

Computers, Materials & Continua CMC, vol.62, no.3, pp.1025-1051, 2020

CMC. doi:10.32604/cmc.2020.08742 www.techscience.com/journal/cmc

Hybrid Clustering Algorithms with GRASP to Construct an
Initial Solution for the MVPPDP

Abeer I. Alhujaylan1, 2, * and Manar I. Hosny1

Abstract: Mobile commerce (m-commerce) contributes to increasing the popularity of
electronic commerce (e-commerce), allowing anybody to sell or buy goods using a
mobile device or tablet anywhere and at any time. As demand for e-commerce increases
tremendously, the pressure on delivery companies increases to organise their
transportation plans to achieve profits and customer satisfaction. One important planning
problem in this domain is the multi-vehicle profitable pickup and delivery problem
(MVPPDP), where a selected set of pickup and delivery customers need to be served
within certain allowed trip time. In this paper, we proposed hybrid clustering algorithms
with the greedy randomised adaptive search procedure (GRASP) to construct an initial
solution for the MVPPDP. Our approaches first cluster the search space in order to
reduce its dimensionality, then use GRASP to build routes for each cluster. We compared
our results with state-of-the-art construction heuristics that have been used to construct
initial solutions to this problem. Experimental results show that our proposed algorithms
contribute to achieving excellent performance in terms of both quality of solutions and
processing time.

Keywords: Multi-vehicle profitable pickup and delivery problem, K-means clustering
algorithm, ant colony optimisation, greedy randomised adaptive search procedure,
metaheuristic algorithms.

1 Introduction
Today, most people rely on electronic commerce (e-commerce) to meet their needs. E-
commerce has several advantages that encourage people to rely on it rather than traditional
purchasing methods, such as availability of products at any time, low prices, privacy,
comfort, and quality assurance. In addition to those advantages, the spread of mobile
commerce (m-commerce) has increased the popularity of e-commerce, allowing people to
sell or buy goods using a mobile device or tablet anywhere and at any time. As the demand
for e-commerce has increased, the pressure on delivery companies to organise their
transportation plans to achieve profits and customer satisfaction has also increased.

1 Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh,

Saudi Arabia.
2 College of Computer, Qassim University, Buraydah, Saudi Arabia.
* Corresponding Author: Abeer I. Alhujaylan. Email: abeer.alhujaylan@gmail.com.

1026 CMC, vol.62, no.3, pp.1025-1051, 2020

Transportation means used by millions of people to transport themselves or their goods
all over the world make the transport and shipment sector a hotspot in the research field.
Most of this research aims to optimise the planning and organisation of the different
transportation means used: land, air, and sea. Land transport is considered the most
important, because it is used daily in different countries and has a huge volume that
includes buses, trucks, cars, trains, trams, motorcycles, and more.
In addition, the increasingly harmful impact of land transport, encourages researchers in
different fields (operations research, computer science, and industrial engineering) to find
the best solutions possible. There are two negative impacts of land transport:
environmental and economic effects. According to environmental research, transport has
a main role in distributing pollution and increasing global warming, which results in
many diseases that have negative effects on people’s health. Therefore, researchers aim to
find solutions to decrease congestion and the environmental damage caused by harmful
emissions of greenhouse gases and carbon dioxide. On the other hand, the economic
effects on companies that work in the transport and shipment sector includes miss-
organisation of used means. Furthermore, the unexploited space in trucks results in huge
losses for these companies in addition to the environmental impact, with statistics
indicating that 15% to 30% of accidents, traffic congestion, and pollution are caused by
empty trucks [Gansterer, Hartl and Vetschera (2019)].
There are many problems that mimic the means of land transport which are presented by
researchers to optimise services and minimise their harmful impacts, such as vehicle
routing problems, bus scheduling problems [Saha (1970)], cash transportation problems
[Yan, Wang and Wu (2012)], railroad blocking problems [Barnhart, Jin and Vance
(2000)], and others [Díaz-Parra, Ruiz-Vanoye, Bernábe Loranca et al. (2014); Cornillier,
Boctor and Laporte (2008); Zhu, Hu and Wang (2012)].
One of the best-known combinatorial optimisation problems designed to optimise
transportation network management and organise the distribution of goods and vehicles is
the vehicle routing problem (VRP). The goal of the problem is to distribute goods for a set
of customers by finding the best route(s). One or more vehicles with limited capacity from
a homogeneous fleet of vehicles are used to transfer goods to customers. Each vehicle must
start its trip from a depot and return to it again after serving customers. In the literature,
there are different types of VRPs that have been presented over the last 50 years. Although
these types vary in constraints and complexity, they share a common goal of minimising
the harmful impacts of transport besides reducing cost [Lin, Choy, Ho et al. (2014)].
One important variant of the VRP is the pickup and delivery problem (PDP), which aims
to reduce the total transportation cost when people or goods are moved. It differs from the
VRP in the type of service provided, with each good or customer transferred between two
predefined locations: a pickup node and a delivery node. Several real-world applications
of the PDP include the distribution of beverages and the collection of empty bottles and
cans, the shipping of cargos and the transportation of raw materials from suppliers to
factories. Also, many extensions of the PDP have been presented in the literature that
include slight changes to the workings of the original PDP. The selective pickup and
delivery problem (SPDP) is one relatively new variant of the PDP that differs from the

Hybrid Clustering Algorithms with GRASP to Construct 1027

standard PDPs by serving only some customers rather than serving all. This means the
SPDP is valuable to those companies that have limited resources and can realise profits
by finding the best routes to serve only the profitable customers. There are two types of
SPDPs: (1) SPDPs subject to minimising the travelling cost only (e.g., [Ting and Liao
(2013); Liao and Ting (2010); Ho, Sin and Szeto (2016)]) and (2) SPDPs subject to
minimising the travelling cost and maximising the profit collection (e.g., [Coelho,
Munhoz, Haddad et al. (2012); Bruck, dos Santos and Arroyo (2012)]).
Gansterer et al. [Gansterer, Küçüktepe and Hartl (2017)] presented the multi-vehicle
profitable pickup and delivery problem (MVPPDP), which belongs to the second type of
SPDP. It aims to find the best routes by minimising the travelling cost and maximising
the profit collection in a one-day planning horizon. The MVPPDP is a static problem
with a central depot, a set of customers, a predefined number of requests, products, and a
homogeneous fleet of vehicles. Each request is defined by a customer pair: pickup
customer and delivery customer. Thus, the products are transported from a pickup
customer and delivered to a delivery customer to earn a profit from the service. Some
real-life applications of the MVPPDP include food delivery mobile apps and delivery
companies apps.
Since the MVPPDP is an NP-hard problem (because it is one types of the SPDP that is a
special case of a combination of the PDP) [Gansterer, Küçüktepe and Hartl (2017)],
metaheuristic algorithms can be utilised to find good solutions within a reasonable
processing time, especially for medium and large size problems. In this paper, we
proposed an approach that is based on clustering algorithms with proven efficiency in
speeding the search process and decreasing the processing time. We used K-means,
adaptive K-means and ant colony optimisation (ACO) algorithms to cluster the search
space of the MVPPDP. In addition, we modified the greedy randomized adaptive search
procedure (GRASP) that was used in Alhujaylan et al. [Alhujaylan and Hosny (2019)] to
construct an initial solution for the MVPPDP, after the clustering phase.
The main contributions of this paper are as follows: 1) helping delivery companies and
food delivery mobile apps to efficiently plan their services by speeding the selection of
customers that can be served and finding the shortest routes to get the profits and achieve
customer classification, 2) efficient transport planning can help in decreasing
environmentally harmful effects of emissions of 𝐶𝐶𝐶𝐶2 and other gases besides saving
energy resources, and 3) novel solution approaches are proposed to construct an initial
solution for the problem which outperform state-of-the-art methods in the literature.
The rest of this paper is organised as follows. A review of some related work is presented
in Section 2. Section 3 introduces the formal problem definition. The proposed method is
described in detail in Section 4. Section 5 illustrates the experimental results. Finally,
conclusions and future work are presented in Section 6.

