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Multi-Scale Damage Model for Quasi-Brittle Composite Materials
Decheng Feng1, 2, *

Abstract: In the present paper, a hierarchical multi-scale method is developed for the
nonlinear analysis of composite materials undergoing heterogeneity and damage. Starting
from the homogenization theory, the energy equivalence between scales is developed. Then
accompanied with the energy based damage model, the multi-scale damage evolutions are
resolved by homogenizing the energy scalar over the meso-cell. The macroscopic behaviors
described by the multi-scale damage evolutions represent the mesoscopic heterogeneity
and damage of the composites. A rather simple structure made from particle reinforced
composite materials is developed as a numerical example. The agreement between the full-
scale simulating results and the multi-scale simulating results demonstrates the capacity of
the proposed model to simulate nonlinear behaviors of quasi-brittle composite materials
within the multi-scale framework.

Keywords: Energy integration, multi-scale damage evolution, nonlinearity, composites,
quasi-brittle materials.

1 Introduction
Composite materials are widely studied and used due to their excellent mechanical and
physical performances. However, the thorough analytical model that represents the salient
nonlinear features of composite materials is still an open topic due to the complexity
induced by the heterogeneity and its nonlinear evolution in meso-scale. The damage
and failure of composite materials and structures are multi-scale in their nature. The full
scale numerical simulation which considers the mesoscopic imperfections explicitly during
the overall analysis of structure is commonly time-consuming and sometimes unstable.
Furthermore, most of the information obtained for the fine scale is often unnecessary to
teach us about the structural damage and failure. Thus in recent 20 years, the multi-
scale modeling of composite materials has drawn multitude attentions following the
developments of computational mechanics (see Refs [Miehe, Schotte and Schroder (1999);
Trykozko and Zijl (2002); Zimmermann, Kleinman and Hordijk (2003); To and Li (2005);
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Li, Liu, Agrawal et al. (2006); Li and Tong (2015)] and others). The purpose of multi-scale
method is to simulate the overall behaviors of structure with appropriate considerations of
mesoscopic/mesoscopic structures so that the cost is much less than the full scale analysis.
The inter-scale connection developed based on the multi-scale method may bridge the gap
between the mesoscopic imperfections and the macroscopic damage evolution, by which
the multi-scale damage model could be established.
Multi-scale methods have been studied for a long time in many scientific communities.
Numbers of theories have been proposed to analyze various of systems. Relying on the
degree to the inter-scale coupling, they could be classified into two groups [Rudd and
Broughton (2000); Ghosh, Bai and Raghavan (2007)]. The hierarchical/sequential methods
[Bakhvalov and Panasenko (1989); Guedes and Kikuchi (1990); Fish, Yu and Shek (1999);
Chen and Mehraeen (2005); Ren, Chen, Li et al. (2011)] were proposed for the weak
coupling systems. By condensing the inter-scale coupling into several parameters, the
scales involved in the systems could be simulated in separate calculations conducted in
sequence. For the strong coupled systems, the scales must be simulated concurrently.
By combining different scales described by different models in different resolutions, the
concurrent methods concentrate on developing smooth and effective transitions across the
scales [Tadmor, Ortiz and Phillips (1996); Shilkrot, Miller and Curtin (2002); Wagner and
Liu (2003); Xiao and Belytschko (2004); Ghosh, Bai and Raghavan (2007); Feng and Ren
(2017); Ren and Li (2013)].
For the linear elastic problems, the hierarchical method is often implemented by the
bottom-up homogenization which provides an extremely efficient way to evaluate the
homogenized properties of composite materials. Then the structure could be simulated
relying on the continuum model with the material parameters informed from the meso-
scale. For the structures undergoing nonlinearity, localization and discontinuity, it is
believed that the strong coupling among scales dominates the performance of systems.
Thus the concurrent methods with real-time interactive communication among scales are
considered to be suitable for these problems. However, the numerical simulation of large
scale structures based on concurrent methods is computationally prohibitive at present.
Thus the present paper aims to propose a feasible method for the multi-scale nonlinear
analysis of composites structures. As the standard analytical tool for the degrading
structures, the continuum damage mechanics is adopted for the analysis of structure in
macro-level [Feng, Ren and Li (2018); Feng, Wang and Wu (2019); Feng, Xie, Deng et al.
(2019)]. And the mesoscopic cell is developed to describe the mesoscopic nonlinearities
and discontinuities. An energy based homogenization approach is proposed based on
asymptotic method to construct the relationship between mesoscopic cells and macroscopic
damaged continua. The damage initiation and evolution can be explained and quantified by
the mesoscopic cells, and there-after can be used for the macroscopic continua. Although
certain detailed information in meso-level may be lost due to the homogenization, the
proposed hierarchical approach is able to simulate the multi-scale nonlinear behaviors of
structures with minimum computational expenses. The proposed model is based on the
concept of damage, which is feasible for the analysis of quasi-brittle composite materials.
The present paper is organized as follows. Section 2 describes the model problem
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considered in the present theory and developes the equation of energy homogenization,
which considers cracks and nonlinearities in the meso-scale. Based on the energy
homogenization equation, the multi-scale damage evolutions are developed in Section 3.
In Section 4, a rather simple structure made from particle reinforced composite materials
is simulated as a numerical example. In the end, the conclusions are given in Section 5.

