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Abstract: Mobile commerce (m-commerce) contributes to increasing the popularity of 
electronic commerce (e-commerce), allowing anybody to sell or buy goods using a 
mobile device or tablet anywhere and at any time. As demand for e-commerce increases 
tremendously, the pressure on delivery companies increases to organise their 
transportation plans to achieve profits and customer satisfaction. One important planning 
problem in this domain is the multi-vehicle profitable pickup and delivery problem 
(MVPPDP), where a selected set of pickup and delivery customers need to be served 
within certain allowed trip time. In this paper, we proposed hybrid clustering algorithms 
with the greedy randomised adaptive search procedure (GRASP) to construct an initial 
solution for the MVPPDP. Our approaches first cluster the search space in order to 
reduce its dimensionality, then use GRASP to build routes for each cluster. We compared 
our results with state-of-the-art construction heuristics that have been used to construct 
initial solutions to this problem. Experimental results show that our proposed algorithms 
contribute to achieving excellent performance in terms of both quality of solutions and 
processing time. 
 
Keywords: Multi-vehicle profitable pickup and delivery problem, K-means clustering 
algorithm, ant colony optimisation, greedy randomised adaptive search procedure, 
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1 Introduction 
Today, most people rely on electronic commerce (e-commerce) to meet their needs. E-
commerce has several advantages that encourage people to rely on it rather than traditional 
purchasing methods, such as availability of products at any time, low prices, privacy, 
comfort, and quality assurance. In addition to those advantages, the spread of mobile 
commerce (m-commerce) has increased the popularity of e-commerce, allowing people to 
sell or buy goods using a mobile device or tablet anywhere and at any time. As the demand 
for e-commerce has increased, the pressure on delivery companies to organise their 
transportation plans to achieve profits and customer satisfaction has also increased. 
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Transportation means used by millions of people to transport themselves or their goods 
all over the world make the transport and shipment sector a hotspot in the research field. 
Most of this research aims to optimise the planning and organisation of the different 
transportation means used: land, air, and sea. Land transport is considered the most 
important, because it is used daily in different countries and has a huge volume that 
includes buses, trucks, cars, trains, trams, motorcycles, and more.   
In addition, the increasingly harmful impact of land transport, encourages researchers in 
different fields (operations research, computer science, and industrial engineering) to find 
the best solutions possible. There are two negative impacts of land transport: 
environmental and economic effects. According to environmental research, transport has 
a main role in distributing pollution and increasing global warming, which results in 
many diseases that have negative effects on people’s health. Therefore, researchers aim to 
find solutions to decrease congestion and the environmental damage caused by harmful 
emissions of greenhouse gases and carbon dioxide. On the other hand, the economic 
effects on companies that work in the transport and shipment sector includes miss-
organisation of used means. Furthermore, the unexploited space in trucks results in huge 
losses for these companies in addition to the environmental impact, with statistics 
indicating that 15% to 30% of accidents, traffic congestion, and pollution are caused by 
empty trucks [Gansterer, Hartl and Vetschera (2019)]. 
There are many problems that mimic the means of land transport which are presented by 
researchers to optimise services and minimise their harmful impacts, such as vehicle 
routing problems, bus scheduling problems [Saha (1970)], cash transportation problems 
[Yan, Wang and Wu (2012)], railroad blocking problems [Barnhart, Jin and Vance 
(2000)], and others [Díaz-Parra, Ruiz-Vanoye, Bernábe Loranca et al. (2014); Cornillier, 
Boctor and Laporte (2008); Zhu,  Hu and Wang (2012)]. 
One of the best-known combinatorial optimisation problems designed to optimise 
transportation network management and organise the distribution of goods and vehicles is 
the vehicle routing problem (VRP). The goal of the problem is to distribute goods for a set 
of customers by finding the best route(s). One or more vehicles with limited capacity from 
a homogeneous fleet of vehicles are used to transfer goods to customers. Each vehicle must 
start its trip from a depot and return to it again after serving customers. In the literature, 
there are different types of VRPs that have been presented over the last 50 years. Although 
these types vary in constraints and complexity, they share a common goal of minimising 
the harmful impacts of transport besides reducing cost [Lin, Choy, Ho et al. (2014)]. 
One important variant of the VRP is the pickup and delivery problem (PDP), which aims 
to reduce the total transportation cost when people or goods are moved. It differs from the 
VRP in the type of service provided, with each good or customer transferred between two 
predefined locations: a pickup node and a delivery node. Several real-world applications 
of the PDP include the distribution of beverages and the collection of empty bottles and 
cans, the shipping of cargos and the transportation of raw materials from suppliers to 
factories. Also, many extensions of the PDP have been presented in the literature that 
include slight changes to the workings of the original PDP. The selective pickup and 
delivery problem (SPDP) is one relatively new variant of the PDP that differs from the 
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standard PDPs by serving only some customers rather than serving all. This means the 
SPDP is valuable to those companies that have limited resources and can realise profits 
by finding the best routes to serve only the profitable customers. There are two types of 
SPDPs: (1) SPDPs subject to minimising the travelling cost only (e.g., [Ting and Liao 
(2013); Liao and Ting (2010); Ho, Sin and Szeto (2016)]) and (2) SPDPs subject to 
minimising the travelling cost and maximising the profit collection (e.g., [Coelho, 
Munhoz, Haddad  et al. (2012); Bruck, dos Santos and Arroyo (2012)]).  
Gansterer et al. [Gansterer, Küçüktepe and Hartl (2017)] presented the multi-vehicle 
profitable pickup and delivery problem (MVPPDP), which belongs to the second type of 
SPDP. It aims to find the best routes by minimising the travelling cost and maximising 
the profit collection in a one-day planning horizon. The MVPPDP is a static problem 
with a central depot, a set of customers, a predefined number of requests, products, and a 
homogeneous fleet of vehicles. Each request is defined by a customer pair: pickup 
customer and delivery customer. Thus, the products are transported from a pickup 
customer and delivered to a delivery customer to earn a profit from the service. Some 
real-life applications of the MVPPDP include food delivery mobile apps and delivery 
companies apps. 
Since the MVPPDP is an NP-hard problem (because it is one types of the SPDP that is a 
special case of a combination of the PDP) [Gansterer, Küçüktepe and Hartl (2017)], 
metaheuristic algorithms can be utilised to find good solutions within a reasonable 
processing time, especially for medium and large size problems. In this paper, we 
proposed an approach that is based on clustering algorithms with proven efficiency in 
speeding the search process and decreasing the processing time. We used K-means, 
adaptive K-means and ant colony optimisation (ACO) algorithms to cluster the search 
space of the MVPPDP. In addition, we modified the greedy randomized adaptive search 
procedure (GRASP) that was used in Alhujaylan et al. [Alhujaylan and Hosny (2019)] to 
construct an initial solution for the MVPPDP, after the clustering phase.  
The main contributions of this paper are as follows: 1) helping delivery companies and 
food delivery mobile apps to efficiently plan their services by speeding the selection of 
customers that can be served and finding the shortest routes to get the profits and achieve 
customer classification, 2) efficient transport planning can help in decreasing 
environmentally harmful effects of emissions of 𝐶𝐶𝐶𝐶2 and other gases besides saving 
energy resources, and 3) novel solution approaches are proposed to construct an initial 
solution for the problem which outperform state-of-the-art methods in the literature.  
The rest of this paper is organised as follows. A review of some related work is presented 
in Section 2. Section 3 introduces the formal problem definition. The proposed method is 
described in detail in Section 4. Section 5 illustrates the experimental results. Finally, 
conclusions and future work are presented in Section 6. 

