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Abstract: As the world's population exponentially grows, so does the need for the
production of food, with cereal production growing annually from an estimated
1.0 billion to 2.5 billion tons within the last few decades. This rapid growth in
food production results in an ever increasing amount of agricultural wastes, of
which already occupies nearly 50% of the total landfill area. For example, is
the billions of dry tons of cellulose-containing spent coffee grounds disposed in
landfills annually. This paper seeks to provide a method for isolating cellulose
nanocrystals (CNCs) from spent coffee grounds, in order to recycle and utilize
the cellulosic waste material which would otherwise have no applications. CNCs
have already been shown to have vast applications in the polymer engineering
field, mainly utilized for their high strength to weight ratio for reinforcement of
polymer-based nanocomposites. A successful method of purifying and hydrolyz-
ing the spent coffee grounds in order to isolate usable CNCs was established. The
CNCs were then characterized using current techniques to determine important
chemical and physical properties. A few crucial properties determined were aspect
ratio of 12 ± 3, crystallinity of 74.2%, surface charge density of (48.4 ± 6.2)
mM/kg cellulose, and the ability to successfully reinforce a polymer based nano-
composite. These characteristics compare well to other literature data and com-
mon commercial sources of CNCs.

Keywords: Cellulose nanocrystals; phosphoric acid hydrolysis; agriculturalwaste;
industrial waste; spent coffee grounds; polymeric nanocomposites; renewable
cellulosic materials

1 Introduction

Cellulose is one of the most abundant natural, renewable, and biodegradable polymers on Earth, and can
be obtained from various sources including bacteria, forestry, and agricultural wastes (agro-wastes) [1, 2]. It
is mainly found in plant cell walls, lending its physical strength to the structure of the plant due to its strong,
tightly packed structure [1, 2]. Its linear unbranched homopolysaccharide structure comprising of 1-4 β
linked glycosidic bonds, as well as the hydrogen bonding of the C2 and C6 hydroxyl groups between
cellulose molecules, allows for the formation of crystalline regions throughout the cellulose chains [3, 4].
These crystalline regions can be isolated by multiple techniques, with acid hydrolysis being the most
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common. This technique utilizes concentrated acids to hydrolyze the amorphous region of cellulose,
resulting in the isolation of the crystalline regions [5, 6]. The most common and industrial/commercial
acid hydrolysis procedure utilizes sulfuric acid due to the ease of use and established protocols, although
other acids have been employed as well, such as phosphoric acid and hydrochloric acid [5, 7, 8]. These
isolated crystalline nanomaterials, better known as cellulose nanocrystals (CNCs) and cellulose
nanofibrils (CNFs), have been proven to have significant impacts on the field of polymer science [5-6].

CNCs and CNFs have been well explored in the past few decades, with ever increasing methods of
isolation and applications [5, 6]. As previously mentioned, multiple different acids can be used to
hydrolyze cellulose, which create different functionalizations on the surfaces of CNCs (i.e., sulfate,
phosphate, and hydroxyl groups, among others), and lead to varying chemical and physical properties
[8-10]. Although their structures are relatively the same, consisting of rod-like shapes ranging from 100
nm-1000 nm in length and 5 nm-20 nm in width, the varying functionalizations of the surface change
properties such as dispersion in solvents, thermal stability, biocompatibility, and crystallinity or stiffness
[8, 11, 12]. Their many unique properties allow for usage in a variety of applications, but are most
known for their incredible strength to weight ratio for reinforcing nanocomposites, sustainability, and
impact on environmentally friendly and biodegradable solutions in industry [5, 6, 13]. The use of CNCs
as a reinforcing agent in polymer nanocomposites, has seen a drastic rise in the last few years, leading to
many new applications in many different fields [14-17]. When CNCs are added into a polymer, they have
the ability to not only change the mechanically behavior, but also to increase properties such as water
absorption in hydrophilic polymers, produce repeatable actuation, and promote particle adsorption and
cell growth and viability [5, 6, 11, 12, 18, 19]. Some applications in particular that have been explored
are reinforcement in polyethylene, polyester, and polyurethane nanocomposites for use in automotive,
textile, and biomedical industries [11, 12, 14, 20-22], as well as use in optical [23], electronic [24], and
stimuli responsive materials [25-29], and airborne filtration systems [30]. The usefulness of CNCs and
CNFs have given rise to a growing market for cellulose nanomaterials, with nearly 10,000 tons being
produced per year and used in high-end industrial products as reported by Future Market Inc. (2019) [13].