2 Related work
The MVPPDP belongs to the second type of SPDP that aims to minimise the travelling
costs and maximise the profits collected by visiting only the profitable customer pairs.
Both the MVPPDP and the profitable tour problem (PTP) share the same goal of finding
a good route that maximises the difference between the total collected profit and the total

1028 CMC, vol.62, no.3, pp.1025-1051, 2020

travelling cost. The main difference between them is that in the PTP there are no
constrains that must be considered on the vehicle route, such as maximum trip time,
vehicle capacity limits, or precedence constraints [Archetti, Speranza and Vigo (2014)].
Studies that address the PTP are rare in the literature [Toth, Paolo and Vigo (2014)].
Therefore, we first present work related to the MVPPDP. Then, some of the studies that
have been done on the SPDP with minimising travelling cost and maximising profit
collection are briefly presented.
There are five algorithms that have been presented to solve the MVPPDP. The first four
algorithms, presented by Küçüktepe et al. [Küçüktepe (2014); Gansterer, Küçüktepe and
Hartl (2017)], used the variable neighbourhood search (VNS) metaheuristic. The
construction phase of VNS was done using two heuristics: the greedy construction
heuristic (C1) and the two-stage cheapest insertion heuristic (C2), while the improvement
phase was based on applying the following neighbourhood operators: the pairwise
forward exchange, the pairwise backward exchange, relocate pairs, forward insertion,
backward insertion, inter tour exchange, inter dummy exchange, inter tour insert, inter
dummy insert, and the gravity centre exchange. Authors adapted two strategies for
applying the neighbourhood operators: a sequential (Seq) approach that uses a predefined
sequence of neighbourhoods and a self-adaptive (Sea) approach that determines the
sequence of neighbourhoods by adapting itself according to the search status. Finally, an
alternative algorithm that was based on a guided local search (GLS) metaheuristic was
implemented to compare with the proposed approach. The proposed algorithm was tested
on 36 new randomly generated data instances of different sizes. Experimental results
showed that both variants of general VNS outperformed GLS in terms of solution quality.
The fifth algorithm was proposed by Haddad [Haddad (2017)]. Their combination of an
iterated local search and random variable neighbourhood descent was proposed to solve
the profitable pickup and delivery problem; therefore, they named their algorithm IPPD.
The IPPD algorithm was not limited to accepting only feasible solutions during the
search. The C1 heuristic that was used in Gansterer et al. [Gansterer, Küçüktepe and Hartl
(2017)] was adopted to construct the initial solution. To improve the solution, several of
the following neighbourhood moves were then applied: pair swap or pair shift, block
swap or block shift, pickup or delivery shift, inter pair swap or inter pair shift, inter block
swap or inter block shift, gravity centre exchange, insert operator and remove operator.
The proposed algorithm was tested on the benchmark instances proposed by Gansterer et
al. [Gansterer, Küçüktepe and Hartl (2017)]. It proved its efficiency in addressing small-
and medium-sized instances, for which it was able to find new best solutions for six
instances. However, the performance of the proposed algorithm was not adequate for
large-sized instances.
Recently Alhujaylan et al. [Alhujaylan and Hosny (2019)] used the construction phase of
the well-known GRASP to build initial solutions for the MVPPDP. They compared the
methods performance with two construction heuristics that were previously used in the
literature to build initial solutions of the MVPPDP. The experimental results proved the
proposed method outperformed the other construction heuristics, especially in small-sized
instances, where they got eight new best initial solutions for the problem.

Hybrid Clustering Algorithms with GRASP to Construct 1029

One of the practical applications of the SPDP was the distribution of soft drinks and
collection of recyclable containers by a Quebec-based company by applying three
heuristics as follows: the nearest neighbour heuristic, first petal heuristic, and second
petal heuristic. The empirical results indicated that these heuristics contributed to
decrease the distance by 23% [Privé, Renaud, Boctor et al. (2006)]. Another application
of SPDP is called the single vehicle routing problem with deliveries and selective pickups
(SVRPDSP), which has been solved using mixed integer linear programming (MILP) and
a Tabu search (TS) algorithm. The proposed algorithm was applied on instances that were
derived from the VRP library, and it was able to produce near-optimal solutions for 68
instances [Gribkovskaia, Laporte and Shyshou (2008)]. Additionally, the selective multi-
depot vehicle routing problem with pricing required an organised solution to collect cores
of durable goods from customers to encourage them to buy new products. A rich
neighbourhood TS (TS-RN) coupled with two MILPs (mixed integer linear programming)
models was proposed to solve this problem. According to the results, the proposed
approach succeeded in terms of both efficiency and accuracy when it was tested on 40
randomly generated instances [Aras, Aksen and Tekin (2011)]. Again, the same instances
used in Gribkovskaia et al. [Gribkovskaia, Laporte and Shyshou (2008)] were used again
to test two hybrid general variable neighbourhood searches (HGVNSs) and a hybrid
metaheuristic based on an evolutionary algorithm (EA) that were proposed by Coelho et
al. [Coelho, Munhoz, Haddad et al. (2012); Bruck, dos Santos and Arroyo (2012)] to
solve the SVRPDSP. Both metaheuristics were proved to be robust and effective. For the
interested reader, other applications of the SPDP can be found in Coelho et al. [Coelho,
Munhoz, Ochi et al. (2016); Gutiérrez-Jarpa, Desaulniers, Laporte et al. (2010); Qiu,
Feuerriegel and Neumann et al. (2017); Baniamerian, Bashiri and Tavakkoli-Moghaddam
(2019); Wen, Larsen, Clausen et al. (2009)].

3 Problem definition
The MVPPDP is a static problem with predefined constituents. We assume that there is a
central depot that receives customer requests. These requests consist of pairs of pickup
and delivery customers. To serve these requests, we have a set of homogeneous vehicles
that transport a number of homogeneous products from a selected (partial) set of pickup
customers to their corresponding delivery customers, such that a certain profit is gained.
The constraints of the MVPPDP that should be considered are the following:
• The pairing constraint: For each request there is a predefined customer pair (pickup

and delivery).
• The precedence constraint: The pickup customer must be visited before the delivery

customer.
• The trip time constraint: Each vehicle has a certain daily travel time limit that cannot

be exceeded while customers are being served.
• The capacity constraint: Each vehicle has a limited capacity that cannot be exceeded,

when products are being collected from pickup customers.
• Each vehicle should start/end its journey from/at the depot with an empty load.
• Each customer must be visited only once.
The formal definition of MVPPDP is given by Küçüktepe [Küçüktepe (2014)] as follows:

1030 CMC, vol.62, no.3, pp.1025-1051, 2020

Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a graph, where 𝑉𝑉 = {0, … ,2𝑛𝑛 + 1} is the vertex set. The vertex
(0, 2𝑛𝑛 + 1) represents the central depot. 𝑃𝑃 = {1, … ,𝑛𝑛} is the set of pickup customers,
while 𝐷𝐷 = {𝑛𝑛 + 1, … ,2𝑛𝑛} is the set of delivery customers. The arc set is 𝐴𝐴 =
{(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} , such that a non-negative routing cost 𝑐𝑐𝑖𝑖𝑖𝑖 is associated with each
arc. It is assumed that a revenue 𝑟𝑟𝑖𝑖 is collected when visiting each delivery vertex 𝑖𝑖. Also,
for a pickup vertex 𝑖𝑖 there is a supply 𝑞𝑞𝑖𝑖 > 0, while for a delivery vertex there is a
demand 𝑞𝑞𝑛𝑛+𝑖𝑖 = −𝑞𝑞𝑖𝑖. It is also assumed that there is no supply or demand for the depot
(i.e., 𝑞𝑞0 = 0). Finally, there is a set of vehicles 𝑘𝑘 = {1, … ,𝑚𝑚}, such that each vehicle has
a maximum load capacity 𝐶𝐶 and a maximum tour time limit 𝑇𝑇.
The objective function of the MVPPDP is described as follows:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ ∑ (𝑟𝑟𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘∈𝐾𝐾𝑗𝑗∈𝑉𝑉𝑖𝑖∈𝑉𝑉 (1)

where 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 is a binary decision variable that is equal to one if arc 𝑖𝑖𝑖𝑖 is used by vehicle 𝑘𝑘,
and zero otherwise.
For the details of the mathematical model of the MVPPDP, the reader is referred to
Gansterer et al. [Gansterer, Küçüktepe and Hartl (2017); Alhujaylan and Hosny (2019)].

4 Proposed method
We divided our proposed method for solving the MVPPDP into two phases: a clustering
phase and a routing phase. The details of each phase are presented below.

4.1 Clustering phase
The purpose of the clustering phase is to try to reduce the search space by dividing
customers into clusters based on some relatedness measure. After this, selected customers
from each cluster will be visited by one vehicle whose route will be planned in the
routing phase. We proposed three clustering algorithms to cluster the MVPPDP search
space: 1) a K-means clustering algorithm, 2) an adaptive K-means clustering algorithm,
and 3) an ACO-based clustering algorithm. In the MVPPDP, since each request has a
pair of customers (pickup and delivery customers), the coordinates of a midpoint between
the pickup customer and the delivery customer are computed to represent the request pair
as follows:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = � 𝑥𝑥1+𝑥𝑥2
2

 , 𝑦𝑦1+𝑦𝑦2
2

 � (2)

where 𝑖𝑖 represents the index number of a given customer, 𝑖𝑖 = {1, … ,𝑁𝑁}, (𝑥𝑥1,𝑦𝑦1)
represents the coordinate of the pickup customer, and (𝑥𝑥2,𝑦𝑦2) represents the coordinate
of the delivery customer. Thus, the midpoints of requests were considered in all
clustering algorithms that have been used. The details of the algorithms are presented in
the following sub-sections.

4.1.1 K-means clustering algorithm
The K-means algorithm, which was developed by MacQueen [MacQueen (1967)], is one
of the most well-known and simplest unsupervised learning algorithms that have been
used to solve the familiar clustering problem. The K-means algorithm has numerous
advantages that help make it useable for many clustering problems. For example, it is

Hybrid Clustering Algorithms with GRASP to Construct 1031

easy to understand and implement, it has high performance speed, and it is relatively
efficient where its time complexity is 𝑂𝑂(𝑡𝑡𝑡𝑡𝑡𝑡) , where 𝑡𝑡 is the number of iterations
required for cluster convergence, and 𝑁𝑁 is the number of objects in the dataset. The
general idea of the K-means algorithm is to classify a given data set into an a priori
number of clusters with each cluster treated as a separate group. Dividing the problem
into subproblems in this fashion eases and accelerates the solving of the problem.
A flowchart of the K-means clustering algorithm is illustrated in Fig. 2. In the following
steps, we explain how the algorithm works.

