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Abstract: In order to strengthen their security issues, electrical companies devote 
particular efforts to developing and enhancing their fraud detection techniques that cope 
with the information and communication technologies integration in smart grid fields. 
Having been treated earlier by several researchers, various detection schemes adapted 
from attack models that benefit from the smart grid topologies weaknesses, aiming 
primarily to the identification of suspicious incoming hazards. Wireless meshes have 
been extensively used in smart grid communication architectures due to their facility, 
lightness of conception and low cost installation; however, the communicated packets are 
still exposed to be intercepted maliciously in order either to falsify pertinent information 
like the smart meter readings, or to inject false data instead, aiming at electricity theft 
during the communication phase.  For this reason, this paper initiates a novel method 
based on RSA cryptographic algorithm to detect electricity fraud in smart grid. This new 
method consists of generating two different cryptograms of one electricity measurement 
before sending, after which the recipient is used to find the same value after decrypting 
the two cyphers in a normal case. Otherwise, a fraudulent manipulation could occur 
during the transmission stage. The presented method allows us to kill two birds with one 
stone. First, satisfactory outcomes are shown: the algorithm accuracy reaches 100%, from 
one hand, and the privacy is protected thanks to the cryptology concept on the other hand. 
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1 Introduction 
In the field of information and communication technologies, the conventional electricity 
delivery network was significantly enhanced to support new features and smart 
technologies, leading to the introduction of a new concept called Smart Grid. By dint of 
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an Advanced Metering Infrastructure (AMI), a bidirectional communication flow is 
ensured between the end-users (smart meters) and the utility companies (providers). 
However, the advanced technologies have their own weak spots that present a fertile 
environment for malicious users to affect the smart grid functionalities. Non-Technical 
Losses (NTL) are one of the most serious hazards that have been identified since the 
smart grid appearance. They refer mainly to energy theft that could be performed by 
means of illegal data manipulation (fraud) or direct connections to the grid (theft), adding 
to secondary facts as flawed equipment or billing errors [Kosut, Santomauro, Jorysz et al. 
(2015)]. A recent study from [LLC (2015)] reported that the top 50 emerging market 
countries lose 58.7 billion dollars per year due to the NTL fraud. Moreover, these 
countries will likely invest $168 billion over the next decade to improve the reliability of 
Smart Grid infrastructure and to combat the NTL fraud. Hence, several studies were 
conducted to overcome this challenge, aiming to improve fraud detection mechanisms to 
go in parallel with the worsening of attacks. Numerous fraud detection techniques are 
grounded on machine learning and data analysis algorithms, which are very promising 
and suitable approaches capable of determining user profiles [Diffie and Hellman (1976); 
Abreua, Pereira and Ferrão (2012); Huang, Tang, Cheng et al. (2014); Zanetti, Jamhour, 
Pellenz et al. (2016); Zheng, Chen, Wang et al. (2018)], etc. However, these techniques 
require large amounts of data to build robust consumer profiles. In other words, the more 
the consumer data base is important, the more its consumption pattern is significant. 
Moreover, the electricity consumption of one client changes depending on the season, 
period of day, holidays or vacation, which not only increases the difficulty of reporting 
significant client profiles, but also leads to a confusion in distinguishing the normal from 
the abnormal consumption patterns. 
This paper presents a new concept in fraud detection schemes, whereby the smart meter 
reading is encrypted (smart meter side) before sending, where the recipient (company) 
decrypts the received codes to check the correctness of the electricity consumption value 
(Section 4). Thus, the RSA encryption algorithm is applied in this approach because of its 
easier conception algorithm and its strength against hacking. Based only on the instantaneous 
smart meter reading, the proposed technique is able to detect fraudulent changes to the real 
reported consumption, neglecting any external factors (seasons, period, etc.); in other words, 
no more data is required to learn the consumption profile. This main contribution allows the 
proposed approach to be practical in the real world due to the simplicity of its implementation 
and its promising results that show an accuracy of 100% (Section 7). As far as we know, this 
is the first time that this approach has been implemented with such impeccable results when 
compared with the existing works in that field. 