2 Related work  
The MVPPDP belongs to the second type of SPDP that aims to minimise the travelling 
costs and maximise the profits collected by visiting only the profitable customer pairs.  
Both the MVPPDP and the profitable tour problem (PTP) share the same goal of finding 
a good route that maximises the difference between the total collected profit and the total 
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travelling cost. The main difference between them is that in the PTP there are no 
constrains that must be considered on the vehicle route, such as maximum trip time, 
vehicle capacity limits, or precedence constraints [Archetti, Speranza and Vigo (2014)]. 
Studies that address the PTP are rare in the literature [Toth, Paolo and Vigo (2014)]. 
Therefore, we first present work related to the MVPPDP. Then, some of the studies that 
have been done on the SPDP with minimising travelling cost and maximising profit 
collection are briefly presented. 
There are five algorithms that have been presented to solve the MVPPDP. The first four 
algorithms, presented by Küçüktepe et al. [Küçüktepe (2014); Gansterer, Küçüktepe and 
Hartl (2017)], used the variable neighbourhood search (VNS) metaheuristic. The 
construction phase of VNS was done using two heuristics: the greedy construction 
heuristic (C1) and the two-stage cheapest insertion heuristic (C2), while the improvement 
phase was based on applying the following neighbourhood operators: the pairwise 
forward exchange, the pairwise backward exchange, relocate pairs, forward insertion, 
backward insertion, inter tour exchange, inter dummy exchange, inter tour insert, inter 
dummy insert, and the gravity centre exchange. Authors adapted two strategies for 
applying the neighbourhood operators: a sequential (Seq) approach that uses a predefined 
sequence of neighbourhoods and a self-adaptive (Sea) approach that determines the 
sequence of neighbourhoods by adapting itself according to the search status. Finally, an 
alternative algorithm that was based on a guided local search (GLS) metaheuristic was 
implemented to compare with the proposed approach. The proposed algorithm was tested 
on 36 new randomly generated data instances of different sizes. Experimental results 
showed that both variants of general VNS outperformed GLS in terms of solution quality.  
The fifth algorithm was proposed by Haddad [Haddad (2017)]. Their combination of an 
iterated local search and random variable neighbourhood descent was proposed to solve 
the profitable pickup and delivery problem; therefore, they named their algorithm IPPD. 
The IPPD algorithm was not limited to accepting only feasible solutions during the 
search. The C1 heuristic that was used in Gansterer et al. [Gansterer, Küçüktepe and Hartl 
(2017)] was adopted to construct the initial solution. To improve the solution, several of 
the following neighbourhood moves were then applied: pair swap or pair shift, block 
swap or block shift, pickup or delivery shift, inter pair swap or inter pair shift, inter block 
swap or inter block shift, gravity centre exchange, insert operator and remove operator. 
The proposed algorithm was tested on the benchmark instances proposed by Gansterer et 
al. [Gansterer, Küçüktepe and Hartl (2017)]. It proved its efficiency in addressing small- 
and medium-sized instances, for which it was able to find new best solutions for six 
instances. However, the performance of the proposed algorithm was not adequate for 
large-sized instances. 
Recently Alhujaylan et al. [Alhujaylan and Hosny (2019)] used the construction phase of 
the well-known GRASP to build initial solutions for the MVPPDP. They compared the 
methods performance with two construction heuristics that were previously used in the 
literature to build initial solutions of the MVPPDP. The experimental results proved the 
proposed method outperformed the other construction heuristics, especially in small-sized 
instances, where they got eight new best initial solutions for the problem. 
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One of the practical applications of the SPDP was the distribution of soft drinks and 
collection of recyclable containers by a Quebec-based company by applying three 
heuristics as follows: the nearest neighbour heuristic, first petal heuristic, and second 
petal heuristic. The empirical results indicated that these heuristics contributed to 
decrease the distance by 23% [Privé, Renaud, Boctor et al. (2006)]. Another application 
of SPDP is called the single vehicle routing problem with deliveries and selective pickups 
(SVRPDSP), which has been solved using mixed integer linear programming (MILP) and 
a Tabu search (TS) algorithm. The proposed algorithm was applied on instances that were 
derived from the VRP library, and it was able to produce near-optimal solutions for 68 
instances [Gribkovskaia, Laporte and Shyshou (2008)]. Additionally, the selective multi-
depot vehicle routing problem with pricing required an organised solution to collect cores 
of durable goods from customers to encourage them to buy new products. A rich 
neighbourhood TS (TS-RN) coupled with two MILPs (mixed integer linear programming) 
models was proposed to solve this problem. According to the results, the proposed 
approach succeeded in terms of both efficiency and accuracy when it was tested on 40 
randomly generated instances [Aras, Aksen and Tekin (2011)]. Again, the same instances 
used in Gribkovskaia et al. [Gribkovskaia, Laporte and Shyshou (2008)] were used again 
to test two hybrid general variable neighbourhood searches (HGVNSs) and a hybrid 
metaheuristic based on an evolutionary algorithm (EA) that were proposed by Coelho et 
al. [Coelho, Munhoz, Haddad et al. (2012); Bruck, dos Santos and Arroyo (2012)] to 
solve the SVRPDSP. Both metaheuristics were proved to be robust and effective.  For the 
interested reader, other applications of the SPDP can be found in Coelho et al. [Coelho, 
Munhoz, Ochi et al. (2016); Gutiérrez-Jarpa, Desaulniers, Laporte et al. (2010); Qiu, 
Feuerriegel and Neumann et al. (2017); Baniamerian, Bashiri and Tavakkoli-Moghaddam 
(2019); Wen, Larsen, Clausen et al. (2009)]. 

3 Problem definition  
The MVPPDP is a static problem with predefined constituents. We assume that there is a 
central depot that receives customer requests. These requests consist of pairs of pickup 
and delivery customers. To serve these requests, we have a set of homogeneous vehicles 
that transport a number of homogeneous products from a selected (partial) set of pickup 
customers to their corresponding delivery customers, such that a certain profit is gained.  
The constraints of the MVPPDP that should be considered are the following: 
• The pairing constraint: For each request there is a predefined customer pair (pickup 

and delivery).  
• The precedence constraint: The pickup customer must be visited before the delivery 

customer. 
• The trip time constraint: Each vehicle has a certain daily travel time limit that cannot 

be exceeded while customers are being served.  
• The capacity constraint: Each vehicle has a limited capacity that cannot be exceeded, 

when products are being collected from pickup customers.  
• Each vehicle should start/end its journey from/at the depot with an empty load.  
• Each customer must be visited only once.  
The formal definition of MVPPDP is given by Küçüktepe [Küçüktepe (2014)] as follows:  
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Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)  be a graph, where 𝑉𝑉 = {0, … ,2𝑛𝑛 + 1}  is the vertex set. The vertex 
(0, 2𝑛𝑛 + 1)  represents the central depot. 𝑃𝑃 = {1, … ,𝑛𝑛} is the set of pickup customers, 
while 𝐷𝐷 = {𝑛𝑛 + 1, … ,2𝑛𝑛}  is the set of delivery customers. The arc set is 𝐴𝐴 =
{(𝑖𝑖, 𝑗𝑗): 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} , such that a non-negative routing cost 𝑐𝑐𝑖𝑖𝑖𝑖 is associated with each 
arc. It is assumed that a revenue 𝑟𝑟𝑖𝑖  is collected when visiting each delivery vertex 𝑖𝑖. Also, 
for a pickup vertex 𝑖𝑖  there is a supply 𝑞𝑞𝑖𝑖  > 0,  while for a delivery vertex there is a 
demand 𝑞𝑞𝑛𝑛+𝑖𝑖 = −𝑞𝑞𝑖𝑖.  It is also assumed that there is no supply or demand for the depot 
(i.e., 𝑞𝑞0 = 0). Finally, there is a set of vehicles 𝑘𝑘 = {1, … ,𝑚𝑚}, such that each vehicle has 
a maximum load capacity 𝐶𝐶 and a maximum tour time limit 𝑇𝑇.  
The objective function of the MVPPDP is described as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑀𝑀 ∑ ∑ ∑ (𝑟𝑟𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖)𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐾𝐾𝑖𝑖∈𝑉𝑉𝑖𝑖∈𝑉𝑉    (1) 

where 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 is a binary decision variable that is equal to one if arc 𝑖𝑖𝑗𝑗  is used by vehicle 𝑘𝑘, 
and zero otherwise.  
For the details of the mathematical model of the MVPPDP, the reader is referred to 
Gansterer et al. [Gansterer, Küçüktepe and Hartl (2017); Alhujaylan and Hosny (2019)]. 

4 Proposed method 
We divided our proposed method for solving the MVPPDP into two phases: a clustering 
phase and a routing phase. The details of each phase are presented below. 

4.1 Clustering phase 
The purpose of the clustering phase is to try to reduce the search space by dividing 
customers into clusters based on some relatedness measure. After this, selected customers 
from each cluster will be visited by one vehicle whose route will be planned in the 
routing phase. We proposed three clustering algorithms to cluster the MVPPDP search 
space: 1) a K-means clustering algorithm, 2) an adaptive K-means clustering algorithm, 
and 3) an ACO-based clustering algorithm. In the MVPPDP, since each request has a 
pair of customers (pickup and delivery customers), the coordinates of a midpoint between 
the pickup customer and the delivery customer are computed to represent the request pair 
as follows: 

𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛𝑀𝑀 𝑐𝑐𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑜𝑜 𝑅𝑅𝑀𝑀𝑞𝑞𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑖𝑖 =  � 𝑥𝑥1+𝑥𝑥2
2

 , 𝑦𝑦1+𝑦𝑦2
2

 �                                   (2) 

where 𝑖𝑖 represents the index number of a given customer, 𝑖𝑖 = {1, … ,𝑁𝑁},  (𝑀𝑀1,𝑦𝑦1) 
represents the coordinate of the pickup customer, and (𝑀𝑀2,𝑦𝑦2) represents the coordinate 
of the delivery customer. Thus, the midpoints of requests were considered in all 
clustering algorithms that have been used. The details of the algorithms are presented in 
the following sub-sections. 