Start

Assign some points randomly as initial cluster
centres

Compute the distance from points to cluster centres

Clustering based on minimum distance

Number of clusters K

No points change their
cluster

Recalculate cluster centres based on the mean of
points inside clusters

Compute the distances from points to cluster
centres

End

No

Yes

Figure 2: Flowchart of k-means clustering algorithm

1032 CMC, vol.62, no.3, pp.1025-1051, 2020

Step 1: Initialisation of parameters
In our K-means algorithm, two initial parameters need to be entered: the number of
clusters 𝐾𝐾 and the coordinates of customers.
Step 2: Initial clustering solution
From each cluster 𝑘𝑘,𝑘𝑘 = {1,2, … ,𝐾𝐾} a random request is selected to be an initial centroid
𝑐𝑐𝑘𝑘 of the cluster. The Euclidean distances between the rest of requests (i.e., those that are
not selected as cluster centroid) and the cluster centres {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘} are then computed.
Each request is assigned to the nearest cluster centre.
Step 3: Generation of a new clustering solution
For each cluster 𝑘𝑘, a new cluster centre is calculated by computing the means of the
coordinates of all requests that belong to that cluster. We then repeat Step 2, with each
request reassigned to the appropriate cluster based on the distance between it and the new
cluster centres.
Step 4: Final clustering solution
To generate the final clustering solution, Step 3 is repeated several times until convergence
(i.e., until no change is observed between the clustering solution’s current iteration and the
previous one) [Du (2010)].

4.1.2 Adaptive K-means clustering algorithm
One drawback of the classical K-means algorithm is that it does not take into consideration
the particularities of the MVPPDP. Therefore, the main goal of proposing the adaptive K-
means clustering algorithm is clustering the search space with consideration of the
MVPPDP’s objective: maximising profit and minimising travelling cost. In other words,
this differs from that of the K-means clustering algorithm by considering profits in addition
to the distance between customers. Thus, in addition to the distance between the request
and the cluster centre, our adaptive K-means algorithm also considers the “appropriateness”
of the request within the cluster. The concept of appropriateness, which was used in
Haddad [Haddad (2017)] for inserting new requests into a route, has been adapted to our
method as follows: after the centre is computed for each cluster, a request 𝑖𝑖 is assigned to
an appropriate cluster based on the following equation:
𝐴𝐴𝑖𝑖,𝑐𝑐𝑘𝑘 = 𝑟𝑟𝑖𝑖

𝑑𝑑𝑖𝑖,𝑐𝑐𝑘𝑘
 (3)

where 𝑟𝑟𝑖𝑖 is the revenue of the request 𝑖𝑖, and 𝑑𝑑𝑖𝑖,𝑐𝑐𝑘𝑘 is the distance between the request 𝑖𝑖 and
the cluster 𝑐𝑐𝑘𝑘 . Thus, each request is assigned to the cluster that has the maximum
appropriateness value. The pseudocode for our adaptive K-means clustering algorithm is
illustrated in Algorithm 1.

Hybrid Clustering Algorithms with GRASP to Construct 1033

Algorithm 1: Pseudocode for adaptive K-means clustering

4.1.3 ACO-based clustering algorithm
Ant colony optimisation (ACO) is a metaheuristic algorithm that mimics the cooperative
behaviour of ants foraging in search of food. It was first introduced by Dorigo et al.
[Colorni, Dorigo and Maniezzo (1991)].
The ACO algorithm is one of the most well-known of the swarm intelligence algorithms
used to solve numerical and combinatorial optimisation problems, and it is particularly
useful for problems which require finding the shortest path as a goal (see for example
[Dahan, El Hindi, Mathkour et al. (2019); Bell and McMullen (2004)]). Additionally,
clustering with ACO or with other models inspired by the behaviour of ants has been used
as an alternative to traditional clustering algorithms. See Jafar et al. [Jafar and Sivakumar
(2010)] for a survey of interesting clustering approaches based on ant behaviour.
The pseudocode for our MVPPDP clustering-based ACO algorithm is presented in
Algorithm 2, where the meaning of each notation is as follows: Max_Iter: maximum
number of iterations; Num_Cust: number of customers; Pop_Size: size of population; K:
number of clusters; and 𝜏𝜏𝑖𝑖,𝑘𝑘: the pheromone trail matrix of size 𝑁𝑁 ∗ 𝐾𝐾, where 𝑁𝑁 refers to
number of requests, and 𝐾𝐾 refers to number of clusters.
The details of each step of the clustering using ACO are presented below.
Step 1: Initialisation of parameters
Several parameters need to be set before starting the algorithm, such as, population size
(Pop_Size), number of clusters (K), number of customers (Num_Cust), maximum number

Input: 𝐾𝐾 (the number of clusters), midpoint coordinates of requests={1, … ,𝑁𝑁}
/* Initial clustering solution */
For 𝑘𝑘=1 to K
 Choose randomly a request 𝑖𝑖 to be an initial cluster centroid.
End For
• Compute the distance between the rest of requests and cluster centres.
• For each request, compute the appropriateness of the request withi n each cluster.
• Assign each request to the cluster with the maximum appropriateness value.
/* Generating a new clustering solution */
Repeat
 For 𝑘𝑘=1 to K
 Reassign a new cluster centre by computing the mean of requests that
 belong to cluster 𝑘𝑘.
 End For

• Compute the distance between requests and the new cluster centres.
• For each request, compute the appropriateness of the request within each cluster.
• Assign each request to the cluster with the maximum appropriateness value.

Until no change between the current clustering solution and the previous one
/* Final clustering solution */
Output: a solution with set of 𝐾𝐾 clusters

1034 CMC, vol.62, no.3, pp.1025-1051, 2020

of iterations (Max_Iter), a pheromone trail matrix that is initialised to a low value, and
the evaporation rate (𝜌𝜌).
Step 2: Initial population construction
Initially, each artificial ant starts building its solution by randomly assigning requests into
groups (clusters) such that each pair of pickup and delivery customers must belong to the
same cluster.
Step 3: Solution evaluation
The quality of each solution is evaluated in terms of the value of the objective function
(𝑂𝑂𝑂𝑂), which aims to achieve high profit at the lowest possible cost. The calculation of
the objective function depends on computing the centre of gravity (𝐶𝐶𝐶𝐶𝐶𝐶) for each cluster
(𝑘𝑘), which is used later to indicate the degree of appropriateness of customers within
clusters. The concepts of centre of gravity and appropriateness, which were used in
[Haddad (2017)] for inserting new requests into a solution, have been adapted for our
method as follows: First, the centre of gravity (𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶) of each cluster 𝑘𝑘 is computed,
with the Cartesian coordinates (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) for each request 𝑖𝑖 in the cluster 𝑘𝑘 weighted by the
customers revenue 𝑟𝑟𝑖𝑖:
𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = ∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘

∑ 𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘
 (4)

𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) = ∑ 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘
∑ 𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘

 (5)
Then, to determine whether each request 𝑖𝑖 is in the appropriate cluster, as done in the
adaptive K-means algorithm, the appropriateness 𝐴𝐴𝑖𝑖 is computed by considering the
distance between the customer and the cluster centre with respect to the request's revenue
using this equation:
𝐴𝐴𝑖𝑖,𝑘𝑘 = 𝑟𝑟𝑖𝑖

𝑑𝑑𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘)
 (6)

where 𝑑𝑑𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘) refers to the distance between request 𝑖𝑖 and the 𝐶𝐶𝐶𝐶𝐶𝐶 of the cluster 𝑘𝑘.
After this, the 𝑂𝑂𝑂𝑂 for each solution is computed as the sum of all appropriateness values
for all clusters. Then, the best solution that has the maximum 𝑂𝑂𝑂𝑂 value is selected and
memorised in the Best_Solutions matrix. The pheromone trail matrix is then updated, as
shown in the next step.
Step 4: Pheromone update
The pheromone trail matrix has an important role in improving the quality of solutions
during the progress of the algorithm. In our approach, we adopt an offline pheromone
update [Talbi (2009)]. Thus, updating the pheromone trail matrix includes two phases:
• An evaporation phase:
To avoid premature convergence and increase the diversification and exploration of the
search space, all the values of the pheromone trail matrix (𝜏𝜏𝑖𝑖,𝑘𝑘) are reduced automatically
by a fixed proportion, which is called the evaporation rate (𝜌𝜌):
𝜏𝜏𝑖𝑖,𝑘𝑘 = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖,𝑘𝑘 (7)
where the trail value 𝜏𝜏𝑖𝑖,𝑘𝑘 represents the pheromone concentration of request 𝑖𝑖 associated
to cluster 𝑘𝑘.

Hybrid Clustering Algorithms with GRASP to Construct 1035

• A reinforcement phase:
To memorise the characteristics of the best solution (𝑆𝑆∗) that was obtained in the current
iteration, the values of the pheromone trail matrix for the best solution found are increased
by a positive value only for those requests that have been included in the best solution:
𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑘𝑘 = 𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑘𝑘 + 1

𝑂𝑂𝑂𝑂(𝑆𝑆∗) (8)

Step 5: Generating new solutions
For the process of generating new solutions, we were keen to achieve two goals: first,
keeping track of the good solutions that had been obtained in previous iterations, in order
to continue searching in those areas. Second, increasing the diversification of solutions to
prevent getting stuck in a local optimum solution. To achieve the first goal
(intensification), the values in the pheromone matrix helped us to focus on the promising
areas that contain good solutions. To achieve the second goal (diversification), we used a
simple heuristic of adding some randomness. Thus, each artificial ant constructs its
solution using the following strategy:
1. The pheromone trail matrix values are normalised using this equation:

𝑝𝑝𝑖𝑖,𝑘𝑘 = 𝜏𝜏𝑖𝑖,𝑘𝑘
∑ 𝜏𝜏𝑖𝑖,𝑘𝑘𝐾𝐾
𝑘𝑘=1

 (9)

where 𝑝𝑝𝑖𝑖,𝑘𝑘 is the normalised pheromone probability for the request 𝑖𝑖 belonging to
cluster 𝑘𝑘, and 𝐾𝐾 is the number of cluster 𝑠𝑠.

