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A Numerical Algorithm Based on Quadratic Finite Element for
Two-Dimensional Nonlinear Time Fractional Thermal Diffusion

Model
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Abstract: In this article, a high-order scheme, which is formulated by combining the
quadratic finite element method in space with a second-order time discrete scheme, is
developed for looking for the numerical solution of a two-dimensional nonlinear time
fractional thermal diffusion model. The time Caputo fractional derivative is approximated
by using the L2-1σ formula, the first-order derivative and nonlinear term are discretized
by some second-order approximation formulas, and the quadratic finite element is used to
approximate the spatial direction. The error accuracy O(h3 + ∆t2) is obtained, which is
verified by the numerical results.

Keywords: Quadratic finite element, two-dimensional nonlinear time fractional thermal
diffusion model, L2-1σ formula.

1 Introduction
Fractional differential equations (FDEs) are important mathematical models, which can be
applied widely in sciences and engineering, such as physics, mechanics, biology, medicine,
control theory signal and image processing. So, many scholars studied their analytical
and numerical solutions. The advantage of FDEs compared with integer order differential
equations is that they can better simulate some physical processes and dynamic system
processes in nature. However most of FDEs are difficult to solve or the analytical solutions
are so complex that can not be expressed by simple functions. Therefore the study of
numerical methods for FDEs is meaningful in practice.
Up to now numerical methods for FDEs based on different definitions of fractional
derivatives include Riemann-Liouville fractional derivative [Liu, Liu, Li et al. (2018); Li,
Zhang and Zhang (2018); Wang and Du (2013); Zeng, Li, Liu et al. (2013); Abbaszadeh
and Dehghan (2015); Meerschaert and Tadjeran (2004); Liu, Zhang, Li et al. (2016); Wang,
Liu, Li et al. (2016); Liu, Du, Li et al. (2019)], Riesz fractional derivative [Feng, Zhuang,
Liu et al. (2015, 2016); Yin, Liu, Li et al. (2019); Cheng, Duan and Li (2019)], Grümwald-
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Letnikov fractional derivative [Li, Huang and Lin (2011)] and Caputo fractional derivative 
[Liu, Du, Li et al. (2015a,b); Zhao, Zhang, Liu et al. (2016); Chen and Li (2017); Liu, 
Yu, Li et al. (2018); Yuste and Quintana-Murillo (2012); Liu, Zheng, Chen et al. (2018); 
Heydari, Hooshmandasl and Mohammadi (2014); Vong, Lyu and Wang (2016); Zhang, 
Sun and Wu (2011); Feng, Liu and Turner (2019); Li, Wu and Zhang (2019); Liao, Yan 
and Zhang (2019); Lyu and Vong (2018)], and so forth. In this article, we consider the 
nonlinear time fractional thermal diffusion model with the Caputo fractional derivative. 
Several approximation formulas have been developed for this fractional derivative. In Sun 
et al. [Sun and Wu (2006); Lin and Xu (2007)], the L1 method was proposed with the 
convergence order (2 − α) (0 < α < 1). In Gao et al. [Gao, Sun and Sun (2015)], Gao et 
al. proposed the L1-2 formula to approximate the Caputo fractional derivative. According 
to the idea of the literature [Gao, Sun and Sun (2015)], Alikhanov [Alikhanov (2015)] 
constructed an L2-1σ formula to approximate the Caputo fractional derivative with error 
accuracy O(τ3−α).
In our study we develop the quadratic finite e lement method with t he L 2-1σ formula to 
solve the following two-dimensional nonlinear time fractional thermal diffusion model

∂u

∂t
− ∂α4u

∂tα
−4u = f(u) + g(x, t), (x, t) ∈ Ω× J, (1)

with the boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω× J̄ , (2)

and the initial condition

u(x, 0) = u0(x), x ∈ Ω, (3)

where x = (x1, x2) ∈ Ω ⊂ R2, J = (0, T ], T ∈ (0,+∞), 4u = ∂2u
∂x2

1
+ ∂2u

∂x2
2
, f(u) is a

nonlinear term, and ∂αw(x,t)
∂tα is defined by the following Caputo fractional derivative

∂αw(x, t)
∂tα

=
1

Γ(1− α)

∫ t

0

∂w(x, τ)

∂τ

dτ

(t− τ)α
, 0 < α < 1. (4)