As previously mentioned, trillions of tons of cellulose are produced globally annually, making it an almost
inexhaustible feed source. For example, over six billion cups of coffee are consumed daily, leading to enormous
amounts of raw cellulosic material just from spent coffee grounds [1, 4, 31, 32]. However, much of the cellulose
is discarded as waste into landfills to eventually biodegrade [33]. One of the biggest impacts on landfill
occupation has been from the agro-wastes produced by crop harvesting, food industry waste, and textile
industry waste [33-35]. Due to the overwhelming amount of cellulosic materials discarded every year,
extracting useful materials from various waste sources could potentially decrease landfill area, while leading
to useful applications of the extracted material [33, 34]. For example, corn stover [36, 37], rice husks [38],
cotton [39], and sugarcane bagasse [40] have had extensive research performed on the extraction of
cellulose nanomaterials utilizing acid hydrolysis. However, there remains many other cellulose sources that
have yet to be studied, such as spent coffee grounds, of which this research will focus.

Although research has been successful with isolating CNCs from coffee husks and coffee silver skins,
spent coffee grounds have yet to be researched [41, 42]. This report seeks to provide a method of CNC
extraction from spent coffee grounds utilizing adaptations of known purifying and hydrolyzing
procedures [8, 43]. Once extracted, the CNCs are thoroughly characterized by current techniques and
compared to literature to determine the viability of spent coffee grounds as a source for isolation of useful
CNCs [9]. One of the most important factor of success will be determining the new CNC’s ability to
mechanical reinforce a polymer. The greater the mechanical reinforcement, the greater the ability to fine
tune polymer nanocomposites, which will increase the variety of potential applications, as mentioned
above [11, 12, 21, 44]. If proven successful, this research could provide an alternative way to recycle and
reuse an otherwise useless waste material.
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2 Experimental Methods

2.1 Materials
Café Bustello very fine coffee grounds were purchased from Food Lion in Blacksburg, Virginia. All

chemicals including toluene, ethanol, 85% v/v phosphoric acid, sodium hydroxide pellets, acetic acid, N,
N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and bovine serum
albumin (BSA) were purchased from Sigma-Aldrich. McKesson 3% topical hydrogen peroxide was
purchased from Amazon.com. Nanovan stain consisting of a suspension of vanadium particles in water
was purchased from Nanoprobes. Texin RxT85A thermoplastic polyurethane (PU) was purchased from
Covestro. Commercial cellulose nanocrystals (CNCs) were purchased from the University of Maine
Nanocellulose Facility.

2.2 Purification and Bleaching of Cellulose
Café Bustello coffee grounds were run through a Keurig K series coffee machine to make a normal 8 oz.

cup of coffee. It should be noted that the coffee grounds going through the heated water of the Keurig
(roughly 90°C) experienced no thermal decomposition. As well, the initial roasting of the coffee beans to
enhance flavor happens between 180-240°C, therefore the cellulose within coffee grounds underwent no
prior thermal decomposition before use [45]. The spent coffee grounds were then left out to dry overnight
before starting the cellulose extraction process. The relative composition of the spent coffee grounds after
drying and before purification is shown below in Tab. 1 [31, 32, 46].

The following purification and bleaching procedure was adapted from Marett et al. (2017) and Mueller
et al. (2014) [43, 47]. Approximately 40 g of dried spent coffee grounds were measured out and purified
utilizing a Soxhlet extraction procedure with a 1000 mL mixture of 1/3 ethanol and 2/3 toluene by
volume. The solvent mixture was added to a round bottom flask under the extractor and placed into a
silicone oil bath at 120°C to be boiled overnight, ensuring a significant amount of time to remove soluble
monomers such as lipids. After roughly 24 h of extraction, the coffee grounds were removed and left to
dry overnight.

Following the Soxhlet extraction, a 1 M sodium hydroxide bath was used to remove the soluble
hemicellulose. The base wash was created by mixing 120 g of sodium hydroxide pellets with 3000 mL of
deionized (DI) water and heating to 70°C while continuously stirring until all of the pellets were
dissolved. The extracted material was added to the solution for 4 h and subsequently separated via

Table 1: Relative chemical composition of spent coffee grounds, adapted from
Mussatto et al. (2011) and Ballesteros et al. (2014) [31, 32, 46]

Chemical Component Dry Weight (g/100 g)

Cellulose 8-10

Hemicellulose 36-39

Lignin 23

Protein 13-17

Fat 2-3

Acetyl Groups 2

Ashes 1-2

Other (Not Specified) 4-15
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vacuum filtration. The resulting material was then washed with DI water until the liquid remained clear,
approximately six times. This entire procedure was repeated one more time due to the extensive
quantities of hemicellulose.

Immediately following the base washes, the almost-pure cellulose was added to a hydrogen peroxide/
acetic acid solution in order to remove the remaining non-cellulosic components including lignin. The
wash comprised of 1440 mL of 3% hydrogen peroxide, 60 mL of acetic acid, and 1500 mL of DI water
(48 v/v, 2 v/v, and 50 v/v of each component, respectively) and was heated to 60°C while stirring
constantly. The cellulose was added to the wash for 4 h before separation via vacuum filtration. The
resulting cellulose was then washed with DI water until the liquid remained clear, approximately four
times. Again, this entire procedure was repeated one more time due to the extensive quantities of the
remaining non-cellulosic components.