2. A random number in the range between 0 and 1 is generated.
3. The request is assigned to the appropriate cluster by comparing the cluster’s value in

the normalised pheromone matrix to the random number. Thus, the request is assigned
to the cluster 𝑘𝑘 if the random number is greater than or equal to the normalized
probability of assigning the request to 𝑘𝑘 and less than the probability of assigning it to
𝑘𝑘 + 1.

4. Steps 2 and 3 are repeated for all requests to generate a new first solution. Additionally,
the same steps are repeated to generate the rest of the new solutions in the population.

After this, the new solutions are evaluated again, and the pheromone matrix is updated as
shown in Steps 3 and 4. This process is repeated several times until the stopping criterion
is reached, which in our method is reaching the maximum number of iterations.
Step 6: Selecting best solution
After several iterations, the final best clustering solution-the one with the maximum 𝑂𝑂𝑂𝑂
-is selected from the Best-Solutions matrix. This clustering solution is the best from
among all good solutions obtained at each iteration. Thus, all requests have now been
assigned to clusters, and this grouping will be used later in the routing phase to assign a
vehicle to visit the customers in each cluster.

1036 CMC, vol.62, no.3, pp.1025-1051, 2020

Algorithm 2: Pseudocode of the proposed clustering-based ACO

4.2 Routing phase
After the MVPPDP search space has been divided into clusters, with each customer pair
placed in the appropriate cluster, we must choose which customer pairs will be served
and in what order. In other words, the routing phase starts. However, there are many
restrictions to consider before starting the routing phase. First, each cluster must be
served by only one vehicle, which means that the number of vehicles used is equal to the
number of clusters. Second, each vehicle should start and end its journey from the depot
with an empty load. Furthermore, in addition to the pairing, profit, and cost constraints
that were considered in the clustering phase, precedence, trip time and vehicle capacity

Step 1: Initialization of parameters: Pop_Size, K, Num_Cust, Max_Iter, a pheromone trail
matrix 𝜏𝜏𝑖𝑖,𝑘𝑘, and the evaporation rate 𝜌𝜌.
Step 2: Constructing initial population
For S=1 to Pop_Size
 Assign the requests randomly to different clusters.
Step 3: Evaluation phase
 Compute the centre of gravity for each cluster.
 Compute the appropriateness of requests within clusters.
 Compute the objective function for each solution.
End For
Select the best solution 𝑆𝑆∗ that has the maximum objective function, and memorize it in
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 matrix.
Step 4: Pheromone update
The pheromone trail matrix of the best solution is updated by:
Evaporation phase: 𝜏𝜏𝑖𝑖,𝑘𝑘 = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖,𝑘𝑘
Reinforcement Phase: 𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑘𝑘 = 𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑘𝑘 + 1/𝑂𝑂𝑂𝑂(𝑆𝑆∗)
Step 5: Generating new solutions
For 𝑚𝑚 = 1 to 𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 For S = 1 to Pop_Size
 Normalize the pheromone trail matrix
 For 𝑖𝑖 = 1 to 𝑁𝑁𝑁𝑁𝑁𝑁_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/2

 𝑝𝑝𝑖𝑖 ,𝑘𝑘 =
𝜏𝜏𝑖𝑖,𝑘𝑘

∑ 𝜏𝜏𝑖𝑖,𝑘𝑘𝐾𝐾
𝑘𝑘=1

 Generate a random number 𝑅𝑅
 For 𝑘𝑘 = 1 to 𝐾𝐾
 If (𝑅𝑅 ≥ 𝑝𝑝(𝑖𝑖,𝑘𝑘) && 𝑅𝑅 < 𝑝𝑝(𝑖𝑖,𝑘𝑘+1))
 Assign the request 𝑖𝑖 to cluster 𝑘𝑘.
 End If
 End For
 End For
 End For
Repeat Step 3 (Evaluation) and Step 4 (Pheromone update)
End For
Step 6: Selecting best solution
Select the best solution in 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 matrix to be the final clustering solution.

Hybrid Clustering Algorithms with GRASP to Construct 1037

are other constraints that should not be violated when constructing routes. The routing
phase in the literature is usually divided into two sub-phases: the solution construction
phase and the solution improvement phase. In this paper, we considered just the first sub-
phase by proposing a new approach that based on the GRASP as explained next.
GRASP is a multi-start metaheuristic that is commonly applied to solve different
combinatorial optimisation problems. It was first introduced by Feo et al. [Feo, Thomas
and Resende (1995)]. It consists of two phases: a construction phase and an improvement
phase. The construction phase is used to build an initial feasible solution, while the
second phase is a local search used to improve the initial solution to get a local optimum.
The construction phase of GRASP combines the greedy and randomised features, where
the greedy feature selects a set of candidate solutions based on a specific goal (i.e.,
maximum profit or minimum distance) and sorts the set in what is called the restricted
candidate list (RCL), while the randomised feature randomly selects one of the best
candidate solutions from the RCL. Combining the two features helps GRASP to be fast,
competitive, and able to find quality solutions in a reasonable time. GRASP has
successfully contributed to solving multiple variants of VRPs [Layeb, Ammi and Chikhi
(2013); Duhamel, Lacomme, Prins et al. (2010); Marinakis (2012)].
In this paper, we used the construction phase of the well-known GRASP to construct an
initial solution of the MVPPDP. To increase the chance of getting effective solutions, we
used the concept of a population metaheuristic, which creates a population that contains a
set of solutions. All these solutions are improved through a number of iterations until the
stopping criterion is reached, at which time the best solution is selected. We adopted the
methods used in Alhujaylan et al. [Alhujaylan and Hosny (2019)], with several
modifications. To distinguish our method from the original, we refer to the method used
in Alhujaylan et al. [Alhujaylan and Hosny (2019)] as GRASP while we refer to our new
approach that uses clustering algorithms as GRASP with clustering, or GRASP(C). The
first difference between the two versions is that GRASP in Alhujaylan et al. [Alhujaylan
and Hosny (2019)] constructs the initial solution directly without clustering, which means
all customer pairs are candidates for selection, while in GRASP(C) the search space is
first clustered, then the initial solutions are constructed for each cluster based on the
positions of customer pairs. The rest of modifications are presented as follows.
Selecting seed customers: Each solution contains a set of routes. The number of routes
is equal to the number of clusters, with each route served by only one vehicle. Each route
in a solution is constructed by first selecting a seed customer based on the computed
customer benefit (CB). In GRASP, the CB is calculated by dividing the revenue gained
from the delivery customer by the distance between the customers in the pair. By contrast,
in GRASP(C) the CB is calculated based on the distance between the depot and the
pickup customer. Thus, the pickup customer that is geographically closest to the depot is
selected to be the seed customer which is inserted in the route first.
Constructing the routes: To fill the route with unvisited customers, the following process
is repeated until either the maximum time allowed for a trip is reached or all unvisited
customers have been served. In GRASP [Alhujaylan and Hosny (2019)], all unvisited
customer pairs are inserted individually in the best position, such that the best position for
the pickup customer is selected before that of the delivery customer, in order to meet the

1038 CMC, vol.62, no.3, pp.1025-1051, 2020

precedence constraint. To clarify the meaning of best position, we present the following
example [Alhujaylan and Hosny (2019)]: suppose we have a route {0,𝑎𝑎, 𝑏𝑏,−𝑏𝑏,−𝑎𝑎}, where
{0} is the depot, {𝑎𝑎, 𝑏𝑏} are the pickup customers, and {−𝑎𝑎,−𝑏𝑏} are the delivery customers.
Assume that an unvisited customer pair (𝑐𝑐,−𝑐𝑐) is selected for insertion into the best
position in this route. To satisfy the precedence constraint, the best position of the pickup
customer is assigned first by computing its insertion cost using the equation:
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐(0, 𝑐𝑐) + 𝑐𝑐(𝑐𝑐,𝑎𝑎) − 𝑐𝑐(0,𝑎𝑎) (10)
where 𝑐𝑐 represents the distance cost between two vertices. This equation is applied for all
slots in the route, and the position that has the lowest insertion cost is selected for the
pickup customer. The same equation is then used to insert the delivery customer with
consideration of the position of the pickup customer. After determining the best position
for the customer pair, the insertion ratio (IR) is computed as follows:
𝐼𝐼𝐼𝐼𝑐𝑐,−𝑐𝑐 = 𝑟𝑟𝑐𝑐,−𝑐𝑐