We note that the quadratic finite element method has a higher error accuracy O(h3)
compared with the linear finite element method. And for the temporal direction, we
apply the L2-1σ formula to the Caputo fractional derivative which has convergence order
3 − α, and use some second-order approximation formulas for the first-order derivative
and nonlinear term at tn−α

2
. Therefore, the error accuracy O(h3 + ∆t2) of the scheme is

desired.
The rest of the paper is structured as follows. In Section 2, we present the fully discrete
scheme of the equation by the quadratic finite element method in spatial direction and
the L2-1σ as well as some second-order formulas in temporal direction. For clarity, we
offer the algorithm of our method in detail and the fully discrete scheme in matrix form
is formulated. In Section 3, we conduct three numerical experiments and analyse the
numerical results which confirms the efficiency of our scheme. In Section 4, we summarize
the applied method and results of this paper.



A Numerical Algorithm Based on Quadratic Finite Element 1083

2 Temporal approximation formula and quadratic finite element method
2.1 Temporal approximation formula

We divide the time interval [0, T ] into N equal parts with mesh length ∆t = T/N ,
0 = t0 < t1 < t2 < · · · < tN = T , and tn = n∆t(n = 0, 1, 2, · · · , N). Next we give the
following lemmas about approximations for nonlinear term and fractional derivative, and
give specific algorithm steps.

Lemma 2.1. [Gao, Sun and Sun (2015); Wang, Liu, Li et al. (2016)] Assume z(t) ∈
C3[0, T ]. The following second-order formula for approximating the time first-order
derivative at time tn−α

2
holds,

Case 1: n = 1,
∂z

∂t
(t1−α

2
) =

1

∆t
(z1 − z0) +O(∆t), (5)

Case 2: n ≥ 2,
∂z

∂t
(tn−α

2
) =

1

2∆t

[
(3− α)zn − (4− 2α)zn−1 + (1− α)zn−2

]
+O(∆t2). (6)

Lemma 2.2. [Wang, Liu, Li et al. (2016)] Assume f(t) and g(t) both belong to the space
C2[0, T ]. The following second-order formulas for approximating the source term and the
nonlinear term at time tn−α

2
holds,

g(tn−α

2
) = (1− α

2
)gn + (

α

2
)gn−1 +O(∆t2) = gn−

α

2 +O(∆t2), (7)

f(z(tn−α

2
)) = (2− α

2
)f(zn−1)− (1− α

2
)f(zn−2) +O(∆t2)

= f(zn−
α

2 ) +O(∆t2).
(8)

Lemma 2.3. [Alikhanov (2015)] Assuming z(t) ∈ C3[0, T ], the following L2-1σ formula
for approximating the time Caputo fractional derivative at time tn−α

2
holds,

∂αz

∂tα
(tn−α

2
) =

∆t−α

Γ(2− α)

[
c

(n)
0 zn −

n−1∑
j=1

(c
(n)
n−j−1 − c

(n)
n−j)z

j − c(n)
n−1z

0

]
+O(∆t3−α), (9)

where for the case n = 1, denote

c
(1)
0 = a0, (10)

and for the case n ≥ 2, denote

c(n)
q =

 a0 + b1, q = 0,
aq + bq−1 − bq, 1 ≤ q ≤ n− 2,
aq − bq, q = n− 1.

(11)

where

a0 = (1− α

2
)1−α, ap = (p+ 1− α

2
)1−α − (p− α

2
)1−α, p ≥ 1, (12)

bp =
1

2− α

[
(p+1−α

2
)2−α−(p−α

2
)2−α

]
−1

2

[
(p+1−α

2
)1−α+(p−α

2
)1−α

]
, p ≥ 1. (13)
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According to lemmas 2.1-2.3, we get the following time discrete formulation of Eq. (1) at
time tn−α

2

Case 1: n = 1,

1

∆t
(u1 − u0)− c

(1)
0 ∆t−α

Γ(2− α)
(∆u1 −∆u0)−∆u1−α

2 = f(u0) + g1−α

2 +R1−α

2 , (14)

Case 2: n ≥ 2,

1

2∆t

[
(3− α)un − (4− 2α)un−1 + (1− α)un−2

]
− ∆t−α

Γ(2− α)

[
c

(n)
0 ∆un −

n−1∑
j=1

(c
(n)
n−j−1

− c(n)
n−j)∆u

j − c(n)
n−1∆u0

]
−∆un−

α

2 = f(un−
α

2 ) + gn−
α

2 +Rn−
α

2 .