2 Model problem and homogenization of energy
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Figure 1: Two-scale structure of model problem

As shown in Fig. 1, two scales are considered for the nonlinear structural simulations. In
the macro-scale, the overall structure occupying domain Ω with boundary Γ is described as
a continua. In the meso-scale, the heterogeneities and discontinuities of mesoscopic cell are
considered. Besides mesoscopic cracksand aggregates in meso-scale are also considered
to define the domain with different mechanical properties from the main body. Thus the
damage evolution in macro-scale could be informed by the analytical results at meso-scale.
And the inter-scale link could be developed based on the homogenization method. To
develop the multi-scale analytical model (Fig. 1), we define the overall coordinate byX =
(X1, X2, X3) in structural level and the local material coordinate by Y = (Y1, Y2, Y3) for
mesoscopic cell respectively.
To address the geometric nonlinearities of meso-cell, two coordinates, i.e., Y and y, are
introduced in meso-level. In the original coordinate Y , the meso-cell is denoted by ΩY

and ΓY ; and in the current coordinate y, we have the denotations Ωy and Γy. The mapping
function between the original and the current coordinates is defines as

y = ϕ(Y , t) (1)

and the displacement for the material point is

u(Y ,y) = y − Y = ϕ(Y , t)− Y (2)
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Consider the equilibrium in the current coordinate y expressed by Cauchy stress τ , we
have

divy τ = 0 (3)

with the natural boundary condition on the inner boundaries

τ · n = h on Γyc (4)

On the outer boundary of the meso-cell, we define the following essential boundary
condition

u = ε · y on ∂Ωy (5)

where ε is the homogenized strain of the meso-cell.
Multiplying Eq. (3) by displacement u and integrating over Ωy yield∫

Ωy

u · divy τdΩ = 0 (6)

By integration by parts, one obtains∮
∂Ωy

u · τ · n dΓ−
∮

Γy
c

u · h dΓ =

∫
Ωy

τ : divy udΩ (7)

Consider the first term on the LHS of Eq. (7). By substituting Eq. (5) one obtains∮
∂Ωy

u · τ · n dΓ = ε ·
[∮

∂Ωy

y · τ · n dΓ

]
= ε ·

[∫
Ωy

divy · (y · τ ) dΩ

]
= τ : ε (8)

where the homogenized Cauchy stress

τ =
1

Vy

∫
Ωy

τ dΩ (9)

Thus Eq. (7) further gives

Vy(τ : ε) =

∫
Ωy

τ : divy udΩ +

∮
Γc

u · h dΓ (10)

where the volume of the deformed meso-cell is

Vy =

∫
Ωy

dΩ (11)

In nonlinear continuum mechanics, we also adopt other energy conjugated stress-strain
definitions for the convenience of analysis and simulation. Thus the volumetric integration
in Eq. (10) could be also expressed by other stress-strain pairs.∫