(𝑐𝑐0,𝑐𝑐+𝑐𝑐𝑐𝑐,𝑎𝑎−𝑐𝑐0,𝑎𝑎) + (𝑐𝑐𝑎𝑎,−𝑐𝑐+𝑐𝑐−𝑐𝑐,−𝑎𝑎−𝑐𝑐𝑎𝑎,−𝑎𝑎)
 (11)

where 𝑟𝑟 is the revenue of customer pair (c,-c). Using this method, the unvisited customer
pairs are inserted into the candidate solution set (CSS) in descending order based on IR
values, and then the first elements of the CSS are assigned to the RCL. After that, one
unvisited customer pair is selected randomly from the RCL and inserted into the route.
This process is repeated for the remaining unvisited customer pairs until either the
maximum trip time is reached or no more customers need to be served. This approach,
however, is very time consuming; therefore, we modified it in GRASP(C) by changing
the method for computing the IR as follows:
𝐼𝐼𝐼𝐼2𝑐𝑐,−𝑐𝑐 = 𝑟𝑟𝑐𝑐,−𝑐𝑐

𝑐𝑐(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐)
 (12)

where 𝑐𝑐(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐) is the distance between the depot and the pickup customer. The
unvisited customer pairs are then inserted into the CSS in descending order based on IR2
values, after which we assign the first elements of the CSS to the RCL. Next, one
unvisited customer pair is selected randomly from the RCL and inserted into the best
position in the route with respect to vehicle capacity, time, and precedence constraints.
Evaluate solution: After constructing all routes, the quality of the solution is evaluated
using Eq. (1). The value of the objective function will later be compared to the values for
other solutions.
Local best solution: After all the solutions in the population are constructed, the values
of their objective functions are compared. The solution with the maximum objective
function value is selected to be the local best solution in this iteration.
Final best solution: Again, all the local best solutions selected in each iteration are
compared, and the one with the maximum objective function value is chosen to be an initial
solution for the MVPPDP.
The outline of the construction phase of our GRASP(C) is presented in Algorithm 3,
using the same parameters used in Algorithm 2. The meanings of new notations are as
follows: Num-Clusters: number of clusters, CSS: candidate solutions set, RCL: restricted
candidate list, US: un-served pairs of customers, and SM: solutions matrix that contains
the best solutions in the population for each iteration.

Hybrid Clustering Algorithms with GRASP to Construct 1039

Algorithm 3: Pseudocode of GRASP(C)

5 Computational experiments
The computational experiments aim to compare the performance of our proposed algorithm
with the construction heuristics: the greedy construction heuristic (C1) and the two-stage
cheapest insertion heuristic (C2) [Küçüktepe (2014)], and GRASP [Alhujaylan and Hosny
(2019)]. All proposed algorithms have been coded in MATLAB (R2017b) and executed
using a laptop computer with an Intel Core i7-4510U CPU @ 2.00 GHz (2601 MHz, two
cores, four logical processors). Before we present the results of experiment, the used
datasets and parameter tuning details are described in the following sub-sections.

5.1 Test instances
The same instances that were used in Gansterer et al. [Gansterer, Küçüktepe and Hartl
(2017)] are used here to test our approach. The data instances are 36 instances that are
classified into three groups: small size (20 and 50 customers served by two and three
vehicles, respectively), medium size (100 and 250 customers served by four and five
vehicles, respectively) and large size (500 and 1000 customers served by six and eight
vehicles, respectively). Moreover, each group has 12 instances. These instances diverge
from each other with respect to time and revenue. The total time limit is set to be either
small or large, with the range within 2500 to 15000 to generate short and long routes.
Also, the amounts of revenues are set to be either equal for all customers, proportional to

For 𝑖𝑖=1 to Max_Iter
 For 𝑆𝑆=1 to Pop_Size
 For 𝑘𝑘=1 to Num_Clusters
 Phase 1: Seed Vertex Selection
 Step 1: Compute the distance between the depot and the pickup customers
 Step 2: Select the pair that has the closet pickup customer to be seed customer
 Phase 2: Route Construction
 While Maximum Route Time is not violated
 Step 3: Compute the insertion ratio (IR2) for all unvisited customers
 Step 4: Put all the candidate customer pairs in the 𝐶𝐶𝐶𝐶𝐶𝐶 in descending order
 of IR2
 Step 5: Assign half of the candidate customer pairs in the 𝐶𝐶𝐶𝐶𝐶𝐶 to the 𝑅𝑅𝑅𝑅𝑅𝑅
 Step 6: Pick one customer pair randomly from the 𝑅𝑅𝑅𝑅𝑅𝑅 and insert it in its
 best position in the route after checking the precedence, time, and
 capacity constraints
 End While
 End For
 Step 7: Compute the objective function for the solution, and assign the solution to the 𝑆𝑆𝑆𝑆
 End For
 Step 8: Select the best solution that has the highest objective function in 𝑆𝑆𝑆𝑆 and assign it
 to Final-Best-Solutions matrix
End For
Step 9: Select the best solution that has the highest objective function in the Final-Best-
Solutions matrix to be the initial solution for the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

1040 CMC, vol.62, no.3, pp.1025-1051, 2020

the demands, or random. The revenue is gained from the delivery customer after delivery
of goods coming from the pickup customer. The quantity of goods is set to be an integer
value from 1 to 50.

5.2 Parameter tuning
5.2.1 ACO parameters tuning
There are only three parameters that need to be tuned in the ACO: size of population,
number of iterations, and evaporation rate (𝜌𝜌). Nine datasets were used to test these
parameters: 50 customers with fixed revenue to generate a short route (50-F-S), 50
customers with proportional revenue to generate a short route (50-P-S), 50 customers
with random revenue to generate a short route (50-R-S), 250 customers with fixed
revenue to generate a short route (250-P-S), 250 customers with proportional revenue to
generate a short route (250-P-S), 250 customers with random revenue to generate a short
route (250-R-S), 1000 customers with fixed revenue to generate a short route (1000-R-S),
1000 customers with proportional revenue to generate a short route (1000-P-S), and 1000
customers with random revenue to generate a short route (1000-R-S). Since the time
constraint is not considered in the clustering phase, we took only instances that generated
short routes because the result is the same as that for generating long routes. The details
of testing each parameter are as follows.

Population size
Each data instance was tested with different population sizes: 10, 20, 30, and 40. Tab. 1
illustrates the results of tuning the population size. These show that increasing the
population size beyond 30 did not lead to an improvement in the OF. Thus, the
population size was taken to be 30.

Table 1: Results of tuning the population size of ACO

Dataset
Instances

Population Size

10 20 30 40
50-F-S 6.62 7.77 12.24 12.24
50-P-S 26.59 30.13 47.55 47.55
50-R-S 17.94 24.49 42.23 42.23
250-F-S 10.32 10.32 10.32 10.32
250-P-S 1.53 1.54 1.548 1.548
250-R-S 28.04 28. 26 28.26 28.26
1000-F-S 1.64 1.72 1.72 1.721
1000-P-S 4.85 5.03 5 5
1000-R-S 1.50 1.54 1.63 1.63

Number of iterations
Each data instance was also tested with different numbers of iterations: 100 and 200. Tab. 2
presents the values of the OF after setting the population size to 30, as determined in the

Hybrid Clustering Algorithms with GRASP to Construct 1041

previous experiment. The results of testing showed that there was no enhancement in the OF
values after 100 iterations. Thus, the maximum number of iterations was taken to be 100.

Table 2: Results of tuning the number of iterations of ACO

Dataset Instances
Number of Iterations

100 250
50-F-S 6.621507 6.621507
50-P-S 26.59067 26.59067
50-R-S 17.94286 17.94286
250-F-S 10.32055 10.32055
250-P-S 1.537698 1.537698
250-R-S 28.04222 28.04222
1000-F-S 1.64904 1.64904
1000-P-S 4.858068 4.858068
1000-R-S 1.505093 1.505093

Evaporation rate
Once again the same instances were used to select a suitable value for the evaporation rate,
which is used to increase diversification of the search space and to prevent the algorithm is
becoming stuck in local optima. After setting the population size and number of iterations to
30 and 100, respectively, several tests were run with values of 𝜌𝜌=0.2, 0.5, and 0.8. Tab. 3
illustrates that there was no change in OF when the value of 𝜌𝜌 was changed.

Table 3: Results of tuning evaporation rate of (ACO)

Dataset
Instances

Evaporation rate (𝛒𝛒)

0.2 0.5 0.8
50-F-S 12.24808 12.24808 12.24808
50-P-S 47.55501 47.55501 47.55501
50-R-S 42.23965 42.23965 42.23965
250-F-S 10.32093 10.32093 10.32093
250-P-S 1.548393 1.548393 1.548393
250-R-S 28.26517 28.26517 28.26517
1000-F-S 1.721865 1.721865 1.721865
1000-P-S 5.004374 5.004374 5.004374
1000-R-S 1.631445 1.631445 1.631445

5.2.2 Parameter tuning for GRASP(C)
In GRASP(C), only two parameters need to be tuned: the size of the RCL and the number
of iterations (Max_Iter). In our method, we added a third parameter which is the population
size (Pop_Size). Empirical experiments were performed to select the most suitable value
for each parameter. Since the routing process needs more time than the clustering process,
we selected only medium-sized instances with different situations (revenue either equal,

1042 CMC, vol.62, no.3, pp.1025-1051, 2020

proportional to demand, or random and time either long or short) to test these parameters.
Six medium-sized data instances were used containing 100 customers served by four
vehicles, each with a capacity of 80. The descriptions of these instances are as follows: 100
customers with fixed revenue to generate a short route (100-F-S), 100 customers with fixed
revenue to generate a long route (100-F-L), 100 customers with proportional revenue to
generate a short route (100-P-S), 100 customers with proportional revenue to generate a
long route (100-P-L), 100 customers with random revenue to generate a short route (100-R-
S), 100 customers with random revenue to generate a long route (100-R-L). The details of
testing each parameter are below.