(15)

Further, we have the weak formulation as follows:
Case 1: n = 1,(
u1 − u0

∆t
, v

)
+
c

(1)
0 ∆t−α

Γ(2− α)
(∇u1 −∇u0,∇v) + (∇u1−α

2 ,∇v)

= (f(u0), v) + (g1−α

2 , v) + (R1−α

2 , v),∀v ∈ H1
0 ,

(16)

Case 2: n ≥ 2,(
1

2∆t

[
(3− α)un − (4− 2α)un−1 + (1− α)un−2

]
, v

)
+

∆t−α

Γ(2− α)

([
c

(n)
0 ∇u

n −
n−1∑
j=1

(c
(n)
n−j−1 − c

(n)
n−j)∇u

j − c(n)
n−1∇u

0

]
,∇v

)
+ (∇un−

α

2 ,∇v)

= (f(un−
α

2 ), v) + (gn−
α

2 , v) + (Rn−
α

2 , v),∀v ∈ H1
0 .

(17)

By choosing a finite element space Vh ⊂ H1
0 , and assuming the solution satisfies u ∈

C([0, T ];H3(Ω) ∩ H1
0 (Ω)) ∩ C3([0, T ];L2(Ω)), we can get the following fully discrete

system
Case 1: n = 1,(

1

∆t
(u1
h − u0

h), vh

)
+
c

(1)
0 ∆t−α

Γ(2− α)
(∇u1

h −∇u0
h,∇vh) + (1− α

2
)(∇u1

h,∇vh)

+
α

2
(∇u0

h,∇vh) = (f(u0
h), vh) + (1− α

2
)(g1, vh) +

α

2
(g0, vh),∀vh ∈ Vh,

(18)
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Case 2: n ≥ 2,(
1

2∆t

[
(3− α)unh − (4− 2α)un−1

h + (1− α)un−2
h

]
, vh

)
+

∆t−α

Γ(2− α)

([
c

(n)
0 ∇u

n
h −

n−1∑
j=1

(c
(n)
n−j−1 − c

(n)
n−j)∇u

j
h − c

(n)
n−1∇u

0
h

]
,∇vh

)
+ (1− α

2
)(∇unh,∇vh) +

α

2
(∇un−1

h ,∇vh) = (2− α

2
)(f(un−1

h ), vh)

− (1− α

2
)(f(un−2

h ), vh) + (1− α

2
)(gn, vh) +

α

2
(gn−1, vh),∀vh ∈ Vh.

(19)

Simplify the process (18)-(19) to arrive at
Case 1: n = 1,

(u1
h, vh) +

(
c

(1)
0 ∆t1−α

Γ(2− α)
+ ∆t(1− α

2
)

)
(∇u1

h,∇vh) = ∆t(f(u0
h), vh)

+ ∆t(1− α

2
)(g1, vh) + ∆t

α

2
(g0, vh) + (u0

h, vh)−∆t
α

2
(∇u0

h,∇vh),∀vh ∈ Vh,
(20)

Case 2: n ≥ 2,

(
(3− α)unh, vh

)
+

(
2c

(n)
0 ∆t1−α

Γ(2− α)
+ 2∆t(1− α

2
)

)
(∇unh,∇vh) = 2∆t(2− α

2
)

(f(un−1
h ), vh)− 2∆t(1− α

2
)(f(un−2

h ), vh) + 2∆t(1− α

2
)(gn, vh) + ∆tα(gn−1, vh)

+
(
(4− 2α)un−1

h − (1− α)un−2
h , vh

)
+

2∆t1−α

Γ(2− α)

([ n−1∑
j=1

(c
(n)
n−j−1 + c

(n)
n−j)∇u

j
h

− c(n)
n−1∇u

0
h

]
,∇vh

)
−∆tα(∇un−1

h ,∇vh), ∀vh ∈ Vh.

(21)

For the finite element system (20)-(21), we can consider the stability and error estimate in
the future. Here, we merely carry out the numerical calculation for the Eq. (1). To obtain a
higher order convergence rate in space, we apply quadratic finite element method to the 2D
nonlinear time fractional thermal diffusion model, which is seldom explored by scholars.