Ωy

τ : divy udΩ =

∫
ΩY

S : EdΩ =

∫
ΩY

F · S : (divY u) dΩ (12)

where S and F · S are the first and second Piola-Kirchhoff stress tensors; E is Green
strain tensor. And the integration domain is the original cell ΩY or the deformed cell Ωy as
appropriate. Define the generalized energy conjugated stress-strain pairs by Σ and Ξ, we
have the generalized Helmholtz free energy as follows:

Ψ =
1

2
Σ : Ξ (13)
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And the homogenized Helmholtz free energy of the meso-cell is expressed as

ψ =
1

2
τ : ε (14)

The energy integration in Eq. (10) finally converts to

ψ =
1

Vy

(∫
ΩY

ΨdΩ +
1

2

∮
Γy

c

u · h dΓ

)
(15)

Eq. (15) indicates that the energy of homogenized material equals to the averaging energy
within the mesoscopic cell, which is the extension of classic Hill’s condition [Hill (1963)]
by considering the continuum nonlinearities and discontinuities.

3 Energy based multi-scale damage evolution
After years of development, the modern framework of damage theory is established
based on irreversible thermodynamics with energy based damage definitions [Mazars and
Pijaudier-Cabot (1989); Ju (1989); Faria, Oliver and Cervera (1998)].
The single scalar damage theory is often defined by the following equation:

ψ = (1− d) ψ0 (16)

where d denotes the damage scalar; ψ is the homogenized HFE of damaged heterogenous
material and ψ0 is the energy density of undamaged material which could be easily
expressed by the undamaged material undergoing the same strain with the damaged
material. We have

ψ0 =
1

2
ε : C : ε (17)

where ε is the scenod-order strain tensor and C is the fourth-order elastic modulus tensor.
Following the standard procedure of conventional damage theory, Eq. (16) should be
substituted into Clausius-Duhem inequality as follows:

−ψ̇ + σ : ε̇ ≥ 0 (18)

Then we obtain the constitutive law

σ = (1− d)
∂ψ0

∂ε
= (1− d) C : ε (19)

and the evolutional inequality

Y ḋ ≥ 0 (20)

where the damage energy release rate

Y = −∂ψ
∂d

= ψ0 (21)

According to Refs [Ju (1989); Lemaitre and Desmorat (2005); Wu, Li and Faria (2006)]
and other works, damage evolution should be driven by the damage energy release rate.
Thus we have

d = g(rt) (22)
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where rt is given by

rt = max

{
r0, max

τ∈(0,t]
Y

}
(23)

and the damage evolution function g(·) should be determined by experimentation according
to the conventional damage mechanics.
The present paper proposed that the damage evolution could be easily resolved by Eq. (16)
as follows:

d = 1− ψ

ψ0
(24)

And we have proven that the homogenized HFE ψ could be determined by Eq. (15) based
on the simulated results of the mesoscopic cell. Hence the damage evolution function
g(·) could be resolved by Eq. (24) with the information from mesoscopic cracking and
nonlinearity.
To describe the damage modes of quasi-brittle material undergoing different loadings
conditions, the bi-scalar damage models [Faria, Oliver and Cervera (1998); Wu, Li and
Faria (2006); Feng, Wu, Sun et al. (2017)] were proposed with two damage variables, i.e.,
d+ and d−, corresponding to tensile and compressive degradations respectively.
Consider the definition of effective stress as follows:

σ̃ = C : εe = C : (ε− εp) (25)

where ε, εe and εp are the total strain, elastic strain and plastic strain respectively. Note
that here we employed an empirical model for the platicity evolution, which is expressed
as

ε̇p = bpσ̃ (26)

where bp denotes the empirical plastic flow parameter

bp = ξpE0H(ḋ−)
〈εe : ε̇〉
σ̃ : σ̃

≥ 0 (27)

in which ξp ≥ 0 denotes a plastic coefficient to control the plastic strain rate, and usually
locates between 0.1 to 0.3; E0 denotes the initial Young’s modulus. Also note that the
tensile plastic strain is neglected since it is relatively small.
The effective stress represents the mesoscopic stress of the undamaged material. To
represent the tensile and compressive loading conditions, Mazars et al. [Mazars and
Pijaudier-Cabot (1989)] proposed the decomposition of effective stress tensor as follow:

