moving morphable 
component (MMC)-based approach for multi-resolution topology optimisation. 
Structural and Multidisciplinary Optimisation, vol. 58, no. 6, pp. 2455-2479. 
Van Miegroet, L.; Duysinx, P. (2007): Stress concentration minimization of 2D filets 
using X-FEM and level set description. Structural and Multidisciplinary Optimisation, 
vol. 33, no. 4-5, pp. 425-438. 
Nguyen, T. H.; Paulino, G. H.; Song, J.; Le, C. H. (2010): A computational paradigm 
for multiresolution topology optimisation (MTOP). Structural and Multidisciplinary 
Optimisation, vol. 41, no. 4, pp. 525-539. 
Norato, J. A.; Bell, B. K.; Tortorelli, D. A. (2015): A geometry projection method for 
continuum-based topology optimisation with discrete elements. Computer Methods in 
Applied Mechanics & Engineering, vol. 293, pp. 306-327. 
Piegl, L.; Tiller, W. (2013): The NURBS Book. Springer Berlin Heidelberg, Berlin, 
Heidelberg. 
Qian, X. (2013): Topology optimisation in B-spline space. Computer Methods in Applied 
Mechanics & Engineering, vol. 265, pp. 15-35. 
Svanberg, K. (1987): The method of moving asymptotes-a new method for structural 
optimisation. International Journal for Numerical Methods in Engineering, vol. 24, no. 2, 
pp. 359-373. 
Wang, Z. P.; Abdalla, M.; Turteltaub, S. (2017): Normalization approaches for the 
descent search direction in isogeometric shape optimisation. CAD Computer Aided 
Design, vol. 82, pp. 68-78. 
Wang, Y.; Arabnejad, S.; Tanzer, M.; Pasini, D. (2018): Hip implant design with 
three-dimensional porous architecture of optimized graded density. Journal of 
Mechanical Design, vol. 140, no. 11, pp. 111406. 
Wang, Y.; Benson, D. J. (2016a): Geometrically constrained isogeometric parameterised 
level-set based topology optimisation via trimmed elements. Frontiers of Mechanical 
Engineering, vol. 11, no. 4, pp. 328-343. 
Wang, Y.; Benson, D. J. (2016b): Isogeometric analysis for parameterised LSM-based 
structural topology optimisation. Computational Mechanics, vol. 57, no. 1, pp. 19-35. 
Wang, Y.; Kang, Z.; He, Q. (2013): An adaptive refinement approach for topology 
optimisation based on separated density field description. Computers & Structures, vol. 
117, no. Supplement C, pp. 10-22. 



 
 
 
Multiresolution Isogeometric Topology Optimisation                                        1139 