2.3 Acid Hydrolysis of Cellulose
The following phosphoric acid hydrolysis procedure was adapted from Espinosa et al. [8]. Two grams of

the purified cellulose was added to 100 mL of DI water and cooled in an ice bath for 15 min. Phosphoric acid
was slowly added dropwise via a dripping funnel, while maintaining a solution temperature of below 20°C,
until a phosphoric acid concentration of 10.7 M was achieved (approximately 292 mL). After the addition of
the acid was complete, the solution was placed in a silicone oil bath preheated to 100°C and stirred for a
predefined time of 2 h. After the completion of the reaction, the solution was immediately moved into an
ice bath until room temperature was reached. The phosphorylated CNCs (p-CNCs) were separated from
the supernatant by centrifugation at 10000 rpm for 10 min. The separated supernatant was decanted,
replaced by an equal amount of DI water, and centrifuged again. This step was repeated until the
supernatant remained clear (approximately five times). The p-CNCs dispersion was dialyzed against DI
water for 7 days, replacing the water every day, until a neutral pH of 7 was reached. The yield of
p-CNCs was approximately 10%, however, it should be noted that the yield was highly dependent on the
small content of cellulose residing in the raw spent coffee grounds [31, 32, 46]. To dry the p-CNCs, the
suspension underwent a solvent exchanged into acetone by replacing 2/3 of the aqueous suspension with
equal parts of acetone using the previously described sonication and centrifugation techniques. This
process was repeated roughly 4 to 5 times to ensure complete exchange. Once the p-CNCs were
exchanged into acetone, the suspension was poured into a Teflon petri dish and dried on a hotplate
overnight. The subsequently dried p-CNCs were then used in the following characterization techniques,
Sections 2.4-2.11, and redispersed into respective solvents as needed.

2.4 Microscopy
2.4.1 Scanning Electron Microscopy

SEM samples were prepped by dispersing p-CNCs in DMF with a concentration of 0.1 mg/mL, and
sonicating at 110 W and frequency of 40 kHz with a Branson M2800 ultrasonic bath for 1 h. A droplet of
the dispersion was then placed onto a silicon wafer attached to an aluminum SEM stand, and left in a
desiccator to dry overnight. Each sample was sputter coated with 5 nm of iridium using a Leica ACE600
Sputter to prevent charge buildup, and imaged using a LEO 1550 field-emission SEM at 5 kV.

2.4.2 Transmission Electron Microscopy
TEM samples were prepped by dispersing p-CNCs in DI water with a concentration of 0.01 mg/mL, and

sonicating at an amplitude of 40 with a 20 kHz Q55 Qsonica horn sonicator for 10 mins. Next a solution of
BSA in DI waster was created at a concentration of 0.2 mg/mL, and mixed with the p-CNC dispersion in a
1:1 ratio. The subsequent mixture was then sonicated further at 110 W and frequency of 40 kHz with a
Branson M2800 ultrasonic bath for 1 h. A droplet of the mixture was placed onto a copper TEM grid and
left for 1 min to ensure attachment of p-CNCs. A drop of NanoVan stain was then added to the TEM grid
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for 30 s, before being quickly submerged in a beaker of DI water to remove any excess materials. The grid
was left in a desiccator to dry overnight. Imaging was performed using a JEOL 2100 TEM.

2.5 Energy-dispersive X-ray Spectroscopy
EDS samples were prepped similarly to the SEM samples, however instead of dispersing in DMF, the

p-CNCs were dispersed in DI water with a concentration of 10 mg/mL. The dispersion was sonicated at 110
W and frequency of 40 kHz with a Branson M2800 ultrasonic bath for 1 h. A drop of the dispersion was
placed on a silicon wafer and left in a desiccator to dry overnight. As well, phosphorus has a relatively
similar signal as iridium, therefore the samples were sputter coated with 5 nm of gold-palladium.
Analysis was performed using a LEO 1550 field-emission SEM at 10 kV.

2.6 X-ray Photoelectron Spectroscopy
XPS samples were prepped similarly to the EDS samples, however a concentration of 1.0 mg/mL was

used. The dispersion was sonicated at 110 Wand frequency of 40 kHz with a Branson M2800 ultrasonic bath
for 1 h. A drop of the dispersion was placed on a silicon wafer and left in a desiccator to dry overnight. The
samples were not sputter coated prior, and analysis was performed using a PHI Quantera SXM-03.