4.1.1 K-means clustering algorithm  
The K-means algorithm, which was developed by MacQueen [MacQueen (1967)], is one 
of the most well-known and simplest unsupervised learning algorithms that have been 
used to solve the familiar clustering problem. The K-means algorithm has numerous 
advantages that help make it useable for many clustering problems. For example, it is 
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easy to understand and implement, it has high performance speed, and it is relatively 
efficient where its time complexity is 𝐶𝐶(𝑀𝑀𝑡𝑡𝑁𝑁) , where 𝑀𝑀  is the number of iterations 
required for cluster convergence, and 𝑁𝑁 is the number of objects in the dataset. The 
general idea of the K-means algorithm is to classify a given data set into an a priori 
number of clusters with each cluster treated as a separate group. Dividing the problem 
into subproblems in this fashion eases and accelerates the solving of the problem. 
A flowchart of the K-means clustering algorithm is illustrated in Fig. 2. In the following 
steps, we explain how the algorithm works. 

 

Start 

Assign some points randomly as initial cluster 
centres  

Compute the distance from points to cluster centres 

Clustering based on minimum distance 

Number of clusters K 

No points change their 
cluster 

Recalculate cluster centres based on the mean of 
points inside clusters 

Compute the distances from points to cluster 
centres 

End 

No 

Yes 

Figure 2: Flowchart of k-means clustering algorithm 
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Step 1: Initialisation of parameters 
In our K-means algorithm, two initial parameters need to be entered: the number of 
clusters 𝑡𝑡 and the coordinates of customers.  
Step 2: Initial clustering solution 
From each cluster 𝑘𝑘,𝑘𝑘 = {1,2, … ,𝑡𝑡} a random request is selected to be an initial centroid 
𝑐𝑐𝑖𝑖  of the cluster. The Euclidean distances between the rest of requests (i.e., those that are 
not selected as cluster centroid) and the cluster centres {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑖𝑖} are then computed. 
Each request is assigned to the nearest cluster centre.  
Step 3: Generation of a new clustering solution 
For each cluster 𝑘𝑘, a new cluster centre is calculated by computing the means of the 
coordinates of all requests that belong to that cluster. We then repeat Step 2, with each 
request reassigned to the appropriate cluster based on the distance between it and the new 
cluster centres.  
Step 4: Final clustering solution 
To generate the final clustering solution, Step 3 is repeated several times until convergence 
(i.e., until no change is observed between the clustering solution’s current iteration and the 
previous one) [Du (2010)]. 

4.1.2 Adaptive K-means clustering algorithm 
One drawback of the classical K-means algorithm is that it does not take into consideration 
the particularities of the MVPPDP. Therefore, the main goal of proposing the adaptive K-
means clustering algorithm is clustering the search space with consideration of the 
MVPPDP’s objective: maximising profit and minimising travelling cost. In other words, 
this differs from that of the K-means clustering algorithm by considering profits in addition 
to the distance between customers. Thus, in addition to the distance between the request 
and the cluster centre, our adaptive K-means algorithm also considers the “appropriateness” 
of the request within the cluster. The concept of appropriateness, which was used in 
Haddad [Haddad (2017)] for inserting new requests into a route, has been adapted to our 
method as follows: after the centre is computed for each cluster, a request 𝑖𝑖 is assigned to 
an appropriate cluster based on the following equation: 
𝐴𝐴𝑖𝑖,𝑐𝑐𝑘𝑘 = 𝑟𝑟𝑖𝑖

𝑑𝑑𝑖𝑖,𝑐𝑐𝑘𝑘
                                                                                                                                        (3) 

where 𝑟𝑟𝑖𝑖 is the revenue of the request 𝑖𝑖, and 𝑀𝑀𝑖𝑖,𝑐𝑐𝑘𝑘  is the distance between the request 𝑖𝑖 and 
the cluster 𝑐𝑐𝑖𝑖 . Thus, each request is assigned to the cluster that has the maximum 
appropriateness value. The pseudocode for our adaptive K-means clustering algorithm is 
illustrated in Algorithm 1. 
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Algorithm 1: Pseudocode for adaptive K-means clustering 

 

4.1.3 ACO-based clustering algorithm 
Ant colony optimisation (ACO) is a metaheuristic algorithm that mimics the cooperative 
behaviour of ants foraging in search of food. It was first introduced by Dorigo et al. 
[Colorni,  Dorigo and Maniezzo (1991)].  
The ACO algorithm is one of the most well-known of the swarm intelligence algorithms 
used to solve numerical and combinatorial optimisation problems, and it is particularly 
useful for problems which require finding the shortest path as a goal (see for example 
[Dahan, El Hindi, Mathkour et al. (2019); Bell and McMullen (2004)]). Additionally, 
clustering with ACO or with other models inspired by the behaviour of ants has been used 
as an alternative to traditional clustering algorithms. See Jafar  et al. [Jafar and Sivakumar 
(2010)] for a survey of interesting clustering approaches based on ant behaviour.  
The pseudocode for our MVPPDP clustering-based ACO algorithm is presented in 
Algorithm 2, where the meaning of each notation is as follows: Max_Iter: maximum 
number of iterations; Num_Cust: number of customers; Pop_Size: size of population; K: 
number of clusters; and 𝜏𝜏𝑖𝑖,𝑖𝑖: the pheromone trail matrix of size 𝑁𝑁 ∗ 𝑡𝑡, where 𝑁𝑁 refers to 
number of requests, and 𝑡𝑡 refers to number of clusters. 
The details of each step of the clustering using ACO are presented below. 
Step 1: Initialisation of parameters 
Several parameters need to be set before starting the algorithm, such as, population size 
(Pop_Size), number of clusters (K), number of customers (Num_Cust), maximum number 

Input: 𝑡𝑡 (the number of clusters), midpoint coordinates of requests={1, … ,𝑁𝑁} 
/* Initial clustering solution */ 
For 𝑘𝑘=1 to K 
       Choose randomly a request 𝑖𝑖 to be an initial cluster centroid. 
End For  
• Compute the distance between the rest of requests and cluster centres. 
• For each request, compute the appropriateness of the request withi n each cluster. 
• Assign each request to the cluster with the maximum appropriateness value. 
/* Generating a new clustering solution */ 
Repeat 
     For 𝑘𝑘=1 to K 
            Reassign a new cluster centre by computing the mean of requests that  
            belong to cluster 𝑘𝑘. 
     End For  

• Compute the distance between requests and the new cluster centres. 
• For each request, compute the appropriateness of the request within each cluster. 
• Assign each request to the cluster with the maximum appropriateness value. 

Until no change between the current clustering solution and the previous one 
/* Final clustering solution */ 
Output: a solution with set of 𝑡𝑡 clusters 
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of iterations (Max_Iter), a pheromone trail matrix that is initialised to a low value, and 
the evaporation rate (𝜌𝜌). 
Step 2: Initial population construction 
Initially, each artificial ant starts building its solution by randomly assigning requests into 
groups (clusters) such that each pair of pickup and delivery customers must belong to the 
same cluster.  
Step 3: Solution evaluation  
The quality of each solution is evaluated in terms of the value of the objective function 
(𝐶𝐶𝑂𝑂), which aims to achieve high profit at the lowest possible cost. The calculation of 
the objective function depends on computing the centre of gravity (𝐶𝐶𝐶𝐶𝐺𝐺) for each cluster 
(𝑘𝑘), which is used later to indicate the degree of appropriateness of customers within 
clusters. The concepts of centre of gravity and appropriateness, which were used in 
[Haddad (2017)] for inserting new requests into a solution, have been adapted for our 
method as follows: First, the centre of gravity (𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶) of each cluster 𝑘𝑘 is computed, 
with the Cartesian coordinates (𝑀𝑀𝑖𝑖 ,𝑦𝑦𝑖𝑖) for each request 𝑖𝑖 in the cluster 𝑘𝑘 weighted by the 
customers revenue 𝑟𝑟𝑖𝑖: 
𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖) = ∑ 𝑥𝑥𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘

∑ 𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘
                                                                                                             (4)    

𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖) = ∑ 𝑦𝑦𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘
∑ 𝑟𝑟𝑖𝑖𝑖𝑖∈𝑘𝑘

                                                                                                                            (5) 
Then, to determine whether each request 𝑖𝑖 is in the appropriate cluster, as done in the 
adaptive K-means algorithm, the appropriateness 𝐴𝐴𝑖𝑖  is computed by considering the 
distance between the customer and the cluster centre with respect to the request's revenue 
using this equation: 
𝐴𝐴𝑖𝑖,𝑖𝑖 = 𝑟𝑟𝑖𝑖

𝑑𝑑𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘)
                                                                                                                                                   (6) 

where 𝑀𝑀𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖) refers to the distance between request 𝑖𝑖 and the 𝐶𝐶𝐶𝐶𝐺𝐺 of the cluster 𝑘𝑘.  
After this, the 𝐶𝐶𝑂𝑂 for each solution is computed as the sum of all appropriateness values 
for all clusters. Then, the best solution that has the maximum 𝐶𝐶𝑂𝑂 value is selected and 
memorised in the Best_Solutions matrix. The pheromone trail matrix is then updated, as 
shown in the next step. 
Step 4: Pheromone update 
The pheromone trail matrix has an important role in improving the quality of solutions 
during the progress of the algorithm. In our approach, we adopt an offline pheromone 
update [Talbi (2009)]. Thus, updating the pheromone trail matrix includes two phases: 
•  An evaporation phase:  
To avoid premature convergence and increase the diversification and exploration of the 
search space, all the values of the pheromone trail matrix (𝜏𝜏𝑖𝑖,𝑖𝑖) are reduced automatically 
by a fixed proportion, which is called the evaporation rate (𝜌𝜌): 
𝜏𝜏𝑖𝑖,𝑖𝑖 = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖,𝑖𝑖                                                                                                                     (7) 
where the trail value 𝜏𝜏𝑖𝑖,𝑖𝑖 represents the pheromone concentration of request 𝑖𝑖 associated 
to cluster 𝑘𝑘. 
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•  A reinforcement phase: 
To memorise the characteristics of the best solution (𝑆𝑆∗) that was obtained in the current 
iteration, the values of the pheromone trail matrix for the best solution found are increased 
by a positive value only for those requests that have been included in the best solution: 
𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑖𝑖 = 𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑖𝑖 + 1

𝐶𝐶𝑂𝑂(𝑆𝑆∗)                                                                                                        (8) 

Step 5: Generating new solutions 
For the process of generating new solutions, we were keen to achieve two goals: first, 
keeping track of the good solutions that had been obtained in previous iterations, in order 
to continue searching in those areas. Second, increasing the diversification of solutions to 
prevent getting stuck in a local optimum solution. To achieve the first goal 
(intensification), the values in the pheromone matrix helped us to focus on the promising 
areas that contain good solutions. To achieve the second goal (diversification), we used a 
simple heuristic of adding some randomness. Thus, each artificial ant constructs its 
solution using the following strategy:  
1. The pheromone trail matrix values are normalised using this equation: 

𝑀𝑀𝑖𝑖,𝑖𝑖 = 𝜏𝜏𝑖𝑖,𝑘𝑘
∑ 𝜏𝜏𝑖𝑖,𝑘𝑘𝐾𝐾
𝑘𝑘=1

                                                                                                                            (9) 

where 𝑀𝑀𝑖𝑖,𝑖𝑖  is the normalised pheromone probability for the request 𝑖𝑖 belonging to 
cluster 𝑘𝑘, and 𝑡𝑡 is the number of cluster 𝑅𝑅. 

2. A random number in the range between 0 and 1 is generated. 
3. The request is assigned to the appropriate cluster by comparing the cluster’s value in 

the normalised pheromone matrix to the random number. Thus, the request is assigned 
to the cluster 𝑘𝑘  if the random number is greater than or equal to the normalized 
probability of assigning the request to 𝑘𝑘 and less than the probability of assigning it to 
𝑘𝑘 + 1.  

4. Steps 2 and 3 are repeated for all requests to generate a new first solution. Additionally, 
the same steps are repeated to generate the rest of the new solutions in the population.   

After this, the new solutions are evaluated again, and the pheromone matrix is updated as 
shown in Steps 3 and 4. This process is repeated several times until the stopping criterion 
is reached, which in our method is reaching the maximum number of iterations.  
Step 6: Selecting best solution 
After several iterations, the final best clustering solution-the one with the maximum 𝐶𝐶𝑂𝑂 
-is selected from the Best-Solutions matrix. This clustering solution is the best from 
among all good solutions obtained at each iteration. Thus, all requests have now been 
assigned to clusters, and this grouping will be used later in the routing phase to assign a 
vehicle to visit the customers in each cluster. 
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Algorithm 2: Pseudocode of the proposed clustering-based ACO 

 

4.2 Routing phase 
After the MVPPDP search space has been divided into clusters, with each customer pair 
placed in the appropriate cluster, we must choose which customer pairs will be served 
and in what order. In other words, the routing phase starts. However, there are many 
restrictions to consider before starting the routing phase. First, each cluster must be 
served by only one vehicle, which means that the number of vehicles used is equal to the 
number of clusters. Second, each vehicle should start and end its journey from the depot 
with an empty load. Furthermore, in addition to the pairing, profit, and cost constraints 
that were considered in the clustering phase, precedence, trip time and vehicle capacity 

Step 1: Initialization of parameters: Pop_Size,  K,  Num_Cust,  Max_Iter, a pheromone trail 
matrix 𝜏𝜏𝑖𝑖,𝑖𝑖, and the evaporation rate 𝜌𝜌.  
Step 2: Constructing initial population   
For S=1 to Pop_Size  
       Assign the requests randomly to different clusters. 
Step 3: Evaluation phase 
       Compute the centre of gravity for each cluster. 
       Compute the appropriateness of requests within clusters. 
       Compute the objective function for each solution. 
End For        
Select the best solution 𝑆𝑆∗ that has the maximum objective function, and memorize it in 
𝐵𝐵𝑀𝑀𝑅𝑅𝑀𝑀_𝑆𝑆𝑀𝑀𝑆𝑆𝑅𝑅𝑀𝑀𝑖𝑖𝑀𝑀𝑛𝑛𝑅𝑅 matrix. 
Step 4: Pheromone update 
The pheromone trail matrix of the best solution is updated by: 
Evaporation phase: 𝜏𝜏𝑖𝑖,𝑖𝑖 = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖,𝑖𝑖 
Reinforcement Phase: 𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑖𝑖 = 𝜏𝜏𝑖𝑖(𝑆𝑆∗),𝑖𝑖 + 1/𝐶𝐶𝑂𝑂(𝑆𝑆∗) 
Step 5: Generating new solutions  
For 𝑚𝑚 = 1 to 𝑀𝑀𝑀𝑀𝑀𝑀_𝑖𝑖𝑀𝑀𝑀𝑀𝑟𝑟 
       For S = 1 to Pop_Size      
              Normalize the pheromone trail matrix        
               For 𝑖𝑖 = 1 to 𝑁𝑁𝑅𝑅𝑚𝑚_𝐶𝐶𝑅𝑅𝑅𝑅𝑀𝑀/2 

 𝑀𝑀𝑖𝑖 ,𝑖𝑖 =
𝜏𝜏𝑖𝑖,𝑖𝑖

∑ 𝜏𝜏𝑖𝑖,𝑖𝑖𝐾𝐾
𝑖𝑖=1

                                                                                                    