2 Related works 
The Smart Grid concept consists of handling the traditional power grid by an armada of 
information and communication technologies for the purpose of improving the electrical 
system profitability. Accordingly, new cyber-attacks that appeared led us to rethink new 
defence’s mechanisms able to strengthen the security of companies.  In that way, 
numerous studies have taken place in order to come up with new fraud detection 
approaches that can deal with those hazards. 
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Aiming to maintain a high level of reliability and efficiency of smart grid systems, 
utilities and researchers focus on dealing with any potential threat by means of 
countermeasures and detection mechanisms in real time. In that field, Jian et al. [Jian, 
Lu, Wang et al. (2014)] reported a survey of some AMI energy theft detection schemes 
summarizing them into three categories: classification-based, state estimation-based, 
and game theory-based. 
A recent review of various modelling techniques for the detection of electricity theft in 
smart grid environment has been reported in Ahmad et al. [Ahmad, Chen, Wang et al. 
(2018)], it focuses on the various modelling practices for the identification and 
apprehension of non-technical losses. Various data mining modelling approaches were 
deeply studied, showing their impact on expediting the investigators and scientists. 
Habitual consumer consumption represents the client profile which is nearly the same over 
seasons, so each household has its usual consumption pattern that helps companies to 
identify the abnormal behaviour. Abreua et al. [Abreua, Pereira and Ferrão (2012)] 
highlighted a methodology for habitual electricity consumption detection using pattern 
recognition given the intrinsic characteristics of the family. Two main patterns are 
discovered: persistent daily routines and patterns of consumption or baselines typical of 
weather and daily conditions when nearly 80% of household electricity use can be explained. 
Machine learning algorithms are also applied to separate secure from attacked measurements 
[Ozay, Esnaola, Vural et al. (2016)]. Well-known batch and online learning algorithms 
(supervised and semi supervised) are employed with decision and feature level fusion to 
model the attack detection problem. The relationships between statistical and geometric 
properties of attack vectors employed in the attack scenarios and learning algorithms are 
analysed to detect unobservable attacks using statistical learning methods. 
In Nasim et al. [Nasim, Jelena, Vojislav  et al. (2014)], the AMI security requirements 
and bugs have been discussed in a survey of recent studies of the threat detection solution 
before an Intrusion Detection System was proposed for the neighbourhood area network 
(NAN) in AMI in order to manage the smart metering communication network, taking 
into consideration several attacks against physical, MAC, transport, and network layers. 
A proposed method for state estimation in smart grid that uses a revolutionary algorithm 
such as bat algorithm with a hybrid approach based on a weighted least square technique 
offers an opportunity to omit and detect fake data [Khorshidi and Shabaninia (2015)]. 
Non-Technical Losses Fraud Detection techniques (NFD) were known as accessible and 
practical schemes useful to identify NTL fraud in Smart Grid.  They allow differentiating 
tampered-with meters from normal meters using the approximated difference between the 
billing electricity and the actually consumed electricity. In that way, a novel detector has 
been proposed in order to detect colluded Non-Technical Losses in Smart Grid (CNTL) 
where its main contribution focused on identifying four types of that sort of NTL which 
are: segmented CNTL frauds, fully overlapped CNTL frauds, partially overlapped CNTL 
frauds, and combined CNTL frauds [Han and Xiao (2017)]. 
Another solution has been developed to address the issue of false data injection called the 
adaptive Cumulative Sum (CUSUM) algorithm [Huang, Tang, Cheng et al. (2014)]. The 
presented scheme consists of two interleaved steps: 
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• Introduces the unknown variable solver technique based on the Rao test. 
• Applies the multithread CUSUM algorithm in order to determine quickly the eventual 
adversary respecting the given constraints.  
Additionally, the Markov-chain-based analytical model was used to characterize the 
behaviour of the proposed method. 
In Liu et al. [Liu and Hu (2016)], authors explore the social pattern of the networked 