2.7 Conductometric Titration
Conductometric titration was performed following a known protocol by Foster et al. 0.15 g of p-CNCs

were dispersed in 300 mL of DI water and sonicated in an ultrasonic bath for 1 h. 5 mL of 0.5 M NaCl
solution and 0.02 M HCl solution were added to the dispersion prior to titrating [9]. Titration was carried
out by a Metrohm 905 Titrando automatic titrator dosing 0.05 mL of 0.02 NaOH solution per data point
using an Metrohm 800 Dosino automatic doser, and measuring conductivity and pH with a Metrohm 856
conductivity module. Due to the addition of the NaCl, a calculated conductivity was used instead of the
measured conductivity, following the equation used in Foster et al. [9]. The data was plotted and
analyzed using Excel, and surface charge density calculated using an adapted protocol and equation by
Espinosa et al. [8].

2.8 X-ray Powder Diffraction
XRD was performed on dry p-CNCs in powder form using a Panalytical X’Pert powder XRD system. A

CuKα radiation source was used at 45 kV and 30 mA, and scattered radiation was detected in the range of
2θ = 0°-50°. Percent crystallinity was determined using the peak deconvolution method similar to that of
Zhang et al. [48].

2.9 Thermogravimetric Analysis
TGA was performed on dry p-CNCs in powder form using a TA Instruments TGA Q500 thermal

analyzer. 10 mg of p-CNCs were measured into a platinum TGA pan, and heated from 25°C to 500°C at
a rate of 10°C/min. The decomposition temperature was determined by the loss of 5 wt% after the
residual water had been removed from the sample.

2.10 Dispersability and Dynamic Light Scattering
The dried p-CNCs were dispersed in DI water, DMSO, DMF, and THF, decreasing in polarity, with a

concentration 10 mg/mL. Each dispersion was sonicated using a 20 kHz Q55 Qsonica horn sonicator at
an amplitude of 40 for 10 mins, followed by further sonication in an ultrasonic bath for 1 h. The
dispersions were lined up in order of decreasing polarity and imaged immediately after sonication, and
1 h, 1 d, and 10 d post-sonication.
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DLS samples were prepped by dispersing p-CNCs into DMF at a concentration of 0.01 mg/mL. The
dispersion was sonicated using the same protocol mentioned above for dispersibility studies. The
dispersions were then transferred to a quartz cuvette, and analyzed using a Malvern Zetasizer Nano-ZS
DLS instrument to determine relative particle size within a suspension.

2.11 Mechanical Reinforcement
Three different compositions of composites were fabricated for mechanical reinforcement testing; neat

PU, 10 w/w commercial CNCs in PU, and 10 w/w p-CNCs in PU, following an adapted procedure from Frost
and Foster [21]. The CNCs were dispersed in DMF at a concentration of 10 mg/mL using the same sonication
protocol discussed in dispersibility testing. The PU was dissolved in DMF at a concentration of 40 mg/mL
using a hot plate at 140°C while stirring at 1000 rpm for 1 h or until all the PU pellets had dissolved. Once the
CNC suspensions and PU solution were completely homogenous, they were mixed together in the ratios
specified above. The combined mixture was placed in an oil bath at 140°C while stirring at 750 rpm until
enough DMF was evaporated to increase viscosity (to the ‘viscosity of molasses’). The viscous mixture
was then transferred to a Teflon dish, set on a hot plate at 100°C, and left overnight to slowly evaporate
the DMF. After drying overnight, the samples were put into a vacuum oven at 80°C and -27 in *Hg for
2 h or until all DMF was removed.

After complete removal of the solvent, each composition was hot pressed using a 3851-0 Carver Press at
140°C and 3 MPa of pressure for 5 min, using 0.9 mm–1.0 mm aluminum spacers to ensure uniformity of
thickness throughout the film. Each pressed film was cut with a razor blade into five 1.0 cm wide ribbons for
tension testing. Tension testing was performed utilizing a TA Q800 Dynamic Mechanical Analyzer (DMA)
on five of each composite composition to determine the mechanical reinforcement properties of the
composites. Each sample was tested using an isostatic force test with a force ramp rate of 3 N/min at
25°C until a maximum of 18 N was reached.