                      Generate a random number 𝑅𝑅 
                       For 𝑘𝑘 = 1 to 𝑡𝑡 
                               If (𝑅𝑅 ≥  𝑀𝑀(𝑖𝑖,𝑖𝑖) && 𝑅𝑅 <  𝑀𝑀(𝑖𝑖,𝑖𝑖+1))  
                                    Assign the request 𝑖𝑖 to cluster 𝑘𝑘. 
                              End If 
                      End For  
              End For 
       End For 
Repeat Step 3 (Evaluation) and Step 4 (Pheromone update)                        
End For  
Step 6: Selecting best solution  
Select the best solution in 𝐵𝐵𝑀𝑀𝑅𝑅𝑀𝑀_𝑆𝑆𝑀𝑀𝑆𝑆𝑅𝑅𝑀𝑀𝑖𝑖𝑀𝑀𝑛𝑛𝑅𝑅 matrix to be the final clustering solution. 
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are other constraints that should not be violated when constructing routes. The routing 
phase in the literature is usually divided into two sub-phases: the solution construction 
phase and the solution improvement phase. In this paper, we considered just the first sub-
phase by proposing a new approach that based on the GRASP as explained next. 
GRASP is a multi-start metaheuristic that is commonly applied to solve different 
combinatorial optimisation problems. It was first introduced by Feo et al. [Feo, Thomas 
and Resende (1995)]. It consists of two phases: a construction phase and an improvement 
phase. The construction phase is used to build an initial feasible solution, while the 
second phase is a local search used to improve the initial solution to get a local optimum. 
The construction phase of GRASP combines the greedy and randomised features, where 
the greedy feature selects a set of candidate solutions based on a specific goal (i.e., 
maximum profit or minimum distance) and sorts the set in what is called the restricted 
candidate list (RCL), while the randomised feature randomly selects one of the best 
candidate solutions from the RCL. Combining the two features helps GRASP to be fast, 
competitive, and able to find quality solutions in a reasonable time. GRASP has 
successfully contributed to solving multiple variants of VRPs [Layeb, Ammi and Chikhi 
(2013); Duhamel, Lacomme, Prins et al. (2010); Marinakis (2012)]. 
In this paper, we used the construction phase of the well-known GRASP to construct an 
initial solution of the MVPPDP. To increase the chance of getting effective solutions, we 
used the concept of a population metaheuristic, which creates a population that contains a 
set of solutions. All these solutions are improved through a number of iterations until the 
stopping criterion is reached, at which time the best solution is selected. We adopted the 
methods used in Alhujaylan et al. [Alhujaylan and Hosny (2019)], with several 
modifications. To distinguish our method from the original, we refer to the method used 
in Alhujaylan et al. [Alhujaylan and Hosny (2019)] as GRASP while we refer to our new 
approach that uses clustering algorithms as GRASP with clustering, or GRASP(C). The 
first difference between the two versions is that GRASP in Alhujaylan et al. [Alhujaylan 
and Hosny (2019)] constructs the initial solution directly without clustering, which means 
all customer pairs are candidates for selection, while in GRASP(C) the search space is 
first clustered, then the initial solutions are constructed for each cluster based on the 
positions of customer pairs. The rest of modifications are presented as follows. 
Selecting seed customers: Each solution contains a set of routes. The number of routes 
is equal to the number of clusters, with each route served by only one vehicle. Each route 
in a solution is constructed by first selecting a seed customer based on the computed 
customer benefit (CB). In GRASP, the CB is calculated by dividing the revenue gained 
from the delivery customer by the distance between the customers in the pair. By contrast, 
in GRASP(C) the CB is calculated based on the distance between the depot and the 
pickup customer. Thus, the pickup customer that is geographically closest to the depot is 
selected to be the seed customer which is inserted in the route first.  
Constructing the routes: To fill the route with unvisited customers, the following process 
is repeated until either the maximum time allowed for a trip is reached or all unvisited 
customers have been served. In GRASP [Alhujaylan and Hosny (2019)], all unvisited 
customer pairs are inserted individually in the best position, such that the best position for 
the pickup customer is selected before that of the delivery customer, in order to meet the 
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precedence constraint. To clarify the meaning of best position, we present the following 
example [Alhujaylan and Hosny (2019)]: suppose we have a route {0,𝑀𝑀, 𝑏𝑏,−𝑏𝑏,−𝑀𝑀}, where 
{0} is the depot, {𝑀𝑀, 𝑏𝑏} are the pickup customers, and {−𝑀𝑀,−𝑏𝑏} are the delivery customers. 
Assume that an unvisited customer pair (𝑐𝑐,−𝑐𝑐)  is selected for insertion into the best 
position in this route. To satisfy the precedence constraint, the best position of the pickup 
customer is assigned first by computing its insertion cost using the equation: 
𝐼𝐼𝑛𝑛𝑅𝑅𝑀𝑀𝑟𝑟𝑀𝑀𝑖𝑖𝑀𝑀𝑛𝑛 𝑐𝑐𝑀𝑀𝑅𝑅𝑀𝑀 =  𝑐𝑐(0, 𝑐𝑐) +  𝑐𝑐(𝑐𝑐,𝑀𝑀) −  𝑐𝑐(0,𝑀𝑀)                                                              (10) 
where 𝑐𝑐 represents the distance cost between two vertices. This equation is applied for all 
slots in the route, and the position that has the lowest insertion cost is selected for the 
pickup customer. The same equation is then used to insert the delivery customer with 
consideration of the position of the pickup customer. After determining the best position 
for the customer pair, the insertion ratio (IR) is computed as follows: 
𝐼𝐼𝑅𝑅𝑐𝑐,−𝑐𝑐 = 𝑟𝑟𝑐𝑐,−𝑐𝑐

(𝑐𝑐0,𝑐𝑐+𝑐𝑐𝑐𝑐,𝑎𝑎−𝑐𝑐0,𝑎𝑎)  +  (𝑐𝑐𝑎𝑎,−𝑐𝑐+𝑐𝑐−𝑐𝑐,−𝑎𝑎−𝑐𝑐𝑎𝑎,−𝑎𝑎)
                                                                            (11) 

where 𝑟𝑟 is the revenue of customer pair (c,-c). Using this method, the unvisited customer 
pairs are inserted into the candidate solution set (CSS) in descending order based on IR 
values, and then the first elements of the CSS are assigned to the RCL. After that, one 
unvisited customer pair is selected randomly from the RCL and inserted into the route. 
This process is repeated for the remaining unvisited customer pairs until either the 
maximum trip time is reached or no more customers need to be served. This approach, 
however, is very time consuming; therefore, we modified it in GRASP(C) by changing 
the method for computing the IR as follows: 
𝐼𝐼𝑅𝑅2𝑐𝑐,−𝑐𝑐 = 𝑟𝑟𝑐𝑐,−𝑐𝑐

𝑐𝑐(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐)
                                                                                                              (12) 

where 𝑐𝑐(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑐𝑐)  is the distance between the depot and the pickup customer. The 
unvisited customer pairs are then inserted into the CSS in descending order based on IR2 
values, after which we assign the first elements of the CSS to the RCL. Next, one 
unvisited customer pair is selected randomly from the RCL and inserted into the best 
position in the route with respect to vehicle capacity, time, and precedence constraints.  
Evaluate solution: After constructing all routes, the quality of the solution is evaluated 
using Eq. (1). The value of the objective function will later be compared to the values for 
other solutions.  
Local best solution: After all the solutions in the population are constructed, the values 
of their objective functions are compared. The solution with the maximum objective 
function value is selected to be the local best solution in this iteration. 
Final best solution: Again, all the local best solutions selected in each iteration are 
compared, and the one with the maximum objective function value is chosen to be an initial 
solution for the MVPPDP. 
The outline of the construction phase of our GRASP(C) is presented in Algorithm 3, 
using the same parameters used in Algorithm 2. The meanings of new notations are as 
follows: Num-Clusters: number of clusters, CSS: candidate solutions set, RCL: restricted 
candidate list, US: un-served pairs of customers, and SM: solutions matrix that contains 
the best solutions in the population for each iteration.  
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Algorithm 3: Pseudocode of GRASP(C) 

 

5 Computational experiments 
The computational experiments aim to compare the performance of our proposed algorithm 
with the construction heuristics: the greedy construction heuristic (C1) and the two-stage 
cheapest insertion heuristic (C2) [Küçüktepe (2014)], and GRASP [Alhujaylan and Hosny 
(2019)]. All proposed algorithms have been coded in MATLAB (R2017b) and executed 
using a laptop computer with an Intel Core i7-4510U CPU @ 2.00 GHz (2601 MHz, two 
cores, four logical processors). Before we present the results of experiment, the used 
datasets and parameter tuning details are described in the following sub-sections. 