smart homes studying the fact of falsifying the smart meter readings inductive to energy 
theft. The simulation results show that the hacker’s energy billing could be reduced by 
208% at the cost of other consumers; for that, they also performed a detection approach 
based on Bollinger bands and partially observable Markov decision process (POMDP). In 
order to ameliorate the efficiency and to cope with the high complexity of POMDP, they 
propose a probabilistic belief-state-reduction-based adaptive dynamic programming 
method. The accuracy detection reached the 92.55%. 
Tariq et al. [Tariq and Poor (2016)] used as a Stochastic Petri Net SPN formalism is used 
to detect and localize the occurrence of theft in grid-tied MGs. Singular Value 
Decomposition (SVD) is used to calculate the accurate line resistance for theft detection 
in distribution systems. 
Jokar et al. [Jokar, Arianpoo and Leung (2016)] presented a consumption pattern-based 
energy theft detector, which leverages the predictability property of customers’ normal 
and malicious consumption patterns. Using distribution transformer meters, areas with a 
high probability of energy theft are short listed, and by monitoring abnormalities in 
consumption patterns, suspicious customers are identified. Application of appropriate 
classification and clustering techniques, as well as concurrent use of transformer meters 
and anomaly detectors, make the algorithm robust against non-malicious changes in 
usage pattern, and provide a high and adjustable performance with a low sampling rate.  
Most of existing schemes either rely on pre-defined thresholds, or require external 
knowledge.  This may lead to low detection accuracy when the thresholds are improperly 
defined, and when there is a lack of external knowledge. To deal with these challenges, a 
Gaussian-Mixture Model-based Detection (GMMD) scheme is proposed in Yang et al. 
[Yang, Zhao, Zhang et al. (2016)] to counteract data integrity attacks. That scheme 
operates through narrowing the range of normal data, which can be obtained through 
clustering the historical data and learning minimum and maximum values, or distance 
values to the centre of each individual cluster. The historical data is partitioned into the 
appropriate number of clusters K leveraging the Gaussian-Mixture model and 
measurement values in each cluster Cluk (where k=1; 2 . . .K) giving the narrowed range 
of normal data that could increase the probability of detecting malicious data. 
An anomaly detection method that combines Principal Component Analysis (PCA) and 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to verify the 
integrity of the smart meter measurements was proposed in Varun et al. [Varun , Gabriel 
and William (2015)].  
Zheng et al. [Zheng, Yang, Niu et al. (2017)] proposed an electricity-theft detection 
method based on Wide & Deep Convolutional Neural Networks (CNN) model. The Deep 
CNN component aims to identify the non-periodicity of electricity-theft and the 
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periodicity of normal electricity usage based on two dimensional (2-D) electricity 
consumption data. Meanwhile, the Wide component can capture the global features of 1-
D electricity consumption data.  
Zanetti et al. [Zanetti, Jamhour, Pellenz et al. (2017)] introduced a fraud detection system 
(FDS) for AMI based on anomaly detection on the energy consumption reports from 
smart meters. A short-lived patterns have been proposed in this paper, in which a small 
set of recent measures could clearly defined the consumer behaviour. This approach 
allows the FDS to account for natural changes in the consumption behaviour of users and 
also helps to preserve their privacy. 
Zheng et al. [Zheng, Chen, Wang et al. (2018)] aims to overcome the problem of poor 
accuracies confronted in the approaches that are based on the labelled data set or 
additional system information which is difficult to obtain in reality. Two novel data 
mining techniques are combined in order to solve the problem. One technique is the 
Maximum Information Coefficient (MIC), which can find the correlations between the 
non-technical loss (NTL) and a certain electricity behaviour of the consumer. MIC can be 
used to precisely detect thefts that appear normal in shapes. The other technique is the 
clustering technique by fast search and find of density peaks (CFSFDP) that finds the 
abnormal users among thousands of load profiles, making it quite suitable for detecting 
electricity thefts with arbitrary shapes. 
Comparing to existing works, our proposed approach distinguish itself by: 
• A new and different fraud detection paradigm is presented by applying the RSA 