The restricted candidate list (RCL) size
Since we want to create a population that contains sets of solutions, the diversity of
solutions is important. Thus, half of those solutions that are found in the CSS (candidate
solution set) were assigned to the RCL; that is, if the number of initial solutions in the CSS
was n, 𝑪𝑪𝑺𝑺𝑺𝑺 = 𝒏𝒏 then ⌈ 𝒏𝒏

𝟐𝟐
 ⌉ solutions were assigned to the RCL. This value was chosen by

trial, because selecting a small RCL resulted in a population of similar solutions.

Number of iterations
The number of iterations was set to be 10, 50, 100, or 500. As seen in Tab. 4, there was no
enhancement of OF values once the number of iterations was increased to more than 100.

Table 4: Results of tuning the number of iterations of GRASP(C)

Dataset
Number of iterations

10 50 100 500
100-F-S 35467.92 35467.92 35467.92 35467.92
100-F-L 52217.92 57389 57389 57389
100-P-S 62858.16 62858.16 64460.88 64460.88

100-P-L 107447.2 107447.2 109137.1 109137.1
100-R-S 62357.97 62357.97 62357.97 62357.97
100-R-L 105606.3 108581.8 111380.2 111380.2

Population Size
Several values of population size were tested: 10, 20, 30, and 40. As seen in Tab. 5, there
was no enhancement of OF values once the number of iterations was increased to more
than 100. Also, after setting the number of iterations to 100, increasing the population
size to more than 30 did not lead to an enhancement of OF values.

Hybrid Clustering Algorithms with GRASP to Construct 1043

Table 5: Results of tuning the population size of GRASP(C)

5.3 Experimental results
In this experiment, we show the results for the MVPPDP using our GRASP(C) approach,
in which the initial solution was constructed after clustering the search space using the
clustering methods K-means, adaptive K-means, or ACO. Both ACO and GRASP(C)
were run five times for every dataset, since they are stochastic approaches, while the K-
means and the adaptive K-means were run one time each, because they are deterministic
approaches. We compare our results with the GRASP proposed in Alhujaylan et al.
[Alhujaylan and Hosny (2019)] (as explained in Section 4.2), and the greedy construction
heuristic (C1) and the two-stage cheapest insertion heuristic (C2) presented in Küçüktepe
[Küçüktepe (2014)].
Tab. 6 presents our results for the MVPPDP using our methods: K-means-GRASP(C),
adaptive K-means-GRASP(C), and ACO-GRASP(C). The results are calculated in terms
of the OF of the solution (i.e., the gained profit), which is equal to total revenue minus
total travelling cost, as previously shown in Eq. (1). Thus, the larger the OF value, the
better the solution obtained. The results of our proposed methods are also compared with
the results of C1, C2 [Küçüktepe (2014)], and GRASP [Alhujaylan and Hosny (2019)] in
Tab. 6. In the table, the first column presents the name of the instance. The following two
columns present the results of the C1 and C2 algorithms in terms of the best OF value.
The third through sixth columns show the results of GRASP, K-means-GRASP(C),
adaptive K-means-GRASP(C), and ACO-GRASP(C), in terms of the average and best
objective values of five runs. For each group of instances of a particular size, the average
results are shown in the highlighted row.

Dataset
Population size

10 20 30 40

100-F-S 35467.92 35467.92 35467.92 36037.47
100-F-L 52217.92 57385.29 57569.88 60919.45
100-P-S 62858.16 71005.55 71005.55 65797.14
100-P-L 107447.2 117736.8 117736.8 112448.1
100-R-S 62357.97 65295.61 70818.36 66870.58
100-R-L 105606.3 107314.2 107314.2 101695.6

1044 CMC, vol.62, no.3, pp.1025-1051, 2020

Table 6: Comparing construction heuristics’ performances in terms of profits

ACO-GRASP(C) Adaptive K-means-
GRASP(C)

K-means-GRASP(C) GRASP
C2 C1 Dataset

Best Average Best Average Best Average Best Average
17557.29 17557.29 22329.25 22329.25 30427.58 30427.58 18097.3 18097.3 21400 16185.4 1-20-F-S
36322.33 36322.33 39240.95 39240.95 36923.73 36923.73 37937.3 37937.2 32400.1 22006.2 2-20-F-L
34018.63 34010.12 42589.38 42589.38 42589.38 42589.38 39957.7 39957.7 43528 39646.5 3-20-P-S
46346.57 46346.57 56671.54 56671.54 56671.54 56671.54 57763.9 57763.9 55775.5 54849.9 4-20-P-L
24420.96 24420.96 27498.05 27498.05 30040 30040 30039.9 30039.9 26884 22954.4 5-20-R-S
37501.81 37501.81 37610.41 37610.41 40714.37 40714.37 42845.8 42845.9 41933 30486.7 6-20-R-L

32694.6 32693.18 37656.6 37656.6 39561.1 39561.1 37773.65 37773.65 36986.7667 31021.5
167

Average-20

25123.15 25123.15 21603.83 21603.83 21603.83 21603.83 18443.6 18396.2 17958.2 15000.5 7-50-F-S
50351.5 48279.06 50320.08 48325.12 50320.08 48392.87 33259.2 32686.3 43008.3 34988.2 8-50-F-L
55643.25 55643.25 42727.95 42727.95 40566.93 40566.93 53631.8 53631.8 38796.9 53694.8 9-50-P-S
106544.8 105571.7 117098.7 115622.4 126971.1 120623.3 92502.1 91164.1 62731.2 99109 10-50-P-L
29969.16 29969.16 25557.18 25557.18 25776.83 25776.83 24364.5 24364.4 24619.2 19789.7 11-50-R-S
61689.7 58250.91 76620.08 75116.74 76862.04 75878.26 54712.1 52889.2 51723.3 45326.9 12-50-R-L

54886.93 53806.21 55654.64 54825.54 57016.8 55473.66 46152.22 45522 39806.1833 44651.5
167

Average-50

27213.72 25243.62 36058.97 35308.75 35925.36 35194.98 13749.3 13369.3 28818.1 19033.1 13-100-F-S
49279.54 45640.54 61113.85 59725.73 61319.54 58588.92 28692.9 27336.9 55322.2 31825.6 14-100-F-L
42921.71 42801.93 59118.71 58207.45 60896.45 58671.04 54475.1 51218.1 46547.4 44329.1 15-100-P-S
97599.87 93169.67 116683.5 108926 102952.5 100866.9 86141.8 80299.3 79541.3 69459.3 16-100-P-L
46740.8 42829.24 61120.87 56602.73 61503.24 58391.44 46450.7 46160.4 70214.6 49912.7 17-100-R-S
89791.18 86177.11 112673.5 106575.1 103656.9 100849 77136.6 76019.9 91663.1 63116.1 18-100-R-L

58924.47 55977.02 74461.56 70890.96 71042.33 68760.38 51107.73 49067.32 62017.7833 45552.6
4

Average -100

32009.7 29917.92 39663.81 38787.25 36215.5 32300.89 11231.9 10831.9 40906.1 27676.1 19-250-F-S
58495.79 56683.08 85651.42 82560.46 65810.42 64273.03 50980.9 49193.5 67845.1 44456 20-250-F-L
75400.5 70527.81 91554.54 82494.04 73036.63 71908.14 34606.8 33041.9 43247.3 63930 21-250-P-S
129315.6 127970.2 159844.5 154525.5 135823.6 131491.2 107171.1 102591 94126.8 112471 22-250-P-L
82512.05 78162.92 100940.6 95609.78 96745.15 87701.57 41914 40446.5 102873 79486.1 23-250-R-S
162929.8 157432.1 188565.6 180403.2 184722.9 177237.1 129344.6 128304.5 143886 130371 24-250-R-L

90110.59 86782.33 111036.7 105730 98725.69 94151.99 62541.55 60734.88 83647.3833 71898.3
667

Average-250

62680.34 53441.02 78462.57 76091.86 76799.28 71785.54 24012.2 21758.3 78580.2 49210 25-500-F-S
93441.86 90560.08 136732.3 133532.4 124711.1 120276.4 85889.1 84616.4 135652 73299.8 26-500-F-L
109622.2 106055.3 152594.3 147588 148501.2 141348.9 51297.9 49864.8 84513.6 124075 27-500-P-S
190679.2 183839 249010.4 241347.9 251008.2 240201.4 142740.2 138057.2 169098 179001 28-500-P-L
124116.6 118296.2 166508.9 162507.1 181634.1 168412.9 56901.7 54859.3 116568 108049 29-500-R-S
225958.7 213106.7 282335.3 276322.4 280771.9 273419.2 166232.5 163822.4 218965 170205 30-500-R-L

134416.5 127549.7 177607.3 172898.3 177237.6 169240.7 87845.6 85496.4 133,896.133
117306.
633 Average-500