3 Results and Discussion

3.1 Isolation of p-CNCs from Spent Coffee Grounds
Due to the excessive amount of non-cellulosic components in the spent coffee grounds [31, 32, 46], the

bleaching and purification process was adjusted to obtain a purer form of cellulose, yielding an off-white,
slightly tan color. Of the 40.0 g of dried spent coffee grounds, a resulting 4.2 g yield was left after the
bleaching and purification process, which correlates well to the previously reported amount of cellulose
found in spent coffee grounds [31, 32, 46]. Following the extensive bleaching and purification process,
extraction of p-CNCs from spent coffee grounds utilizing phosphoric acid hydrolysis proved successful.
The cellulose was hydrolyzed using the same parameters as the procedure by Espinosa et al., however, an
extra 30 min was added to the reaction time in order to fully hydrolyze the cellulose [8]. Phosphoric acid
hydrolysis was chosen over the conventional sulfuric acid hydrolysis because of the difference in the
resulting physical and chemical properties. Compared to traditional sulfated CNCs (s-CNCs), p-CNCs
have a lower surface charge, decreasing dispersibility in many organic solvents, leading to more
agglomerations within polymer composite systems. However, they have also been shown to have a higher
thermal stability and biocompatibility (better cell growth and viability), which is crucial for multiple
polymeric applications [5, 8, 11, 12]. The p-CNCs were successfully characterized, Tab. 2, following
current analyzing techniques in literature and compared to other fabricated p-CNCs and current industrial
CNCs [8, 9, 49, 50].

3.2 Microscopy – SEM and TEM
Both SEM and TEM were employed to determine whether p-CNCs were successfully obtained, and if

so, to characterize the average aspect ratio. SEM imaging was performed first and compared to literature, to
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establish a preliminary presence of p-CNCs. The SEM images show the distinct rod-like shape of the
p-CNCs, however, lack of a more diluted dispersion caused aggregation of the particles while drying. The
resulting mat of material, shown in Fig. S1, is assumed to be the aggregated p-CNCs due to its common
drying agglomeration, similar results found in literature [43, 51, 52].

TEMwas subsequently conducted to determine the length, width, and aspect ratio of the p-CNCs, shown
in Fig. 1, and compared to those found in literature [8, 11, 49]. It should be noted that although the images in
Fig. 1 show a darkened region from the agglomeration of BSA protein around the p-CNCs, the measurements
were not affected. ImageJ image measurement software was used to measure 15 individual p-CNCs from
varying images, resulting in an average length of (199 ± 27) nm, average width of (17 ± 4) nm, and
aspect ratio of 12 ± 3. Although the aspect ratio of the p-CNCs resides in the lower range of literature
values [5, 6] (for reference, 10 for cotton and 67 for tunicates [12]), there should still be significant
amount of mechanical reinforcement when introduced into a polymer matrix, discussed later in Section 3.8.

Table 2: Physical and chemical properties of fabricated p-CNCs compared to fabricated p-CNCs in literature
and commercial s-CNCs from UMaine and CelluForce [5, 8, 49, 50]

Coffee
p-CNCs

p-CNCs
(Espinosa)7

p-CNCs
(Vanderfleet)8

UMaine
s-CNCs

CelluForce
s-CNCs

Substituent content
(phosphate and sulfate
groups, respectively)
(mM/kg cellulose)1

25.8 ± 9.6 3.95 ± 0.8 18.8 ± 3.3 1.06 ± 0.2 8.1 ± 0.05

Charge concentration
(mM/kg cellulose)2

48.4 ± 6.2 10.8 ± 2.7 N/A 330 ± 15 255 ± 10

Carbon (%)1 58.5 ± 0.39 44.19 ± 0.15 N/A ~77 ~77

Oxygen (%)1 40.5 ± 0.39 49.5 ± 0.08 N/A ~23 ~23

Length (nm)3 199 ± 27 316 ± 127 326 ± 70 134 ± 52 183 ± 88

Diameter (nm)3 17 ± 4 31 ± 14 N/A 7 ± 2 6 ± 2

Aspect ratio3 12 ± 3 11 ± 1.5 N/A 19 31

Apparent crystallinity (%)4 74.2 81 95 85 89.9

Onset of thermal
decomposition, Td5% (°C)5

310 305 ~300 ~260 ~263

Mechanical reinforcement
tensile modulus at 10 wt%
CNCs (MPa)6

58.6 ± 2.7 N/A N/A 113.7 ± 9.7 N/A

Mechanical reinforcement
yield stress at 10 wt%
CNCs (MPa)6

2.6 ± 0.1 N/A N/A 3.6 ± 0.0 N/A

1 Determined by XPS (Section 3.3)
2 Determined by conductometric titration (Section 3.4)
3 Determined by TEM (Section 3.2)
4 Determined by XRD (Section 3.5)
5 Determined by TGA (Section 3.6)
6 Determined by DMA (Section 3.8)
7 Referenced from Espinosa et al. [8]
8 Referenced from Vanderfleet et al. [49]
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3.3 Chemical Composition – EDS and XPS
EDS and XPS were conducted for elemental analysis of the p-CNCs, specifically for carbon, oxygen,