Wang, Y.; Liao, Z.; Ye, M.; Zhang, Y.; Li, W. et al. (2020): An efficient isogeometric 
topology optimisation using multilevel mesh, MGCG and local-update strategy. 
Advances in Engineering Software, vol. 139, pp. 102733. 
Wang, X.; Long, K.; Hoang, V. N.; Hu, P. (2018): An explicit optimisation model for 
integrated layout design of planar multi-component systems using moving morphable 
bars. Computer Methods in Applied Mechanics & Engineering, vol. 342, pp. 46-70. 
Wang, Z. P.; Turteltaub, S.; Abdalla, M. (2017): Shape optimisation and optimal 
control for transient heat conduction problems using an isogeometric approach. 
Computers & Structures, vol. 185, pp. 59-74. 
Wang, M. Y.; Wang, X.; Guo, D. (2003): A level set method for structural topology 
optimisation. Computer Methods in Applied Mechanics & Engineering, vol. 192, no. 1-2, 
pp. 227-246. 
Wang, Y.; Wang, Z.; Xia, Z.; Poh, L. H. (2018): Structural design optimisation using 
isogeometric analysis: a comprehensive review. Computer Modeling in Engineering & 
Sciences, vol. 117, no. 3, pp. 455-507. 
Wei, P.; Li, Z.; Li, X.; Wang, M. Y. (2018): An 88-line MATLAB code for the 
parameterised level set method based topology optimisation using radial basis functions. 
Structural and Multidisciplinary Optimisation, vol. 58, no. 2, pp. 831-849. 
Wei, P.; Ma, H.; Wang, M. Y. (2014): The stiffness spreading method for layout 
optimisation of truss structures. Structural and Multidisciplinary Optimisation, vol. 49, 
no. 4, pp. 667-682. 
Wei, P.; Wang, M. Y.; Xing, X. (2010): A study on X-FEM in continuum structural 
optimisation using a level set model. Computer-Aided Design, vol. 42, no. 8, pp. 708-719. 
Xia, Z.; Wang, Y.; Wang, Q.; Mei, C. (2017): GPU parallel strategy for parameterised 
LSM-based topology optimisation using isogeometric analysis. Structural and 
Multidisciplinary Optimisation, vol. 56, no. 2, pp. 413-434. 
Xie, X.; Wang, S.; Xu, M.; Wang, Y. (2018): A new isogeometric topology 
optimisation using moving morphable components based on R-functions and collocation 
schemes. Computer Methods in Applied Mechanics & Engineering, vol. 339, pp. 61-90. 
Xu, M.; Wang, S.; Xie, X. (2019): Level set-based isogeometric topology optimisation 
for maximizing fundamental eigenfrequency. Frontiers of Mechanical Engineering, vol. 
14, no. 2, pp. 222-234. 
Xue, R.; Liu, C.; Zhang, W.; Zhu, Y.; Tang, S. et al. (2019): Explicit structural 
topology optimisation under finite deformation via Moving Morphable Void (MMV) 
approach. Computer Methods in Applied Mechanics & Engineering, vol. 344, pp. 798-818. 
Yoely, Y. M.; Amir, O.; Hanniel, I. (2018): Topology and shape optimisation with 
explicit geometric constraints using a spline-based representation and a fixed grid. 
Procedia Manufacturing, vol. 21, pp. 189-196. 
Zhang, W.; Li, D.; Zhang, J.; Xu, G. (2016): Minimum length scale control in 
structural topology optimisation based on the Moving Morphable Components (MMC) 
approach. Computer Methods in Applied Mechanics & Engineering, vol. 311, no. August, 
pp. 327-355. 



 
 
 
1140                                                                                  CMES, vol.122, no.3, pp.1119-1140, 2020 

Zhang, W.; Li, D.; Zhou, J.; Du, Z.; Li, B. et al. (2018): A moving morphable void 
(MMV)-based explicit approach for topology optimisation considering stress constraints. 
Computer Methods in Applied Mechanics & Engineering, vol. 334, pp. 381-413. 
Zhang, S.; Norato, J. A.; Gain, A. L.; Lyu, N. (2016): A geometry projection method 
for the topology optimisation of plate structures. Structural and Multidisciplinary 
Optimisation, vol. 54, no. 5, pp. 1-18. 
Zhang, W.; Yang, W.; Zhou, J.; Li, D.; Guo, X. (2017): Structural topology 
optimisation through explicit boundary evolution. Journal of Applied Mechanics, 
Transactions ASME, vol. 84, no. 1. 
Zhang, W.; Zhang, J.; Guo, X. (2016): Lagrangian description based topology 
optimisation-a revival of shape optimisation. Journal of Applied Mechanics, vol. 83, no. 
4, pp. 41010. 
Zhang, W.; Zhao, L.; Gao, T.; Cai, S. (2017): Topology optimisation with closed B-
splines and Boolean operations. Computer Methods in Applied Mechanics & 
Engineering, vol. 315, pp. 652-670. 
Zhang, W.; Zhou, Y.; Zhu, J. (2017): A comprehensive study of feature definitions 
with solids and voids for topology optimisation. Computer Methods in Applied 
Mechanics & Engineering, vol. 325, pp. 289-313. 
Zhou, Y.; Zhang, W.; Zhu, J. (2019): Concurrent shape and topology optimisation 
involving design-dependent pressure loads using implicit B-spline curves. International 
Journal for Numerical Methods in Engineering, vol. 118, no. 9, pp. 495-518. 
 


	Multiresolution Isogeometric Topology Optimisation Using Moving Morphable Voids
	Bingxiao Du0F , Yong Zhao1, *, Wen Yao2, Xuan Wang3 and Senlin Huo1

	Conflict of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.
	References