σ̃ = σ̃+ + σ̃− (28)

And according to the eigen based decomposition procedure proposed by Faria et al. [Faria,
Oliver and Cervera (1998)], the positive and negative components of effective stress could
be expressed as{
σ̃+ =

∑
i 〈σ̃i〉 pi ⊗ pi

σ̃− =
∑

i 〉σ̃i〈 pi ⊗ pi
(29)
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where σ̃i and pi are the i-th eigen value and eigen vector of effective stress respectively;
and the Macaulay brackets are defined as{
〈x〉 = x+|x|

2

〉x〈= x−|x|
2

(30)

Further decompose HFE into elastic and plastic components, we have

ψ(σ̃, d+, d−, κ) = ψe(σ̃, d+, d−) + ψp(d+, d−, κ) (31)

By noting the effective stress split in Eq. (28), the elastic HFE could be further decomposed
into tensile and compressive components. Thus we have

ψe(σ̃, d+, d−) = ψe+(σ̃+, d+) + ψe−(σ̃−, d−) (32)

Consider the direct degradation in the energy level [Wu, Li and Faria (2006)], we obtain

ψe±(σ̃±, d±) = (1− d±)ψe±0 (σ̃±) (33)

where the initial elastic HFE is

ψe±0 (σ̃±) =
1

2
σ̃± : C−1 : σ̃± (34)

For the plastic component of HFE, consider the degradation of plastic energy induced by
tensile and compressive damages, we obtain

ψp(d+, d−, κ) = (1− d+)ψp+0 (κ) + (1− d+)ψp−0 (κ) (35)

where ψp±0 (κ) denotes the initial plastic HFEs and κ denotes the plastic variable.
Substituting HFE decomposition (31) into Clausius-Duhem inequality (18) yields[
σ − (1− d+)σ̃+ − (1− d−)σ̃−

]
: ε̇e

+
[
σ : ε̇p − (1− d+)ψ̇p+0 (κ)− (1− d−)ψ̇p−0 (κ)

]
+ ḋ+

[
ψe+0 (σ̃+) + ψp+0 (κ)

]
+ ḋ−

[
ψe−0 (σ̃−) + ψp−0 (κ)

]
≥ 0

(36)

Thus we have the following three expressions

σ = (1− d+)σ̃+ + (1− d−)σ̃− (37a)

σ : ε̇p − (1− d+)ψ̇p+0 (κ)− (1− d−)ψ̇p−0 (κ) ≥ 0 (37b)

ḋ+
[
ψe+0 (σ̃+) + ψp+0 (κ)

]
+ḋ−

[
ψe−0 (σ̃−) + ψp−0 (κ)

]
≥ 0 (37c)

Substituting Eq. (37a) into inequality (37b), we obtain the following two inequalities{
σ̃+ : ε̇p − ψ̇p+0 (κ) ≥ 0

σ̃− : ε̇p − ψ̇p−0 (κ) ≥ 0
(38)

Further noting the Drucker’s postulate and integrating over time domain yields{
ψp+0 (κ) =

∫
σ̃+ : dεp

ψp−0 (κ) =
∫
σ̃− : dεp

(39)
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In the present paper, we neglect the plastic evolution induced by tensile loading and
damage. One obtains

ψp+0 (κ) ≈ 0 (40)

Inequality (37c) defines the damage energy release rates as the conjugated force of damages
as follows{
Y + = ψe+0 (σ̃+) + ψp+0 (κ) ≈ ψe+0 (σ̃+)

Y − = ψe−0 (σ̃−) + ψp−0 (κ)
(41)

By introducing the D-P plastic evolution potential to Eq. (41), Wu and coworkers [Wu, Li
and Faria (2006)] solved the expression of damage energy release rates as follows
Y + ≈ ψe+0 = 1

2E

[
2(1+ν)