2.2 Quadratic finite element method

For the 2D model defined by (1), let Ω = (I1, I2)2 ⊂ R2, J = (0, T ]. The space domain Ω
is triangulated into shape regular and qusi-uniform partitions with the number of triangles
denoted as M . Since positions of these triangles are different, they can be classified by
e(I), e(II) as Fig. 1. For any quadratic triangular element e = 4P1P2P3, we denote three
vertices of the triangle e as P1, P2, P3, and the midpoints on the three sides as P4, P5, P6,
see Fig. 2.
Then the interpolation on the triangle e is performed by using quadratic polynomial and
the six coefficients of the bivariate complete polynomial L(x, y) = a1x

2 + a2xy+ a3y
2 +
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a4x + a5y + a6 are determined by the quadratic triangular element. By using the shape
functions Ni(x, y)(1 ≤ i ≤ 6), the bivariate polynomial can be expressed as L(x, y) =∑6

i=1(LiNi(x, y)) where Li = L(Pi).

Figure 1: Triangulation

Figure 2: Affine mapping

For simplicity, we make the affine mapping to transform the element e on the (x, y) plane
into the standard element ê on the (λ1, λ2) plane, as is illustrated in Fig. 2, such that{
λ1 = 1

2∆e
(m1x+m2y +m3),

λ2 = 1
2∆e

(n1x+ n2y + n3),
(22)

where

m1 =

∣∣∣∣y2 1
y3 1

∣∣∣∣ , m2 = −
∣∣∣∣x2 1
x3 1

∣∣∣∣, m3 =

∣∣∣∣x2 y2

x3 y3

∣∣∣∣ ,
n1 =

∣∣∣∣y3 1
y1 1

∣∣∣∣ , n2 = −
∣∣∣∣x3 1
x1 1

∣∣∣∣, n3 =

∣∣∣∣x3 y3

x1 y1

∣∣∣∣ , (23)

CMES, vol.122, no.3, pp.1081-1098, 2020
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and ∆e denotes the area of triangle e defined by

∆e =
1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣. (24)

With the transform (22), the shape functions Ni(x, y)(1 ≤ i ≤ 6) can be converted to the
following forms, for λ1 + λ2 + λ3 = 1,

N̂1(λ1, λ2, λ3) = λ1(2λ1 − 1), N̂2(λ1, λ2, λ3) = λ2(2λ2 − 1),

N̂3(λ1, λ2, λ3) = λ3(2λ3 − 1), N̂4(λ1, λ2, λ3) = 4λ2λ3,

N̂5(λ1, λ2, λ3) = 4λ1λ3, N̂6(λ1, λ2, λ3) = 4λ1λ2.

(25)

With the affine mapping, any integral on the element e can be performed on the standard
element ê as follows:∫∫

e
F (x, y)dxdy =

∫∫
ê
F (λ1, λ2)

∣∣∣ ∂(x, y)

∂(λ1, λ2)

∣∣∣dλ1dλ2

= 2∆e

∫ 1

0
dλ1

∫ 1−λ1

0
F (λ1, λ2)dλ2.

(26)

Similarly, we calculate the integrals of Eqs. (20) and (21) by summing integrals on each
triangular element el(1 ≤ l ≤ M), and then, calculate integrals on the standard element ê
by the following formulas∫∫

e
uhvhdxdy = 2∆e

6∑
i=1

vi

6∑
j=1

uj

∫∫
ê
N̂iN̂jdλ1dλ2, (27)

and∫∫
e
∇uh∇vhdxdy = 2∆e

6∑
i=1

vi

6∑
j=1

uj

∫∫
ê

(
∂N̂j

∂x

∂N̂i

∂x
+
∂N̂j

∂y

∂N̂i

∂y

)
dλ1dλ2

=
1

2∆e

6∑
i=1

vi

6∑
j=1

uj

∫∫
ê

[(
m1

∂N̂j

∂λ1
+ n1

∂N̂j

∂λ2

)(
m1

∂N̂i

∂λ1
+ n1

∂N̂i

∂λ2

)

+

(
m2

∂N̂j

∂λ1
+ n2

∂N̂j

∂λ2

)(
m2

∂N̂i

∂λ1
+ n2

∂N̂i

∂λ2

)]
dλ1dλ2.