5.1 Test instances 
The same instances that were used in Gansterer  et al. [Gansterer, Küçüktepe and Hartl 
(2017)] are used here to test our approach. The data instances are 36 instances that are 
classified into three groups: small size (20 and 50 customers served by two and three 
vehicles, respectively), medium size (100 and 250 customers served by four and five 
vehicles, respectively) and large size (500 and 1000 customers served by six and eight 
vehicles, respectively). Moreover, each group has 12 instances. These instances diverge 
from each other with respect to time and revenue. The total time limit is set to be either 
small or large, with the range within 2500 to 15000 to generate short and long routes. 
Also, the amounts of revenues are set to be either equal for all customers, proportional to 

For 𝑖𝑖=1 to   Max_Iter  
       For 𝑆𝑆=1 to Pop_Size 
              For 𝑘𝑘=1 to Num_Clusters 
                   Phase 1: Seed Vertex Selection 
                   Step 1: Compute the distance between the depot and the pickup customers 
                   Step 2: Select the pair that has the closet pickup customer to be seed customer 
                  Phase 2: Route Construction 
                    While Maximum Route Time is not violated 
                            Step 3: Compute the insertion ratio (IR2) for all unvisited customers   
                            Step 4: Put all the candidate customer pairs in the 𝐶𝐶𝑆𝑆𝑆𝑆 in descending order  
                            of IR2      
                            Step 5: Assign half of the candidate customer pairs in the 𝐶𝐶𝑆𝑆𝑆𝑆 to the 𝑅𝑅𝐶𝐶𝑅𝑅 
                            Step 6: Pick one customer pair randomly from the 𝑅𝑅𝐶𝐶𝑅𝑅 and insert it in its  
                             best  position in the route after checking the precedence, time, and  
                            capacity constraints  
                   End While 
          End For 
         Step 7: Compute the objective function for the solution, and assign the solution to the 𝑆𝑆𝑀𝑀 
     End For 
      Step 8: Select the best solution that has the highest objective function in 𝑆𝑆𝑀𝑀 and assign it  
      to Final-Best-Solutions matrix 
End For 
Step 9: Select the best solution that has the highest objective function in the Final-Best-
Solutions matrix to be the initial solution for the 𝑀𝑀𝑉𝑉𝑃𝑃𝑃𝑃𝐷𝐷𝑃𝑃 
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the demands, or random. The revenue is gained from the delivery customer after delivery 
of goods coming from the pickup customer. The quantity of goods is set to be an integer 
value from 1 to 50. 

5.2 Parameter tuning 
5.2.1 ACO parameters tuning  
There are only three parameters that need to be tuned in the ACO: size of population, 
number of iterations, and evaporation rate (𝜌𝜌). Nine datasets were used to test these 
parameters: 50 customers with fixed revenue to generate a short route (50-F-S), 50 
customers with proportional revenue to generate a short route (50-P-S), 50 customers 
with random revenue to generate a short route (50-R-S), 250 customers with fixed 
revenue to generate a short route (250-P-S), 250 customers with proportional revenue to 
generate a short route (250-P-S), 250 customers with random revenue to generate a short 
route (250-R-S), 1000 customers with fixed revenue to generate a short route (1000-R-S), 
1000 customers with proportional revenue to generate a short route (1000-P-S), and 1000 
customers with random revenue to generate a short route (1000-R-S). Since the time 
constraint is not considered in the clustering phase, we took only instances that generated 
short routes because the result is the same as that for generating long routes. The details 
of testing each parameter are as follows. 

Population size 
Each data instance was tested with different population sizes: 10, 20, 30, and 40. Tab. 1 
illustrates the results of tuning the population size. These show that increasing the 
population size beyond 30 did not lead to an improvement in the OF. Thus, the 
population size was taken to be 30. 

Table 1: Results of tuning the population size of ACO 

Dataset 
Instances 

Population Size 

10 20 30 40 
50-F-S 6.62 7.77 12.24 12.24 
50-P-S 26.59 30.13 47.55 47.55 
50-R-S 17.94 24.49 42.23 42.23 
250-F-S 10.32 10.32 10.32 10.32 
250-P-S 1.53 1.54 1.548 1.548 
250-R-S 28.04 28. 26 28.26 28.26 
1000-F-S 1.64 1.72 1.72 1.721 
1000-P-S 4.85 5.03 5 5 
1000-R-S 1.50 1.54 1.63 1.63 

Number of iterations 
Each data instance was also tested with different numbers of iterations: 100 and 200. Tab. 2 
presents the values of the OF after setting the population size to 30, as determined in the 
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previous experiment. The results of testing showed that there was no enhancement in the OF 
values after 100 iterations. Thus, the maximum number of iterations was taken to be 100. 

Table 2: Results of tuning the number of iterations of ACO 

Dataset Instances 
Number of Iterations 

100 250 
50-F-S 6.621507 6.621507 
50-P-S 26.59067 26.59067 
50-R-S 17.94286 17.94286 
250-F-S 10.32055 10.32055 
250-P-S 1.537698 1.537698 
250-R-S 28.04222 28.04222 
1000-F-S 1.64904 1.64904 
1000-P-S 4.858068 4.858068 
1000-R-S 1.505093 1.505093 

Evaporation rate 
Once again the same instances were used to select a suitable value for the evaporation rate, 
which is used to increase diversification of the search space and to prevent the algorithm is 
becoming stuck in local optima. After setting the population size and number of iterations to 
30 and 100, respectively, several tests were run with values of  𝜌𝜌=0.2, 0.5, and 0.8. Tab. 3 
illustrates that there was no change in OF when the value of 𝜌𝜌 was changed.  

Table 3: Results of tuning evaporation rate of (ACO) 

Dataset 
Instances 

Evaporation rate (𝛒𝛒) 

0.2 0.5 0.8 
50-F-S 12.24808 12.24808 12.24808 
50-P-S 47.55501 47.55501 47.55501 
50-R-S 42.23965 42.23965 42.23965 
250-F-S 10.32093 10.32093 10.32093 
250-P-S 1.548393 1.548393 1.548393 
250-R-S 28.26517 28.26517 28.26517 
1000-F-S 1.721865 1.721865 1.721865 
1000-P-S 5.004374 5.004374 5.004374 
1000-R-S 1.631445 1.631445 1.631445 

5.2.2 Parameter tuning for GRASP(C) 
In GRASP(C), only two parameters need to be tuned: the size of the RCL and the number 
of iterations (Max_Iter). In our method, we added a third parameter which is the population 
size (Pop_Size). Empirical experiments were performed to select the most suitable value 
for each parameter. Since the routing process needs more time than the clustering process, 
we selected only medium-sized instances with different situations (revenue either equal, 



 
 
 
1042                                                                        CMC, vol.62, no.3, pp.1025-1051, 2020 

proportional to demand, or random and time either long or short) to test these parameters. 
Six medium-sized data instances were used containing 100 customers served by four 
vehicles, each with a capacity of 80. The descriptions of these instances are as follows: 100 
customers with fixed revenue to generate a short route (100-F-S), 100 customers with fixed 
revenue to generate a long route (100-F-L), 100 customers with proportional revenue to 
generate a short route (100-P-S), 100 customers with proportional revenue to generate a 
long route (100-P-L), 100 customers with random revenue to generate a short route (100-R-
S), 100 customers with random revenue to generate a long route (100-R-L).  The details of 
testing each parameter are below. 

The restricted candidate list (RCL) size 
Since we want to create a population that contains sets of solutions, the diversity of 
solutions is important. Thus, half of those solutions that are found in the CSS (candidate 
solution set) were assigned to the RCL; that is, if the number of initial solutions in the CSS 
was n, 𝑪𝑪𝑺𝑺𝑺𝑺 = 𝒏𝒏 then  ⌈ 𝒏𝒏 

𝟐𝟐
 ⌉ solutions were assigned to the RCL. This value was chosen by 

trial, because selecting a small RCL resulted in a population of similar solutions.  

Number of iterations  
The number of iterations was set to be 10, 50, 100, or 500. As seen in Tab. 4, there was no 
enhancement of OF values once the number of iterations was increased to more than 100. 

Table 4: Results of tuning the number of iterations of GRASP(C) 

Dataset 
Number of iterations 

10 50 100 500 
100-F-S 35467.92 35467.92 35467.92 35467.92 
100-F-L 52217.92 57389 57389 57389 
100-P-S 62858.16 62858.16 64460.88 64460.88 

100-P-L 107447.2 107447.2 109137.1 109137.1 
100-R-S 62357.97 62357.97 62357.97 62357.97 
100-R-L 105606.3 108581.8 111380.2 111380.2 

Population Size 
Several values of population size were tested: 10, 20, 30, and 40. As seen in Tab. 5, there 
was no enhancement of OF values once the number of iterations was increased to more 
than 100. Also, after setting the number of iterations to 100, increasing the population 
size to more than 30 did not lead to an enhancement of OF values. 
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Table 5: Results of tuning the population size of GRASP(C) 

5.3  Experimental results 
In this experiment, we show the results for the MVPPDP using our GRASP(C) approach, 
in which the initial solution was constructed after clustering the search space using the 
clustering methods K-means, adaptive K-means, or ACO. Both ACO and GRASP(C) 
were run five times for every dataset, since they are stochastic approaches, while the K-
means and the adaptive K-means were run one time each, because they are deterministic 
approaches. We compare our results with the GRASP proposed in Alhujaylan et al. 
[Alhujaylan and Hosny (2019)] (as explained in Section 4.2), and the greedy construction 
heuristic (C1) and the two-stage cheapest insertion heuristic (C2)  presented in Küçüktepe  
[Küçüktepe (2014)].  
Tab. 6 presents our results for the MVPPDP using our methods: K-means-GRASP(C), 
adaptive K-means-GRASP(C), and ACO-GRASP(C). The results are calculated in terms 
of the OF of the solution (i.e., the gained profit), which is equal to total revenue minus 
total travelling cost, as previously shown in Eq. (1). Thus, the larger the OF value, the 
better the solution obtained.  The results of our proposed methods are also compared with 
the results of C1, C2 [Küçüktepe (2014)], and GRASP [Alhujaylan and Hosny (2019)] in 
Tab. 6. In the table, the first column presents the name of the instance. The following two 
columns present the results of the C1 and C2 algorithms in terms of the best OF value. 
The third through sixth columns show the results of GRASP, K-means-GRASP(C), 
adaptive K-means-GRASP(C), and ACO-GRASP(C), in terms of the average and best 
objective values of five runs. For each group of instances of a particular size, the average 
results are shown in the highlighted row. 
  