3 3J̃+
2 + 1−2ν

3 (Ĩ+
1 )2 − νĨ+

1 Ĩ
−
1

]
Y − = ψe−0 + ψp−0 ≈ b0

[
αĨ−1 +

√
3J̃−2

]2 (42)

where Ĩ±1 are the first invariants of σ̃±; J̃±2 are the second invariants of the deviatoric
components of σ̃±; E and ν denote the Young’s module and Poisson’s ratio; b0 and α
are material parameters which could be determined by multiaxial tests. Based on Eq. (42)
and the damage consistent condition, Li et al. [Li and Ren (2009)] resolved the energy
equivalent strain as follows:ε+

eq =
√

2Y +

E

ε−eq = 1
(α−1)E

√
Y −

b0

(43)

Then the damage evolutions undergoing multiaxial loading could be expressed as:

d± = g±(ε±eq) (44)

where g±(·) are the uniaxial tensile and compressive damage evolution functions which
are often determined by uniaxial experimentations. In the present work, we consider the
following damage evolution functions under tension and compression respectively [Feng
and Li (2015); Feng, Kolay, Ricles et al. (2016)].

d± =

{
1− ρ±n±

n±−1+(x±)n± x± ≤ 1

1− ρ±

α±(x±−1)2+x± x± > 1
(45)

And the definitions of symbols are
ρ± = f±

Eε±

n± = Eε±

Eε±−f±

x± =
ε±eq
ε±

(46)

where E denotes the Young’s modulus; f+ and f− are the tensile and compressive
strengths; ε+ and ε− are strains corresponding to f+ and f− on the stress-strain curves;
and α+ and α− are parameters governing the descending parts of tensile and compressive
stress-strain curves.
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To develop the multi-scale damage evolutions for bi-scalar damage model, we rearrange
the HFE (31) as follows:

ψ = (1− d+)Y + + (1− d−)Y − (47)

As mentioned above, HFE ψ could be resolved by Eq. (15) based on the numerical
simulations of the mesoscopic cell, and DREEs Y + and Y − could be calculated by
Eq. (43). Here we propose the following two numerical cases corresponding to the standard
mesoscopic cells to determine the tensile and compressive damage evolutions respectively.

• Tensile case

As the numerical specimen undergoing tensile loading, we have

σ̃ = σ̃+, σ̃− = 0 (48)

Then we obtain

Y − = 0 (49)

By rearranging Eq. (47), the tensile damage scalar could be expressed as

d+ = 1− ψ

Y +
(50)

• Compressive case

The compressive loading condition gives

σ̃ = σ̃−, σ̃+ = 0 ⇒ Y + = 0 (51)

Then the compressive damage could be resolved by Eq. (47) as follows

d− = 1− ψ

Y −
(52)

Finally, the damage evolution functions g±(·) could be resolved by Eqs. (50) and (52)
respectively with the information of mesoscopic crack propagations.

4 Numerical example
As an illustrating example,a composite structure undergoing direct tension is studied
(Fig. 2). The in-plane dimensions of the plate are l × b = 0.6 m × 0.3 m, and the
thickness of the plate is 0.1 m. Totally 6 × 3 = 18 aggregates are uniformly distributed
in the matrix. Each aggregate is with a diameter of 0.06 m. In the present example, we
consider very strong aggregates that could remain linear elastic throughout the loading
process, and the matrix experiences cracking and crushing at the same time. This example
is specially designed to compare the proposed hierarchical multi-scale model with the full-
scale simulation.
Firstly, we perform the full-scale simulation of the composite structure as the benchmark
results, although it is rather expensive in computation. The finite element mesh of the
full-scale model is developed as Fig. 3. The aggregates are considered as linear elastic
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l