and phosphate content. The elemental analysis resulted in a carbon content of (58.5 ± 0.39) wt%, and an
oxygen content of (40.5 ± 0.39) wt%, which are typical values for cellulose and its derivatives [8]. The
phosphate content was shown to be (0.08 ± 0.03) wt%, which was then converted to (25.83 ± 9.6) mM/
kg cellulose for a more accurate comparison to literature values [8, 49]. It is typical to see a lower
phosphate content for p-CNCs when compared to other functionalized CNCs, specifically sulfation of
s-CNCs which ranges from 80 mM/kg cellulose-350 mM/kg cellulose [43, 49]. However, the phosphate
content observed for the p-CNCs is much higher than expected when compared to other studies (i.e., 3.95
± 0.8 mM/kg cellulose for Espinosa et al. and 8.2 mM/kg cellulose-44.5 mM/kg cellulose from
Vanderfleet et al.) [8, 49]. Spent coffee grounds contain a certain wt% of phosphorus, and although it is
assumed that all of the non-cellulosic materials were extracted during the bleaching and purification
process, there is a potential chance for some of the phosphorus to remain, resulting in a higher phosphate
content [31, 32, 46].

3.4 Surface Charge Density – Conductometric Titration
During acid hydrolysis, CNCs often become functionalized with associated groups of the acid being

used, for example phosphate groups via phosphoric acid hydrolysis. Conductometric titration was
employed to obtain the surface charge density of the functionalized p-CNCs, shown in Fig. S2. With the
addition of phosphate substituents attached to the cellulose via ester bond, the surface charge should
increase when compared to a blank titration. Utilizing adapted procedures from Foster et al. and Espinosa
et al. [8, 9], surface charge density was calculated to be (48.4 ± 6.2) mM/kg cellulose. Although the
surface charge is relatively high for p-CNCs compared to literature (10.8 ± 2.7 mM/kg cellulose by
Espinosa et al.) [8], it correlates to the higher phosphate content of the spent coffee ground p-CNCs
observed by EDS and XPS during elemental analysis [49]. The higher surface charge density will allow
for easier dispersion in polar solvents such as water, DMSO, and DMF, however, will inherently lower
the onset of thermal degradation, further discussed Section 3.6 and 3.7, respectively.

Figure 1: TEM images of isolated p-CNCs dispersed in a 1:1 mixture of 0.01 mg/mL p-CNCs in DI water
and 0.2 mg/mL BSA solution. The BSA was shown to produce a darker halo around the p-CNCs due to
agglomeration of the protein
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3.5 Crystallinity - XRD
XRD was performed to obtain the apparent crystallinity of the p-CNCs, shown in Fig. 2. The crystalline

peaks occur at 2θ values of 16.5°, 20.5°, 22.5°, and 34.5°, which line up with the 10�1, 021, 002, and 040
planes, respectively, and indicative of cellulose type I [53]. It is common that an additional peak appears
at 14.5° lining up with a 101 peak, when analyzing CNCs, however no peak occurred for the p-CNCs
[53, 54]. This could indicate that not all of the amorphous region was hydrolyzed during the extraction
process, leading to a slightly lower crystallinity. Under the assumption that the 101 and 10�1 peaks were
the same intensity, a peak deconvolution method adapted from Zhang et al. (2014) was used to remove
the amorphous material regions and calculate an apparent crystallinity of 74.2% [48]. The typical
crystallinity of CNCs reported in literature ranges from 64% to 90%, with the majority residing in the
mid to upper 70 s [53, 55]. Crystallinity is crucial for CNCs because the higher the crystallinity, the
higher the stiffness they will impart on a polymer matrix during mechanical reinforcement [5, 56]. The
p-CNCs showed a normal percent crystallinity compared to literature, which is suggested correlate to
increased mechanical reinforcement properties. As well, each peak was separated and analyzed using the
Scherrer equation with full width at half maximum (FWHM) to determine the size of each crystal plane,
following an analysis by Kumar et al. and Das et al. [57, 58]. The resulting crystallite sizes were 8.6 nm,
5.7 nm, 3.4 nm, and 2.9 nm, for the 10�1, 021, 002, and 040 planes, respectively.

3.6 Thermal Stability - TGA
P-CNCs have been shown in literature to have an increased onset of thermal degradation when

compared to other functionalized CNCs. This is believed to be caused by the instability of higher number
of surface charges attributed to different functionalization, such as sulfate or carboxyl groups instead of
phosphate groups [8, 49]. As surface charge increases or decreases, thermal stability responds oppositely,
resulting in changing onsets of thermal degradation, i.e., 285°C and 330°C for s-CNCs and unmodified
CNCs (h-CNCs), respectively [8]. It should be noted that h-CNCs possess only unmodified hydroxyl

10 15 20 25 30 35 40 45 50

2θ (°)