algorithm as our basic detection tool, not only its habitual purpose as encryption 
algorithm. As far as we know, this idea is the first in the fraud detection concept.  

• No prior data, neither external knowledge are required to build the consumer’s patterns. 
The only mandatory data is the instantaneous smart meter reading, whereby other fraud 
detection technics may require daily, weekly, monthly or even more, to report the 
consumer consumption profile. 

• The present scheme reports an excellent result comparing with existing works, adding 
to the simplicity of FDS consumption, promote this technic to be easily partible in the 
real world.    

• The privacy is extremely protected thanks to the RSA concept. 

3 System and attack model 
Improved by an advanced metering infrastructure (AMI), smart grid communication 
networks are able to gather, ensure flowing, and report a large amount of data optimally 
when compared with the legacy power grid. The supported data are as follows: electricity 
consumption amount, measurements sensing, commands monitoring and so on; aiming 
generally at real time pricing, at leading electricity distribution on the right way, and at 
enabling a near-instantaneous balance of supply and demand management. 
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Figure 1: Basic AMI architecture 

Fig. 1 presents the basic architecture of an AMI [Jian, Lu, Wang et al. (2014)], including 
the different kinds of the communication networks along with their requirements. 
However, this substantial enhancement is accompanied by important security issues 
about the potential vulnerabilities of the new technologies being introduced, especially, 
the wireless mesh implemented in the different network ranges (HAN, LAN or WAN); 
thus, communicated data are potentially vulnerable to adversaries’ manipulations during 
any of these stages. Tab. 1 [Mahmud, Vallakati, Mukherjee et al. (2015)] recapitulates the 
common wireless communication technologies, adding to their vulnerabilities and the 
recommended solutions. 
An understood framework of attack vector of Metering data was stated in Skopik et al. 
[Skopik and Ma (2012)], where the analyses of the threats and vulnerabilities are 
structured in three levels:  the first one refers to the HAN stage's hazards that cope with 
threats to electric appliances, smart meters and their uplink to concentrator nodes. The 
second level refers to the NAN coverage that deal with vulnerabilities of the uplink from 
smart meters over concentrator nodes to data centres. And the last level deals with Web-
based applications and community networks that use gathered meter data.  
Furthermore, one common threat that is noticed within the three tiers reported in that 
study [Skopik and Ma (2012)] is the smart metering data fraudulent manipulations, 
serving to inject false data instead the legitimates ones, erase the measurement to behave 
as vacancy period, or report negative readings for acting as if that building provides the 
electricity power (e.g., solar panel), etc. Subsequently, the miss-reported readings lead to 
severe consequences ensuing from the attacker's goals such as financial gains, personal 
revenge, etc. 
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Table 1: Vulnerabilities and solutions to types of wireless communication technologies 

 
This paper addresses mainly the false data injection (FDI) issue that occurs during the 
communication stage, resulting on erroneous data of smart meter readings. FDIs (false 
data injection) are defined as the attacks that modify how the smart meter computes and 
report energy consumption [Chen, Yang, McCann et al. (2015); Zanetti, Jamhour, Pellenz 
et al. (2017)]. Tab. 2 presents a formal definition of how FDI may modify consumption 
reports. The table includes proposals from [Jokar, Arianpoo and Leung (2016); Zanetti, 
Jamhour, Pellenz et al. (2017); Zheng, Chen, Wang et al. (2018)]. In Tab. 2, xt  is the 
original consumption reported at time t and 𝒙𝒙�𝒕𝒕  is the tampered one. 
 
 
 
 
 
 

Technology Advantage Vulnerabilities Solutions 

Wi-Fi Open Standard, High 
throughput Strong 
Home market 
penetration Low cost 
Relatively secure 
communication 

Traffic Analysis, Passive 
and active eavesdropping, 
Man-in-the-middle 
attack, session hijacking, 
and replay attacks. 

Two way 
authentication, 
encryption. 

ZigBee [Batista, 
Melício and 
Mendes (2014)] 

high reliability, self-
configuration and self-
healing, Low power 
consumption, low cost 

Jamming, Message 
capturing and tampering, 
Exhaustion 

A utility gateway 
device between HAN 
and SM, authentication, 
encryption 

Mobile 
Communications 
and Femtocells 

Consistent coverage in 
office or home, less 
power consumption 

Network and service 
availability disruption, 
Fraud and service theft, 
Privacy and 
confidentiality disruption 

Two way 
authentication, 
encryption 

WiMAX [Bian, 
Kuzlu, 
Pipattanasomporn 
et al. (2014)] 

High data rate (1 Gbps 
for stationary users), 
Low latency, 
Advanced Quality of 
Service (QoS), 
Sophisticated security 

Ranging Attack (DoS 
attack, downgrading 
attack, water torture 
attack), Power Saving 
Attack, man-in-the-
middle attack, Replay 
theft of service attack, 
Traffic analysis 
techniques 

Encryption, Intrusion 
detection schemes, 
access control to 
specific applications 

Long Term 
Evolution (LTE) 

Less Interference, 
Resource efficient 
[Yaacoub and Abu-
Dayya (2014)] 
 

Attacks on the air 
interface, Attacks against 
the core network 

Two way 
authentication, 
encryption, introduction 
of mobile virtual 
network operator 
(MVNO) 
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Table 2: FDI types defined in [Zanetti, Jamhour, Pellenz et al. (2017)] 

Types Modification 
FDI1 𝒙𝒙�𝒕𝒕 ← 𝜶𝜶.𝒙𝒙𝒕𝒕 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 <  𝛼𝛼 < 1 