b

Figure 2: Composite structure undergoing direct tension

materials with Young’s modulus Ea = 45 GPa and Poisson’s ratio νa = 0.2. The
nonlinearities and crack propagations in the matrix are modeled by using the damage
model in meso-scale. The material parameters of matrix are adopted as: Elastic modulus
Em = 25 GPa, Poisson’s ratio νm = 0.2, α = 0.34, tensile strength f+ = 3.0 MPa,
tensile strain ε+ = 0.0002, tensile decending parameter α+ = 0.03, compressive strength
f− = 40 MPa, compressive strain ε− = 0.0025, compressive descending parameter
α− = 0.05. In fact, this case can be treated as a typical recycle-aggregated concrete, where
the aggregates are some elastic material and the matrix is concrete material. The simulation
is performed under a plane stress state and a displacement control loading. The simulating
load-displacement curve is shown in Fig. 4. The contours of the maximum stress and the
tensile damage are shown in Figs. 5-6, which are corresponding to the point A and point
B in Fig. 4. Fig. 5(a) clearly indicates a series of internal force chains that link different
aggregates together in an integrated structure. And the stress chains also experience more
serious damages due to the stress concentration, as shown by Fig. 6(a). Fig. 5(b) suggests
that the mechanism of internal force chains fails due to the strain localization induced by
crack. And the major crack is clearly sketched by the concentration of damage in Fig. 6(b).

Figure 3: Finite element mesh of the full-scale model

Then we simulate the overall performances of the composite structure shown in Fig. 2
based on the hierarchical multi-level method depicting in Fig. 7. Consider the model of
meso-cell shown in Fig. 8. By adopting the same material parameters used in the full-scale
simulation, the simulating results of meso-cell are obtained in Figs. 9-11. Observations to
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Figure 4: Load-displacement curve of full-scale model
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Figure 5: Contours of maximum stress at: (a) point A and (b) point B of Fig. 4
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(a)

(b)

Figure 6: Contours of tensile damage scalar at: (a) point A and (b) point B of Fig. 4

Meso-cell

l

b

Figure 7: Homogenized problem with multi-scale hierarchy
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(a) (b)

Figure 8: (a) Meso-cell model and (b) Finite element mesh

(a) (b)

Figure 9: Contours of maximum stress at: (a) point A and (b) point B of Fig. 11

(a) (b)

Figure 10: Contours of tensile damage scalar at: (a) point A and (b) point B of Fig. 11
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Figure 11: Homogenized (a) stress-strain curve and (b) damage evolution
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Figure 12: Load-displacement curves
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Figs. 9-10 also find the chains of internal forces and damages in the beginning and strong
localization of damage in the end. By using the energy integration Eq. (15) and multi-scale
damage characterization Eq. (50), the damage evolution could be resolved as Fig. 11(b).
And the homogenized stress-strain curve could be also characterized based on the theory
micro-mechanics, as shown in Fig. 11(a). As the present problem is governed by the tensile
damage and fracture, we suppress the compressive damage evolution in the multi-scale
damage analysis so that the compressive numerical test for the meso-cell is skipped. Note
that the tensile damage at point A, where the model reaches its maximum tensile strength,
is about 90%. This is just because here we simulated a plain quasi-brittle example. For
this kind of material, once it reaches the tensile strength, which means the material cracks
and will soon lose its capacity, so the damage of material will be large. This is not the case
with some reinforced concrete material [Kakavand, Neuner, Schreter et al. (2018)] which
will still has some capacity even after cracking. Finally, we could simulate the overall
performances of the composite structure shown in Fig. 2 by using the coarse mesh (6× 3)
shown in Fig. 2. At each integration point of the coarse mesh, the stress-strain relations are
represented by the damage model with damage evolutions characterized by Fig. 11(b). The
load-displacement curves in Fig. 12 indicate good agreement between the full-scale damage
model and the proposed multi-scale damage model. The peak load by full-scale model is
94.9 kN at displacement 0.0001431 m, while the peak load by multi-scale model is 96.7
kN at displacement 0.0001415 m. The differences between the full-scale and multi-scale
model are only 1.9% for peak load and 1.1% for corresponding displacement.

5 Conclusions

For composite materials, the damage phenomenon is rather complex. In the subscale, the
heterogeneous material structure often experiences cracks and material nonlinearities in
rather complicated patterns. To develop the continuum damage model with considerations
of meso-structure and cracks, the form of homogenised Helmholtz free energy is extended
to consider both the effects of cracking and nonlinearity. Thereafter the damage evolution
could resolved by the homogenised Helmholtz free energy and applied to the simulation
of structures. Based on the proposed method, the simulation of structure of composite
materials could be rather effective. In the meanwhile, the damage evolution laws informed
by the cracking and nonlinearity in meso-level could enhance the capacity of the numerical
simulation for the failure of composite material structures.
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