Coffee p-CNCs

Umaine s-CNCs

101
–

101

021

002

040

Figure 2: XRD spectra showing the crystalline peaks associated with the p-CNCs compared to those of
commercial UMaine s-CNCs, with the 10�1, 021, 002, and 040 planes indicative of cellulose type I. The
s-CNCs show an additional peak at the 101 plane which is associated with a higher crystallinity [55]
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groups produced from hydrolysis via hydrochloric acid. TGA of p-CNCs showed an onset of thermal
degradation, measured at a loss of 5 wt% after the loss of humidity content (Td5%), of 310°C, shown in
Fig. 3. This correlates well with other reported onsets of p-CNCs ranging from 290°C-330°C, sitting in
between the higher and lower Td5% of the s-CNCs and h-CNCs [8, 49, 56]. It should be noted that the Td5%

of each sample was shifted with respect to the humidity content of roughly 4 wt%, 6 wt%, and 3 wt% for
the p-CNCs, s-CNCs, and h-CNCs, respectively. The difference in humidity content can be attributed to
increasing water absorption by the CNCs as surface charge density increases [5-6]. Higher thermal
stabilities have proven to be useful for multiple applications, such as casting and melt pressing films, and
extrusion processing, without causing degradation or reduction of properties of the CNCs [14, 22, 59].

3.7 Dispersibility and DLS
After initial sonication in the solvents, the p-CNCs showed good dispersion in water, DMSO, and DMF,

while remaining agglomerated in THF. Continuing to monitor the dispersions, the p-CNCs did not show
precipitation or agglomeration in either the water, DMSO, or DMF after a full ten days, as shown in
Fig. 4. Furthermore, the p-CNCs dispersed in DMSO and DMF continued to improve over time, and
showed no signs of precipitates or agglomerations after an extended time of over two months. The higher
clarity within the DMSO and DMF suspensions show ideal dispersions with no precipitates or subsequent
refraction of light [8, 43, 60, 61]. Therefore, it should be noted that although birefringence behaviors
were not displayed using crossed nicols, the dispersability is still comparable to literature references for
both with and without birefringence, in which precipitates can be seen in non-ideal solvents such as THF
and partially for water [8, 43, 60-63]. A key factor of CNCs dispersion has to do with the amount of
charge on the surface, and how well they repel each other and accept the solvent. As surface charge
increases due to higher phosphate contents or different functionalization (i.e., sulfate groups or carboxyl
groups), dispersion in solvents increases since repulsion between CNCs is greater [5, 6].
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Figure 3: TGA plot comparing the thermal degradation of the isolated p-CNCs to commercially available
s-CNCs. The vertical dotted lines refer to the onset of thermal degradation at Td5% = 310°C for the p-CNCs
and Td5% = 285°C for the s-CNCs. These can also be compared to h-CNCs found in literature with an onset of
Td5% = 330°C [8]

196 JRM, 2020, vol.8, no.2



Further characterizing dispersibility of the p-CNCs, DLS was used to determine apparent particle size in
a diluted DMF dispersion. DMF was chosen as the dispersant of choice due to overwhelming literature
regarding CNC dispersion in DMF [8, 21]. DLS of the p-CNC suspension showed typical bimodal peaks
with an apparent size of 139 nm-562 nm, which resides on the larger end of literature, with normal sizes
ranging from 163 nm-250 nm for Vanderfleet et al. to upwards of 400 nm-500 nm for Shanmugarajah
et al. [49, 64]. The larger size range can be attributed to the difficulty of perfectly redispersing dried
p-CNCs into solvents, therefore retaining small aggregates within the suspension is possible and
probable. The ability for CNCs to disperse readily in solvents is crucial for integrating them into polymer
composites. Uniform dispersion in the polymer matrix creates ideal networks between CNCs and the
matrix, allowing for isotropic behaviors while retaining little to no defects from CNC agglomeration [21].

3.8 Mechanical Reinforcement in Composites
The p-CNCs dispersed in the PU matrix showed a significant increase in mechanical properties

compared to the neat PU, increasing the tensile modulus from (20.8 ± 0.8) MPa to (58.6 ± 2.7) MPa and
increasing yield stress from (1.8 ± 0.1) MPa to (2.6 ± 0.1) MPa, respectively. However, the p-CNC
composites showed lower mechanical properties when compared to commercial UMaine s-CNC
composites, with a tensile modulus of (113.7 ± 9.7) MPa and yield stress of (3.6 ± 0.0) MPa, shown in
Fig. 5. Although there was not as much of an increase in mechanical reinforcement with the p-CNCs as
with the s-CNCs, significant reinforcement with regards to the pure polymer shows potential for use in
many polymer composite applications. The ability of the p-CNCs to reinforce the polymer matrix is

Figure 4: Images showing the 10 mg/mL p-CNC dispersions in water, DMSO, DMF, and THF, immediately
following sonication, and subsequent times of 1 h, 1 d, and 10 d. The solvents used decrease in polarity from
left to right
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crucial to the variety of applications of which it can be useful, such as strengthening a polymer for automotive
industry compared to use in intervertebral disc or cartilage replacement [11, 12, 21, 44].