21662.18 20397.7 50359.66 48644.53 54365.44 48979.91 11045.9 9132.4 66345.3 27655.6 31-1000-F-S
48585.29 47436.16 106034.7 96498.02 96828.26 93458.25 58068.2 56276.1 112840 32078.4 32-1000-F-L
208211.4 201718.7 294908.3 284393.9 295025.2 285728 141167.4 134015.9 152307 264997 33-1000-P-S
375047.2 367480.1 538695.3 505742 524767.3 517951.6 340418.4 325103.1 318268 380514 34-1000-P-L
181163.4 175908.8 248328.1 242126 261472.5 252784.2 102051 99173.9 197083 193390 35-1000-R-S
326404 320173.8 447702.6 439890.4 483610.4 461578.9 271613.1 268887.4 362266 275805 36-1000-R-L
193512.2 188852.6 281004.8 269549.1 286011.5 276746.8 154060.7 148764.8 201518.217 195740 Average-1000

Hybrid Clustering Algorithms with GRASP to Construct 1045

As can be seen from the results in Tab. 6, all the proposed algorithms demonstrated good
performance, on average, in solving the small, medium, and large-sized data instances,
compared to previous approaches from the literature. We achieved new best solutions
(bold values) for 25 sets of data instances with K-means-GRASP(C), for 26 sets with
adaptive-K-means-GRASP(C), and for 13 sets with ACO-GRASP(C). We also found
solutions (underlined values) that were better than at least one of the algorithms C1, C2,
or GRASP solutions as follows: 11 with K-means-GRASP(C), 10 with adaptive-K-
means-GRASP(C), and 13 with ACO-GRASP(C).
On the other hand, when we compared our construction heuristics that rely on first
clustering the search space and then constructing the initial solution using GRASP(C), we
found that adaptive K-means-GRASP(C) outperformed both K-means-GRASP(C) and
ACO-GRASP(C) in the number of new best solutions produced (26 compared to 25 and
13, respectively). Looking at the overall average results for each category, though, we
realize that the K-means-GRASP(C) method has a better performance than the other two
methods with respect to small size instances (20 and 50 customers), while adaptive K-
means-GRASP(C) outperformed the other methods in medium and large size instances
(with the exception of instances of size 1000 customers). The reason for this last
observation could be that the K-means clustering is based on distance only, which means
the customer pairs that are geographically close are grouped together. Since this
particular category of instances is very challenging, due to the large number of customers,
decreasing the distance between customer pairs, by grouping them in the same cluster
makes it possible to serve more customer pairs without exceeding the total trip time, thus
increasing the value of the OF.
In addition, looking at the average results for each instance set, the adaptive K-means-
GRASP(C) outperformed C1 and C2, while ACO-GRASP(C) demonstrated acceptable
performance compared to those heuristics, although it was inferior to both K-means-
GRASP(C) and adaptive K-means-GRASP(C). The reason for that could be the approach
used in our ACO which has a significant effect on the results. In fact, both K-means and
adaptive K-means are based on static computations during the clustering process; K-means
clusters customer pairs based on distance, and adaptive K-means clusters them based on
distance and revenue. In contrast, ACO clustering is based on a criterion other than the
distance and revenue, which is a random insertion heuristic that is used to insert the
customer pairs into the appropriate clusters. In other words, for each customer pair, a
random number is generated and compared to the pheromone matrix values of the clusters,
and the cluster with a value greater than the random number is selected. Thus, the
randomness feature of ACO might contribute to inaccurate clustering of customer pairs.
Fig. 3 presents the performance of all proposed construction heuristics compared with C1,
C2, and GRASP in terms of profits. It can be observed from this figure that both K-
means-GRASP(C) and adaptive K-means-GRASP(C) have comparable results which
clearly outperform all other construction heuristics.
On the other hand, we also compared between the construction heuristics based on the
execution time (in seconds). Since the execution time is not reported in Küçüktepe et al.
[Küçüktepe (2014)], we compared our proposed algorithm with the GRASP of
Alhujaylan et al. [Alhujaylan and Hosny (2019)], as shown in Tab. 7. Tab. 7 illustrates

1046 CMC, vol.62, no.3, pp.1025-1051, 2020

that all our clustering algorithms have an effective role in speeding the search process.
Also, the modifications that were done on GRASP contribute to making GRASP(C)
faster than its predecessor (recall that GRASP selects the best position for each unvisited
customer pair then computes their IRs to select one pair randomly in descending order,
whereas GRASP(C) first computes the IR2, selects one pair randomly from the first
elements in descending order, and then selects the best position for one pair only).
Moreover, the time performance of our algorithms, K-means-GRASP(C), adaptive K-
means-GRASP(C), ACO-GRASP(C), is comparable, although ACO-GRASP(C) shows
slightly shorter processing time.

Figure 3: Construction heuristics’ performances in terms of average of profits

Therefore, since the three algorithms are comparable with respect to time, we compared
between one of them (adaptive K-means-GRASP(C),) and the GRASP of Alhujaylan et
al. [Alhujaylan and Hosny (2019)] in terms of time (seconds) as shown in Fig. 4, where
the average times for each instance (highlighted rows in Tab. 7) are used to compare their
time performances. The huge difference in processing time between our algorithm and
the previous GRASP of Alhujaylan et al. [Alhujaylan and Hosny (2019)] is obvious in
this figure.
In general, the results in Tabs. 6 and 7 and Figs. 4 and 5 indicate that the proposed
algorithms contribute to achieving excellent performance in terms of both quality of
solutions and processing time compared with all rival algorithms, GRASP, C1, and C2.

Table 7: Comparison of the results of GRASP, K-means-GRASP(C), adaptive K-means-
GRASP(C), and ACO-GRASP(C) in terms of time (seconds)

K-means-
GRASP(C)

Adaptive K-
means-
GRASP(C)

ACO-
GRASP(C)

GRASP Dataset

9.288224 6.884987 5.90247 15.449 1-20-F-S
12.18949 10.71063 11.1642 27.297 2-20-F-L

0.00 100,000.00200,000.00300,000.00

C1

C2

GRASP

K-means-GRASP(C)

Adaptive K-means-GRASP(C)

ACO-GRASP(C)

Objective function

Average of 1000

Average of 500

Average of 250

Average of 100

Average of 50

Average of 20

Hybrid Clustering Algorithms with GRASP to Construct 1047

7.016141 6.698972 6.20353 12.624 3-20-P-S
11.68066 11.47247 9.74447 31.08 4-20-P-L
6.02175 6.377124 6.79677 18.464 5-20-R-S
12.17539 9.811818 10.8069 27.343 6-20-R-L
9.73 8.66 8.43639 22.04283 Average-20
10.19757 10.29613 11.6429 57.892 7-50-F-S
21.36664 21.12624 21.3455 108.46 8-50-F-L
9.228021 8.649488 10.0189 54.567 9-50-P-S
17.4092 17.11283 17.8235 104.59 10-50-P-L
10.43683 10.73269 10.5924 57.896 11-50-R-S
19.97569 18.63418 17.6683 102.72 12-50-R-L
14.77 14.43 14.8486 81.02083 Average-50
25.97908 25.8288 23.7467 265.74 13-100-F-S
39.55519 38.44395 33.4579 487.07 14-100-F-L
23.24088 20.79652 20.1179 262.4 15-100-P-S
35.22743 32.60923 30.0171 534.28 16-100-P-L
22.59382 22.63894 23.1374 266.37 17-100-R-S
35.77533 31.4858 31.9653 552.56 18-100-R-L
30.40 28.63 27.0737 394.7367 Average-100
63.24167 66.41826 68.1295 2,068 19-250-F-S
94.44695 110.694 98.1781 9,381.30 20-250-F-L
55.29911 60.33002 55.4232 2,033.80 21-250-P-S
85.51775 98.99081 84.761 8,213.50 22-250-P-L
64.56845 63.83406 59.5004 2,331.10 23-250-R-S
88.4645 95.24033 90.3252 8,401.70 24-250-R-L
75.26 82.58 76.0529 5,404.90 Average-250
155.6808 151.3597 145.061 17,521 25-500-F-S
206.2777 211.4198 201.63 61,818 26-500-F-L
139.7371 135.8799 129.102 16,479 27-500-P-S
191.1451 187.6508 177.631 54,809 28-500-P-L
149.0228 151.0996 136.335 16,931 29-500-R-S
197.4054 202.2808 188.597 56,801 30-500-R-L
173.21 173.28 163.059 37,393.17 Average-500
426.7781 427.7917 425.681 48,679 31-1000-F-S
584.803 603.3949 582.996 115,990 32-1000-F-L
368.8414 371.9838 341.3332 42,604 33-1000-P-S
521.5677 531.1365 475.1481 985,910 34-1000-P-L
418.2105 404.2715 366.4023 52,068 35-1000-R-S
570.3743 558.1441 503.1929 107,973.30 36-1000-R-L
482 482.79 449.126 225,537.40 Average-1,000

1048 CMC, vol.62, no.3, pp.1025-1051, 2020

Figure 4: Comparison of the average results of GRASP and adaptive K-means-GRASP(C)
in terms of time (seconds)

6 Conclusion
In this paper we presented new heuristics to construct initial solutions for the multi-vehicle
profitable pickup and delivery problem (MVPPDP). The heuristics are based on first
clustering the search space of the MVPPDP using three clustering methods: K-means,
adaptive K-means, and ACO (ant colony optimisation). Then, a modified version of greedy
randomised adaptive search procedure (GRASP) has been used to construct the initial
MVPPDP solution based on the results of each clustering algorithm. We compared our
results with those from the other construction heuristics that have been previously used for
the MVPPDP. The experimental results proved the effectiveness of our algorithms in terms
of both the solution quality and processing time. The results obtained in our research are
beneficial for small-scale pickup and delivery companies with limited resources to improve
their planning by reducing their cost and increasing their profit.
In future work, we will improve the initial solutions by using population metaheuristics that
combine two features: 1) intensification, to increase the opportunities for getting good
solutions, and 2) diversification, to prevent becoming stuck in local optima. Moreover,
suitable neighbourhood operators will be carefully selected to be applicable with the
constraints of the MVPPDP, thus increasing the chances of producing high-quality solutions.