(28)

To give the matrix form of (20) and (21), we introduce the basis functions of finite space
Vh as N1,N2, · · · ,Nm. Then the numerical solution uh ∈ Vh can be expressed by uh =
(N1,N2, · · · ,Nm)uh, where the vector uh is (u1, u2, · · · , um)T . Now we can rewrite Eqs.
(20) and (21) as:
Case 1: n = 1,

Mu1
h +

[
c

(1)
0 ∆t1−α

Γ(2− α)
+ ∆t(1− α

2
)

]
Au1

h = ∆tMf(u0
h) + ∆tg1 + Mu0

h −∆t
α

2
Au0

h, (29)
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Case 2: n ≥ 2,

(3− α)Munh +

[
2c

(n)
0 ∆t1−α

Γ(2− α)
+ 2∆t(1− α

2
)

]
Aunh = 2∆tM

[
(2− α

2
)f(un−1

h )

− (1− α

2
)f(un−2

h )

]
+ 2∆t

[
(1− α

2
)gn +

α

2
gn−1

]
+ (4− 2α)Mun−1

h − (1− α)Mun−2
h

+
2∆t1−α

Γ(2− α)
A
[ n−1∑
j=1

(c
(n)
n−j−1 + c

(n)
n−j)ujh − c

(n)
n−1u0

h

]
−∆tαAun−1

h ,

(30)

where the stiffness matrix A, mass matrix M and force vector gn are defined by

A =

m∑
i=1

m∑
j=1

∫∫
Ω

(
∂Nj
∂x

∂Ni
∂x

+
∂Nj
∂y

∂Ni
∂y

)
dxdy =

M/2∑
l=1

A
(I)
l +

M∑
l=M/2+1

A
(II)
l , (31)

M =

m∑
i=1

m∑
j=1

∫∫
Ω
NjNidxdy =

M∑
l=1

Ml, (32)

gn =

m∑
i=1

∫∫
Ω
gni Nidxdy, (33)

where A(I)
l , A

(II)
l ,Ml are expanded by the element matrices Ā(I)

l , Ā
(II)
l , M̄l defined as

follows:

Ā
(I)
l =

2(I2 − I1)2

M

6∑
i=1

6∑
j=1

∫∫
e
(I)
l

(
∂Nj

∂x

∂Ni

∂x
+
∂Nj

∂y

∂Ni

∂y

)
dxdy, (34)

Ā
(II)
l =

2(I2 − I1)2

M

6∑
i=1

6∑
j=1

∫∫
e
(II)
l

(
∂Nj

∂x

∂Ni

∂x
+
∂Nj

∂y

∂Ni

∂y

)
dxdy, (35)

M̄l =

6∑
i=1

6∑
j=1

∫∫
el

NjNidxdy, (36)

where Ni(1 ≤ i ≤ 6) are shape functions of the triangle element e. Careful calculation
shows that

Ā
(I)
l = (I2 − I1)2



1
2

1
6 0 0 0 −2

3
1
6 1 1

6 −2
3 0 −2

3
0 1

6
1
2 −2

3 0 0
0 −2

3 −2
3

8
3 −4

3 0
0 0 0 −4

3
8
3 −4

3
−2

3 −2
3 0 0 −4

3
8
3

 , (37)
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Ā
(II)
l = (I2 − I1)2



1
2 0 1

6 0 −2
3 0

0 1
2

1
6 −2

3 0 0
1
6

1
6 1 −2

3 −2
3 0

0 −2
3 −2

3
8
3 0 −4

3
−2

3 0 −2
3 0 8

3 −4
3

0 0 0 −4
3 −4

3
8
3

 , (38)

M̄l =
2

M



1
60 − 1

360 − 1
360 − 1

90 0 0
− 1

360
1
60 − 1

360 0 − 1
90 0

− 1
360 − 1

360
1
60 0 0 − 1

90
− 1

90 0 0 4
45

2
45

2
45

0 − 1
90 0 2

45
4
45

2
45

0 0 − 1
90

2
45

2
45

4
45

 . (39)

Then by the algorithm (29)-(33), we can calculate the numerical solution at each time level
by solving the linearized equations.

3 Numerical tests
In this section, we use the algorithm (29)-(33) to solve three numerical examples. The
errors and orders of convergence are obtained by Matlab programs.