Dataset 
Population size 

10 20 30 40 

100-F-S 35467.92 35467.92 35467.92 36037.47 
100-F-L 52217.92 57385.29 57569.88 60919.45 
100-P-S 62858.16 71005.55 71005.55 65797.14 
100-P-L 107447.2 117736.8 117736.8 112448.1 
100-R-S 62357.97 65295.61 70818.36 66870.58 
100-R-L 105606.3 107314.2 107314.2 101695.6 



 
 
1044                                                                       CMC, vol.62, no.3, pp.1025-1051, 2020 

 

Table 6: Comparing construction heuristics’ performances in terms of profits 

ACO-GRASP(C) Adaptive K-means-
GRASP(C) 

K-means-GRASP(C) GRASP 
C2 C1 Dataset 

Best Average Best Average Best Average Best Average 
17557.29 17557.29 22329.25 22329.25 30427.58 30427.58 18097.3 18097.3 21400 16185.4 1-20-F-S 
36322.33 36322.33 39240.95 39240.95 36923.73 36923.73 37937.3 37937.2 32400.1 22006.2 2-20-F-L 
34018.63 34010.12 42589.38 42589.38 42589.38 42589.38 39957.7 39957.7 43528 39646.5 3-20-P-S 
46346.57 46346.57 56671.54 56671.54 56671.54 56671.54 57763.9 57763.9 55775.5 54849.9 4-20-P-L 
24420.96 24420.96 27498.05 27498.05 30040 30040 30039.9 30039.9 26884 22954.4 5-20-R-S 
37501.81 37501.81 37610.41 37610.41 40714.37 40714.37 42845.8 42845.9 41933 30486.7 6-20-R-L 

32694.6 32693.18 37656.6 37656.6 39561.1 39561.1 37773.65 37773.65 36986.7667 31021.5
167 

Average-20 

25123.15 25123.15 21603.83 21603.83 21603.83 21603.83 18443.6 18396.2 17958.2 15000.5 7-50-F-S 
50351.5 48279.06 50320.08 48325.12 50320.08 48392.87 33259.2 32686.3 43008.3 34988.2 8-50-F-L 
55643.25 55643.25 42727.95 42727.95 40566.93 40566.93 53631.8 53631.8 38796.9 53694.8 9-50-P-S 
106544.8 105571.7 117098.7 115622.4 126971.1 120623.3 92502.1 91164.1 62731.2 99109 10-50-P-L 
29969.16 29969.16 25557.18 25557.18 25776.83 25776.83 24364.5 24364.4 24619.2 19789.7 11-50-R-S 
61689.7 58250.91 76620.08 75116.74 76862.04 75878.26 54712.1 52889.2 51723.3 45326.9 12-50-R-L 

54886.93 53806.21 55654.64 54825.54 57016.8 55473.66 46152.22 45522 39806.1833 44651.5
167 

Average-50 

27213.72 25243.62 36058.97 35308.75 35925.36 35194.98 13749.3 13369.3 28818.1 19033.1 13-100-F-S 
49279.54 45640.54 61113.85 59725.73 61319.54 58588.92 28692.9 27336.9 55322.2 31825.6 14-100-F-L 
42921.71 42801.93 59118.71 58207.45 60896.45 58671.04 54475.1 51218.1 46547.4 44329.1 15-100-P-S 
97599.87 93169.67 116683.5 108926 102952.5 100866.9 86141.8 80299.3 79541.3 69459.3 16-100-P-L 
46740.8 42829.24 61120.87 56602.73 61503.24 58391.44 46450.7 46160.4 70214.6 49912.7 17-100-R-S 
89791.18 86177.11 112673.5 106575.1 103656.9 100849 77136.6 76019.9 91663.1 63116.1 18-100-R-L 

58924.47 55977.02 74461.56 70890.96 71042.33 68760.38 51107.73 49067.32 62017.7833 45552.6
4 

Average -100 

32009.7 29917.92 39663.81 38787.25 36215.5 32300.89 11231.9 10831.9 40906.1 27676.1 19-250-F-S 
58495.79 56683.08 85651.42 82560.46 65810.42 64273.03 50980.9 49193.5 67845.1 44456 20-250-F-L 
75400.5 70527.81 91554.54 82494.04 73036.63 71908.14 34606.8 33041.9 43247.3 63930 21-250-P-S 
129315.6 127970.2 159844.5 154525.5 135823.6 131491.2 107171.1 102591 94126.8 112471 22-250-P-L 
82512.05 78162.92 100940.6 95609.78 96745.15 87701.57 41914 40446.5 102873 79486.1 23-250-R-S 
162929.8 157432.1 188565.6 180403.2 184722.9 177237.1 129344.6 128304.5 143886 130371 24-250-R-L 

90110.59 86782.33 111036.7 105730 98725.69 94151.99 62541.55 60734.88 83647.3833 71898.3
667 

Average-250 

62680.34 53441.02 78462.57 76091.86 76799.28 71785.54 24012.2 21758.3 78580.2 49210 25-500-F-S 
93441.86 90560.08 136732.3 133532.4 124711.1 120276.4 85889.1 84616.4 135652 73299.8 26-500-F-L 
109622.2 106055.3 152594.3 147588 148501.2 141348.9 51297.9 49864.8 84513.6 124075 27-500-P-S 
190679.2 183839 249010.4 241347.9 251008.2 240201.4 142740.2 138057.2 169098 179001 28-500-P-L 
124116.6 118296.2 166508.9 162507.1 181634.1 168412.9 56901.7 54859.3 116568 108049 29-500-R-S 
225958.7 213106.7 282335.3 276322.4 280771.9 273419.2 166232.5 163822.4 218965 170205 30-500-R-L 

134416.5 127549.7 177607.3 172898.3 177237.6 169240.7 87845.6 85496.4 133,896.133 
117306.
633 Average-500 