To avoid common misconception, it should be noted that although tension testing is typically run using
controlled crosshead displacement or strain ramp on an Instron [65-67], stress versus strains curves, and
subsequent tensile moduli, can be determined through controlled force ramps using a DMA [21, 43, 68,
69]. DMA uses an input of force while measuring the resultant strain, leading to an acceptable linear
regime for tensile moduli analysis [21, 43, 68, 69].

These differences can be caused by many variables, however, the most probable are surface charge
density, crystallinity, and aspect ratio. As discussed previously in Section 3.7, surface charge density has
a drastic impact on the ability of CNCs to disperse in a solvent. P-CNCs show a lower dispersibility than
commercial s-CNCs in common solvents, which can lead to a less uniform dispersion and more
agglomerations within the polymer matrix [8]. A continuous network of CNCs and high number of CNC-
polymer interactions are needed to create a mechanically robust composite. These problems can cause
defects in the continuous CNC network, reducing the overall mechanical properties from lower CNC-
polymer interactions [8]. As alluded in Section 3.5, crystallinity plays a major role in the reinforcement of
a polymer matrix. The higher the crystallinity of the CNCs, the higher the stiffness and strength, which
directly correlates to increased reinforcement [43, 52]. However, the p-CNCs produced in this study
showed an around average crystallinity, therefore is assumed to not have had much impact on the
decreased reinforcement. The final notable variable for the lower mechanical reinforcement is the aspect
ratio of the p-CNCs compared to the commercial s-CNCs, most likely caused by the source of cellulose
[11, 12]. The p-CNC aspect ratio of 12 ± 3, which were derived from spent coffee grounds, is on the
lower end of the 10-40 aspect ratio range for the commercial s-CNC derived from wood pulp. As aspect
ratio increases, the critical percolation threshold in the polymer composites decreases, resulting in less
CNCs needed to create a continuous network and mechanically reinforce the polymer [12]. Therefore, at
10 wt% CNCs in PU, the commercial s-CNCs will have greater stress transfer between the CNCs and
polymer matrix due to a larger, stiffer continuous network of CNCs [11, 12, 70]. However, it has been
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Figure 5: Tensile test results obtained with a DMA under controlled force ramp, showing a typical stress
versus strain plot of neat PU, 10 wt% commercial UMaine s-CNCs in PU, and 10 wt% isolated p-CNCs
in PU, to determine the reinforcement properties of the p-CNCs
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shown that as long as the aspect ratio is at or above 10, significant reinforcement is achieved in most polymer
composite systems, as proven by the p-CNCs in this study [12].

4 Conclusions

This study sought to establish a protocol for the isolation and characterization of p-CNCs from spent
coffee grounds as a potential cellulosic waste material. The extraction of p-CNCs from the amorphous
cellulose via phosphoric acid hydrolysis was proven successful, and further chemical and physical
characterization determined the viability of the p-CNCs’ usefulness. The resulting p-CNCs showed an
aspect ratio of 12 ± 3, an apparent crystallinity of 74.2%, and a high phosphate content and surface
charge density of (25.8 ± 9.6) mM/kg cellulose and (48.4 ± 6.2) mM/kg cellulose, respectively. The
p-CNCs showed dispersibility in multiple organic solvents, with DMSO and DMF being the best
candidates for dispersion. Nanocomposites were made using 10 wt% isolated coffee p-CNCs in PU and
10 wt% commercial UMaine s-CNCs in PU, and compared to determine the mechanical reinforcement
ability in p-CNCs in a polymer-based nanocomposite. Although the nanocomposite reinforced with
p-CNCs did not exhibit the same mechanical reinforcement as the commercial s-CNCs, there was still a
three-fold increase in tensile modulus when compared to the neat PU. The dispersibility and mechanical
reinforcement bodes well for the ability of the p-CNCs to be used in many polymer nanocomposite
applications, in which fine tuning of p-CNC concentration is needed to achieve the necessary mechanical
properties [11, 12, 21]. As well, the high phosphate content will increase the biocompatibility of the
p-CNCs and cell adhesion and growth when introduced into a biocompatible polymer system [44]. The
produced p-CNCs from spent coffee grounds compared well to other isolated CNCs from agricultural
wastes throughout literature. Although the yield of CNCs was only about 8-10% of the starting raw
material, the nearly limitless source of spent coffee grounds worldwide allows for potential mass
quantities to be produced, regardless of low yield. With this in mind and the promise shown in this study,
advancements toward industrial scalability should be further researched to determine the overall economic
and environmental benefits of these results. Specifically, by the known sulfuric acid hydrolysis procedure
already used in many industrial CNC manufacturers, such as University of Maine and Celluforce [50].
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