3.1 Example 1

In Eq. (1), we choose the space-time domain Ω̄ × J̄ = [0, 1]2 × [0, 1], the nonlinear term
f(u) = u2 and the source term

g(x, t) =

[
(3 + α)t2+α + 8π2t3+α +

4π2t3

3
Γ(4 + α)

]
sin(2πx1) sin(2πx2)

− t6+2α sin2(2πx1) sin2(2πx2),

(40)

where x = (x1, x2). The exact solution to the equation is

u(x, t) = t3+α sin(2πx1) sin(2πx2). (41)

We take the time step length ∆t = 1/N and the space step length h = hx1
= hx2

=
√

2/M
(M is the number of triangular elements), where hx1

is the step length in x-axis and hx2

is the step length in y-axis. Here the error formula max1≤n≤N ||unh − u(tn)|| is used to
calculate errors between the numerical solution uh and the exact solution u.
In Tab. 1, we record the errors and space convergence orders by taking ∆t = 1/2000 and
changed space step h = 1/5, 1/10, 1/20 with α = 0.1, 0.2, 0.5, 0.9. One can see that space
convergence order of the scheme is nearly 3. In Tab. 2, we fix the space step size h = 1/40
and set ∆t = 1/10, 1/20, 1/40 with α = 0.1, 0.2, 0.5, 0.9. One can also see that the time
error accuracy O(∆t2) is optimal.
In addition, we compare the numerical solution and the exact solution in Figs. 3-6 at
t = 0.5 with ∆t = 1/200, h = 1/20, α = 0.1, 0.2, 0.5, 0.9, respectively, where the surface
represents the exact solution, and the symbol ∗ is the numerical solution at every node.
Further, we depict the errors uh − u with the same setting in Figs. 7-10 which confirm the
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Table 1: Errors and space convergence orders for uh with ∆t = 1/2000

α h1 = 1/5 h2 = 1/10 h3 = 1/20 Order
(
h1
h2

)
Order

(
h2
h3

)
0.1 1.5371E-02 1.9387E-03 2.4353E-04 2.98711 2.99289
0.2 1.5375E-02 1.9388E-03 2.4353E-04 2.98731 2.99299
0.5 1.5391E-02 1.9396E-03 2.4355E-04 2.98826 2.99343
0.9 1.5423E-02 1.9411E-03 2.4360E-04 2.99013 2.99427

Table 2: Errors and time convergence orders for uh with h = 1/40

α ∆t1 = 1/10 ∆t2 = 1/20 ∆t3 = 1/40 Order
(

∆t1
∆t2

)
Order

(
∆t2
∆t3

)
0.1 1.0882E-03 3.2870E-04 9.4333E-05 1.72707 1.80092
0.2 1.2327E-03 3.5525E-04 9.9104E-05 1.79494 1.84181
0.5 2.2145E-03 5.8736E-04 1.5380E-04 1.91468 1.93319
0.9 3.5758E-03 9.1408E-04 2.3332E-04 1.96788 1.97003

efficiency of our scheme. To further explore the distribution of errors, we draw the contour
plots of uh − u in Figs. 11-12, with ∆t = 1/200, h = 1/40, α = 0.2 at fixed x1 = 0.25
and 0.75, respectively. Similarly, we illustrate the distribution of uh − u using the same
parameters with the exception that α = 0.9 in Figs. 13-14. A direct conclusion is that the
maximal error max1≤n≤N |unh − un| is yielded near t = 1.
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Figure 3: u and uh at t = 0.5 with α = 0.1
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Figure 4: u and uh at t = 0.5 with α = 0.2

3.2 Example 2

Now we consider another numerical example. We take the space-time domain Ω̄ × J̄ =
[0, 2]2 × [0, 2], the nonlinear term f(u) = sin(u) and the source term

g(x, t) = 3t2g̃(x)− 12

[
t3 +

6t3−α

Γ(4− α)

]
ḡ(x)− sin(t3g̃(x)), (42)
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g̃(x) = x1(x1 − 0.5)(x1 − 1.5)(x1 − 2)x2(x2 − 0.5)(x2 − 1.5)(x2 − 2), (43)

ḡ(x) =x1(x1 − 0.5)(x1 − 1.5)(x1 − 2)
(
x2

2 − 2x2 +
19

24

)
+ x2(x2 − 0.5)(x2 − 1.5)(x2 − 2)

(
x2

1 − 2x1 +
19

24

)
,

(44)

The exact solution to the model is

u(x, t) = t3x1(x1−0.5)(x1−1.5)(x1−2)x2(x2−0.5)(x2−1.5)(x2−2), x = (x1, x2). (45)