Acknowledgment: The authors would like to thank Deanship of scientific research for
funding and supporting this research through the initiative of DSR Graduate Students
Research Support (GSR).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Alhujaylan, A. I.; Hosny, M. I. (2019): A GRASP-based solution construction approach
for the multi-vehicle profitable pickup and delivery problem. International Journal of
Advanced Computer Science and Applications, vol. 10, no. 4, pp. 111-120.
Aras, N.; Aksen, D.; Tuğrul, T. M. (2011): Selective multi-depot vehicle routing

0.00
50,000.00

100,000.00
150,000.00
200,000.00
250,000.00

Ti
m

e
(s

ec
on

ds
)

Adaptive K-means-
GRASP(C)

GRASP

Hybrid Clustering Algorithms with GRASP to Construct 1049

problem with pricing. Transportation Research Part C: Emerging Technologies, vol. 19,
no. 5, pp. 866-884.
Archetti, C.; Speranza, M. G.; Vigo, D. (2014): Chapter 10: vehicle routing problems
with profits. Vehicle Routing: Problems, Methods, and Applications, Second Edition, pp.
273-297.
Baniamerian, A.; Bashiri, M.; Tavakkoli-Moghaddam, R. (2019): Modified variable
neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing
problem with cross-docking, Applied Soft Computing, vol. 75, pp. 441-460.
Barnhart, C.; Jin, H.; Vance, P. H. (2000): Railroad blocking: a network design
application. Operations Research, vol. 48, no. 4, pp. 603-614.
Bell, J. E.; Patrick R. M. (2004): Ant colony optimization techniques for the vehicle
routing problem. Advanced Engineering Informatics, vol. 18, no. 1, pp.41-48.
Bruck, B. P.; dos Santos, A. G.; Arroyo, J. E. C. (2012): Hybrid metaheuristic for the
single vehicle routing problem with deliveries and selective pickups. IEEE Congress on
Evolutionary Computation, pp. 1-8.
Coelho, I. M.; Munhoz, P. L.; Haddad, M. N.; Souza, M. J.; Ochi, L. S. (2012): A
hybrid heuristic based on general variable neighborhood search for the single vehicle
routing problem with deliveries and selective pickups. Electronic Notes in Discrete
Mathematics, vol. 39, pp. 99-106.
Coelho, I. M.; Munhoz, P. L.; Ochi, L. S.; Souza, M. J.; Bentes, C. et al. (2016): An
integrated CPU-GPU heuristic inspired on variable neighbourhood search for the single
vehicle routing problem with deliveries and selective pickups. International Journal of
Production Research, vol. 54, no. 4, pp. 945-962.
Colorni, A.; Dorigo, M.; Maniezzo, V. (1991): Distributed optimization by ant colonies.
Proceedings of the First European Conference on Artificial Life, vol. 142, pp. 134-142.
Cornillier, F.; Boctor, F. F.; Laporte, G.; Renaud, J. (2008): An exact algorithm for
the petrol station replenishment problem. Journal of the Operational Research Society,
vol. 59, no. 5, pp. 607-615.
Dahan, F.; El Hindi, K.; Mathkour, H.; AlSalman, H. (2019): Dynamic flying ant
colony optimization (DFACO) for solving the traveling salesman problem. Sensors, vol.
19, no. 8, pp. 1837.
Díaz-Parra, O.; Ruiz-Vanoye, O.; Bernábe, J. A.; Fuentes-Penna, B.; Fuentes-Penna,
A. et al. (2014): A survey of transportation problems. Journal of Applied Mathematics,
vol. 2014. pp. 1-17.
Du, H. (2010): Data Mining Techniques and Applications. An Introduction, Cengage
Learning: Andover.
Duhamel, C.; Lacomme, P.; Prins, C.; Prodhon, C.; (2010): A GRASP×ELS approach
for the capacitated location-routing problem. Computers & Operations Research, vol. 37,
no. 11, pp. 1912-1923.
Feo, T. A.; Resende, M. G. (1995): Greedy randomized adaptive search procedures.
Journal of Global Optimization, vol. 6, no. 2, pp. 109-133.
Gansterer, M.; Hartl, R.; Vetschera, R. (2019): The cost of incentive compatibility in

1050 CMC, vol.62, no.3, pp.1025-1051, 2020

auction-based mechanisms for carrier collaboration. Networks, vol. 73, no. 4, pp. 490-514.
Gansterer, M.; Küçüktepe, M.; Hartl, R. F. (2017): The multi-vehicle profitable
pickup and delivery problem. OR Spectrum, vol. 39, no. 1, pp. 303-319.
Gribkovskaia, I.; Laporte, G.; Shyshou, A. (2008): The single vehicle routing problem
with deliveries and selective pickups. Computers & Operations Research, vol. 35, no. 9,
pp. 2908-2924.
Gutiérrez-Jarpa, G.; Desaulniers, G.; Laporte, G.; Marianov, V. (2010): A branch-
and-price algorithm for the vehicle routing problem with deliveries, selective pickups and
time windows. European Journal of Operational Research, vol. 206, no. 2, pp. 341-349.
Haddad, M. (2017): An Efficient Heuristic for One-to-One Pickup and Delivery
Problems. Fluminense Federal Uneversity.
Ho, S. C.; Szeto, W. Y. (2016): GRASP with path relinking for the selective pickup and
delivery problem. Expert Systems with Applications, vol. 51, pp. 14-25.
Jafar, O. M.; Sivakumar, R. (2010): Ant-based clustering algorithms: a brief survey.
International Journal of Computer Theory and Engineering, vol. 2, no. 5, pp. 787.
Küçüktepe, M. (2014): A General Variable Neighbourhood Search Algorithm for the
Multi-Vehicle Profitable Pickup and Delivery Problem. University of Vienna.
Layeb, A.; Ammi, M.; Chikhi, S. (2013): A GRASP algorithm based on new
randomized heuristic for vehicle routing problem. Journal of Computing and Information
Technology, vol. 21, no. 1, pp. 35-46.
Liao, X. L.; Ting, C. K. (2010): An evolutionary approach for the selective pickup and
delivery problem. IEEE Congress on Evolutionary Computation, pp. 1-8.
Lin, C.; Choy, K. L.; Ho, G. T.; Chung, S. H.; Lam, H. Y. (2014): Survey of green
vehicle routing problem: past and future trends. Expert Systems with Applications, vol. 41,
no. 4, pp. 1118-1138.
MacQueen, J. (1967): Some methods for classification and analysis of multivariate
observations. Proceedings of the fifth Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281-297.
Marinakis, Y. (2012): Multiple phase neighborhood search-GRASP for the capacitated
vehicle routing problem. Expert Systems with Applications, vol. 39, no. 8, pp. 6807-6815.
Privé, J.; Renaud, J.; Boctor, F.; Laporte, G. (2006): Solving a vehicle-routing
problem arising in soft-drink distribution. Journal of the Operational Research Society,
vol. 57, no. 9, pp. 1045-1052.
Qiu, X.; Feuerriegel, S.; Neumann, D. (2017): Making the most of fleets: a profit-
maximizing multi-vehicle pickup and delivery selection problem. European Journal of
Operational Research, vol. 259, no. 1, pp. 155-168.
Saha, J. (1970): An algorithm for bus scheduling problems. Journal of the Operational
Research Society, vol. 21, no. 4, pp. 463-474.
Talbi, E. G. (2009): Metaheuristics: From Design to Implementation. John Wiley & Sons.
Ting, C. K.; Liao, X. L. (2013): The selective pickup and delivery problem: formulation
and a memetic algorithm. International Journal of Production Economics, vol. 141, no. 1,

Hybrid Clustering Algorithms with GRASP to Construct 1051

pp. 199-211.
Toth, P.; Vigo, D. (2014): Vehicle Routing: Problems, Methods, and Applications.
Society for Industrial and Applied Mathematics.
Wen, M.; Larsen, J.; Clausen, J.; Cordeau, J. F.; Laporte, G. (2009): Vehicle routing
with cross-docking. Journal of the Operational Research Society, vol. 60, no. 12, pp.
1708-1718.
Yan, S.; Wang, S.; Wu, M. W. (2012): A model with a solution algorithm for the cash
transportation vehicle routing and scheduling problem. Computers & Industrial
Engineering, vol. 63, no. 2, pp. 464-473.
Zhu, C.; Hu, J.; Wang, F.; Xu, Y.; Cao, R. (2012): On the tour planning problem.
Annals of Operations Research, vol. 192, no. 1, pp. 67-86.

	Hybrid Clustering Algorithms with GRASP to Construct an Initial Solution for the MVPPDP
	Abeer I. Alhujaylan0F , 1F , * and Manar I. Hosny1

	4.1.3 ACO-based clustering algorithm
	5 Computational experiments
	Since we want to create a population that contains sets of solutions, the diversity of solutions is important. Thus, half of those solutions that are found in the CSS (candidate solution set) were assigned to the RCL; that is, if the number of initial...
	5.3 Experimental results