21662.18 20397.7 50359.66 48644.53 54365.44 48979.91 11045.9 9132.4 66345.3 27655.6 31-1000-F-S 
48585.29 47436.16 106034.7 96498.02 96828.26 93458.25 58068.2 56276.1 112840 32078.4 32-1000-F-L 
208211.4 201718.7 294908.3 284393.9 295025.2 285728 141167.4 134015.9 152307 264997 33-1000-P-S 
375047.2 367480.1 538695.3 505742 524767.3 517951.6 340418.4 325103.1 318268 380514 34-1000-P-L 
181163.4 175908.8 248328.1 242126 261472.5 252784.2 102051 99173.9 197083 193390 35-1000-R-S 
326404 320173.8 447702.6 439890.4 483610.4 461578.9 271613.1 268887.4 362266 275805 36-1000-R-L 
193512.2 188852.6 281004.8 269549.1 286011.5 276746.8 154060.7 148764.8 201518.217 195740 Average-1000 
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As can be seen from the results in Tab. 6, all the proposed algorithms demonstrated good 
performance, on average, in solving the small, medium, and large-sized data instances, 
compared to previous approaches from the literature. We achieved new best solutions 
(bold values) for 25 sets of data instances with K-means-GRASP(C), for 26 sets with 
adaptive-K-means-GRASP(C), and for 13 sets with ACO-GRASP(C). We also found 
solutions (underlined values) that were better than at least one of the algorithms C1, C2, 
or GRASP solutions as follows: 11 with K-means-GRASP(C), 10 with adaptive-K-
means-GRASP(C), and 13 with ACO-GRASP(C).  
On the other hand, when we compared our construction heuristics that rely on first 
clustering the search space and then constructing the initial solution using GRASP(C), we 
found that adaptive K-means-GRASP(C) outperformed both K-means-GRASP(C) and 
ACO-GRASP(C) in the number of new best solutions produced (26 compared to 25 and 
13, respectively). Looking at the overall average results for each category, though, we 
realize that the K-means-GRASP(C) method has a better performance than the other two 
methods with respect to small size instances (20 and 50 customers),  while  adaptive K-
means-GRASP(C) outperformed the other methods in medium and large size instances 
(with the exception of instances of size 1000 customers). The reason for this last 
observation could be that the K-means clustering is based on distance only, which means 
the customer pairs that are geographically close are grouped together. Since this 
particular category of instances is very challenging, due to the large number of customers, 
decreasing the distance between customer pairs, by grouping them in the same cluster 
makes it possible to serve more customer pairs without exceeding the total trip time, thus 
increasing the value of the OF.  
In addition, looking at the average results for each instance set, the adaptive K-means-
GRASP(C) outperformed C1 and C2, while ACO-GRASP(C) demonstrated acceptable 
performance compared to those heuristics, although it was inferior to both K-means-
GRASP(C) and adaptive K-means-GRASP(C). The reason for that could be the approach 
used in our ACO which has a significant effect on the results. In fact, both K-means and 
adaptive K-means are based on static computations during the clustering process; K-means 
clusters customer pairs based on distance, and adaptive K-means clusters them based on 
distance and revenue. In contrast, ACO clustering is based on a criterion other than the 
distance and revenue, which is a random insertion heuristic that is used to insert the 
customer pairs into the appropriate clusters. In other words, for each customer pair, a 
random number is generated and compared to the pheromone matrix values of the clusters, 
and the cluster with a value greater than the random number is selected. Thus, the 
randomness feature of ACO might contribute to inaccurate clustering of customer pairs. 
Fig. 3 presents the performance of all proposed construction heuristics compared with C1, 
C2, and GRASP in terms of profits. It can be observed from this figure that both K-
means-GRASP(C) and adaptive K-means-GRASP(C) have comparable results which 
clearly outperform all other construction heuristics.  
On the other hand, we also compared between the construction heuristics based on the 
execution time (in seconds). Since the execution time is not reported in Küçüktepe  et al. 
[Küçüktepe (2014)], we compared our proposed algorithm with the GRASP of 
Alhujaylan  et al. [Alhujaylan and Hosny (2019)], as shown in Tab. 7. Tab. 7 illustrates 
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that all our clustering algorithms have an effective role in speeding the search process. 
Also, the modifications that were done on GRASP contribute to making GRASP(C) 
faster than its predecessor (recall that GRASP selects the best position for each unvisited 
customer pair then computes their IRs to select one pair randomly in descending order, 
whereas GRASP(C) first computes the IR2, selects one pair randomly from the first 
elements in descending order, and then selects the best position for one pair only).  
Moreover, the time performance of our algorithms, K-means-GRASP(C), adaptive K-
means-GRASP(C), ACO-GRASP(C), is comparable, although ACO-GRASP(C) shows 
slightly shorter processing time. 

 

Figure 3: Construction heuristics’ performances in terms of average of profits 

Therefore, since the three algorithms are comparable with respect to time, we compared 
between one of them (adaptive K-means-GRASP(C),) and the GRASP of Alhujaylan et 
al. [Alhujaylan and Hosny (2019)] in terms of time (seconds) as shown in Fig. 4, where 
the average times for each instance (highlighted rows in Tab. 7) are used to compare their 
time performances. The huge difference in processing time between our algorithm and 
the previous GRASP of Alhujaylan et al. [Alhujaylan and Hosny (2019)] is obvious in 
this figure. 
In general, the results in Tabs. 6 and 7 and Figs. 4 and 5 indicate that the proposed 
algorithms contribute to achieving excellent performance in terms of both quality of 
solutions and processing time compared with all rival algorithms, GRASP, C1, and C2. 
 
Table 7: Comparison of the results of GRASP, K-means-GRASP(C), adaptive K-means-
GRASP(C), and ACO-GRASP(C) in terms of time (seconds) 

K-means-
GRASP(C) 

Adaptive K-
means-
GRASP(C) 

ACO-
GRASP(C) 

GRASP Dataset  

9.288224 6.884987 5.90247 15.449 1-20-F-S 
12.18949 10.71063 11.1642 27.297 2-20-F-L 

0.00 100,000.00200,000.00300,000.00

C1

C2

GRASP

K-means-GRASP( C)

Adaptive K-means-GRASP( C)

ACO-GRASP(C)

Objective function

Average of 1000

Average of 500

Average of 250

Average of 100

Average of 50

Average of 20
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7.016141 6.698972 6.20353 12.624 3-20-P-S 
11.68066 11.47247 9.74447 31.08 4-20-P-L 
6.02175 6.377124 6.79677 18.464 5-20-R-S 
12.17539 9.811818 10.8069 27.343 6-20-R-L 
9.73 8.66 8.43639 22.04283 Average-20 
10.19757 10.29613 11.6429 57.892 7-50-F-S 
21.36664 21.12624 21.3455 108.46 8-50-F-L 
9.228021 8.649488 10.0189 54.567 9-50-P-S 
17.4092 17.11283 17.8235 104.59 10-50-P-L 
10.43683 10.73269 10.5924 57.896 11-50-R-S 
19.97569 18.63418 17.6683 102.72 12-50-R-L 
14.77 14.43 14.8486 81.02083 Average-50 
25.97908 25.8288 23.7467 265.74 13-100-F-S 
39.55519 38.44395 33.4579 487.07 14-100-F-L 
23.24088 20.79652 20.1179 262.4 15-100-P-S 
35.22743 32.60923 30.0171 534.28 16-100-P-L 
22.59382 22.63894 23.1374 266.37 17-100-R-S 
35.77533 31.4858 31.9653 552.56 18-100-R-L 
30.40 28.63 27.0737 394.7367 Average-100 
63.24167 66.41826 68.1295 2,068 19-250-F-S 
94.44695 110.694 98.1781 9,381.30 20-250-F-L 
55.29911 60.33002 55.4232 2,033.80 21-250-P-S 
85.51775 98.99081 84.761 8,213.50 22-250-P-L 
64.56845 63.83406 59.5004 2,331.10 23-250-R-S 
88.4645 95.24033 90.3252 8,401.70 24-250-R-L 
75.26 82.58 76.0529 5,404.90 Average-250 
155.6808 151.3597 145.061 17,521 25-500-F-S 
206.2777 211.4198 201.63 61,818 26-500-F-L 
139.7371 135.8799 129.102 16,479 27-500-P-S 
191.1451 187.6508 177.631 54,809 28-500-P-L 
149.0228 151.0996 136.335 16,931 29-500-R-S 
197.4054 202.2808 188.597 56,801 30-500-R-L 
173.21 173.28 163.059 37,393.17 Average-500 
426.7781 427.7917 425.681 48,679 31-1000-F-S 
584.803 603.3949 582.996 115,990 32-1000-F-L 
368.8414 371.9838 341.3332 42,604 33-1000-P-S 
521.5677 531.1365 475.1481 985,910 34-1000-P-L 
418.2105 404.2715 366.4023 52,068 35-1000-R-S 
570.3743 558.1441 503.1929 107,973.30 36-1000-R-L 
482 482.79 449.126 225,537.40 Average-1,000 
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Figure 4: Comparison of the average results of GRASP and adaptive K-means-GRASP(C) 
in terms of time (seconds) 

6 Conclusion 
In this paper we presented new heuristics to construct initial solutions for the multi-vehicle 
profitable pickup and delivery problem (MVPPDP). The heuristics are based on first 
clustering the search space of the MVPPDP using three clustering methods: K-means, 
adaptive K-means, and ACO (ant colony optimisation). Then, a modified version of greedy 
randomised adaptive search procedure (GRASP) has been used to construct the initial 
MVPPDP solution based on the results of each clustering algorithm. We compared our 
results with those from the other construction heuristics that have been previously used for 
the MVPPDP. The experimental results proved the effectiveness of our algorithms in terms 
of both the solution quality and processing time. The results obtained in our research are 
beneficial for small-scale pickup and delivery companies with limited resources to improve 
their planning by reducing their cost and increasing their profit.   
In future work, we will improve the initial solutions by using population metaheuristics that 
combine two features: 1) intensification, to increase the opportunities for getting good 
solutions, and 2) diversification, to prevent becoming stuck in local optima. Moreover, 
suitable neighbourhood operators will be carefully selected to be applicable with the 
constraints of the MVPPDP, thus increasing the chances of producing high-quality solutions. 
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