For checking the space error accuracy, we consider the fixed time step size ∆t = 1/2000
and take the space step length h = 1/5, 1/10, 1/20 with α = 0.1, 0.2, 0.5, 0.9 to calculate
the errors and space convergence orders between the numerical solution uh and the exact
solution u, see Tab. 3. We find that the space error accuracy of the scheme is O(h3).
Furthermore, by taking h = 1/60 and changing time step ∆t = 1/5, 1/10, 1/20 in Tab. 4
with α = 0.1, 0.2, 0.5, 0.9, one can see the time error accuracy of the scheme O(∆t2) is
obtained.
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Figure 12: Error uh − u at x1 = 0.75 with
α = 0.2

Table 3: Errors and space convergence orders for uh with ∆t = 1/2000

α h1 = 1/5 h2 = 1/10 h3 = 1/20 Order
(
h1
h2

)
Order

(
h2
h3

)
0.1 3.4787E-02 4.4416E-03 5.3826E-04 2.96942 3.04469
0.2 3.4786E-02 4.4415E-03 5.3826E-04 2.96938 3.04467
0.5 3.4781E-02 4.4412E-03 5.3825E-04 2.96927 3.04462
0.9 3.4776E-02 4.4410E-03 5.3823E-04 2.96915 3.04456

In Figs. 15-16, we draw the contour plots of the numerical solution uh and the exact
solution u, respectively, at t = 1 with ∆t = 1/400, h = 1/40, α = 0.5. The numerical
solution and the exact solution match exactly. Further, with ∆t = 1/400, h = 1/40, α =
0.5, the contour plots of the errors uh−u are given in Figs. 17-20 at t = 0.4, 0.8, 1.5, 2. By
comparing above contour plots, we find that the maximal error |uh − u| is roughly yielded
near t = 2.
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Figure 14: Error uh − u at x1 = 0.75 with
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Table 4: Errors and time convergence orders for uh with h = 1/60

α ∆t1 = 1/5 ∆t2 = 1/10 ∆t3 = 1/20 Order
(

∆t1
∆t2

)
Order

(
∆t2
∆t3

)
0.1 1.2029E-03 3.3117E-04 8.5092E-05 1.86091 1.96046
0.2 1.2021E-03 3.2502E-04 8.4498E-05 1.88695 1.94356
0.5 2.2143E-03 5.7576E-04 1.4973E-04 1.94333 1.94310
0.9 2.5131E-03 6.2971E-04 1.6035E-04 1.99669 1.97350
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Figure 20: Error uh − u at t = 2

Table 5: Errors and space convergence orders for uh with ∆t = 1/200

α h1 = 1/5 h2 = 1/10 h3 = 1/20 Order
(
h1
h2

)
Order

(
h2
h3

)
0.1 1.4997E-05 1.8988E-06 2.3912E-07 2.98154 2.98933
0.2 1.6346E-05 2.0921E-06 2.6354E-07 2.96589 2.98884
0.5 1.9166E-05 2.4863E-06 3.1378E-07 2.94648 2.98620
0.9 2.0215E-05 2.6262E-06 3.3153E-07 2.94436 2.98577

3.3 Example 3

We take the nonlinear term f(u) = u − u3 and the source term g(x, t) = 0 with initial
condition

u0(x) = x2
1(x1 − 1)2x2

2(x2 − 1)2, x ∈ Ω̄ (46)

where Ω̄ × J̄ = [0, 1]2 × [0, 1]. Since the exact solution of the example is unknown, the
calculated numerical solution based on the fixed time step size ∆t = 1/200 and space step
length h = 1/40 is considered as the approximate exact solution. We calculate the errors
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and space convergence orders between the numerical solution uh and the exact solution u
by taking ∆t = 1/200 and changed space step h = 1/5, 1/10, 1/20, see Tab. 5. From
the computing results with different α = 0.1, 0.2, 0.5, 0.9, it is noticeable that our scheme
can also effectively solve the two-dimensional nonlinear time fractional thermal diffusion
model in Example 3.

4 Conclusion
In this paper, we derive the fully discrete scheme for the two-dimensional nonlinear time
fractional thermal diffusion model. In temporal direction, we use the L2-1σ formula to
approximate the time Caputo fractional derivative, and take the second-order formulas to
approximate the time first-order derivative as well as the nonlinear term, at time tn−α

2
. In

spatial direction, we employ the quadratic finite element method to obtain a higher-order
convergence rate. The algorithm process is given in detail and to confirm the efficiency
of our scheme we conduct three numerical experiments with the help of Matlab programs.
The numerical results show that the space convergence order is 3 and the time convergence
order is 2, which are optimal in both directions for our scheme.
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