𝜶𝜶: same for all reports 
FDI2 𝒙𝒙�𝒕𝒕 ← 𝒇𝒇(𝒙𝒙𝒕𝒕) 

𝒇𝒇(𝒙𝒙𝒕𝒕) = �
𝒙𝒙𝒕𝒕 𝒊𝒊𝒊𝒊 𝒙𝒙𝒕𝒕 ≤ 𝒄𝒄
𝒄𝒄� 𝒊𝒊𝒊𝒊 𝒙𝒙𝒕𝒕  > 𝑐𝑐  

𝒄𝒄: cut-off point 
𝒄𝒄𝒎𝒎𝒎𝒎𝒎𝒎 < 𝒄𝒄� < 𝑐𝑐: randomly defined 

FDI3  𝒙𝒙�𝒕𝒕 ← 𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙𝒕𝒕 − 𝒄𝒄,𝟎𝟎) 
𝒄𝒄 fixed value in kwh 

FDI4 𝒙𝒙�𝒕𝒕 ← 𝒇𝒇(𝒕𝒕).𝒙𝒙𝒕𝒕 

𝒇𝒇(𝒕𝒕) = �𝟎𝟎 𝒊𝒊𝒊𝒊  𝒕𝒕𝒊𝒊 <  𝑡𝑡 < 𝒕𝒕𝒇𝒇
𝟏𝟏 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

 

𝒕𝒕𝒇𝒇 − 𝒕𝒕𝒊𝒊 randomly defined each day 
FDI5 𝒙𝒙�𝒕𝒕 ← 𝜶𝜶𝒕𝒕.𝒙𝒙𝒕𝒕 where 0 <  𝛼𝛼𝑡𝑡 < 1 

𝜶𝜶𝒕𝒕 randomly defined for each report 
FDI6 𝒙𝒙�𝒕𝒕 ← 𝜶𝜶𝒕𝒕.𝒙𝒙 �where 0 <  𝛼𝛼𝑡𝑡 < 1 

𝒙𝒙 �  average consumption for each selected 
period 
𝜶𝜶𝒕𝒕 randomly defined for each report 

 
In FDI1, consumption reports are reduced by a constant percentage throughout the entire 
fraudulent period. In FDI2, reports above a threshold are clipped. In FDI3, a constant 
value is subtracted from all reports. FDI4 replaces by zero all reports during a random 
period defined each day. In FDI5, every consumption report is modified by a different 
percentage. Finally, FDI6 generates synthetic reports by multiplying the average 
consumption of previous month by a random percentage defined for each report. 
For this reason, efficient detection mechanisms are strongly required in order to identify 
clearly the miss-reported values of smart meter readings, which is the subject of the 
present paper. 

4 RSA cryptographic algorithm fraud detection system (RSA-FDS) 
4.1 Fraud detection model (FDM) 
As stated in the previous section, smart metering data that play a vital role in the AMI 
functioning represent the main target for adversaries aiming to disturb the efficient 
processing of the smart grid tasks. So, it is very important to identify any illegal 
manipulation on the communicated metering data the soonest possible to prevent the 
perturbation of the system in responding as expected. The proposed model could be 
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applied on various sorts of data flowing in the smart grid. In that case, the fraud in 
electricity consumption based on smart meter readings is picked out by high-lightening 
the model concept. 

 
Figure 2: Fraud detection model (FDM) 

Assuming that x represents the normal measures of the electricity consumption of period 
of time t. By means of an encryption function f, a cypher message 𝑥̇𝑥 is generated by the 
equation: 

 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) (1) 
As it’s known, the inverse function 𝑓𝑓(̅decryption function) of the cryptogram ẋ reports 
the original value x : 

 𝑥𝑥 = 𝑓𝑓̅(𝑥̇𝑥) (2) 
So the basic concept of the proposed Fraud Detection Model (FDM) consists of encoding 
the smart meter reading before being communicated to the company, where this last one 
decodes the received value to obtain the original message. But, how can we confirm if the 
obtained value from the decryption function is the original one, or if it was altered, 
intentionally or unintentionally during the communication stages between the smart meter 
and the company? 
In order to solve this dilemma, a reference value is needed for checking the correctness of 
the received measurement value. For that, one more code 𝑥̈𝑥 is also created at the smart 
meter side by virtue of a second encryption function 𝑔𝑔 where: 
ẍ = 𝑔𝑔(𝑥𝑥) (3) 
As stated in the Eq. (2), the decryption function 𝑔𝑔 �of the code 𝑥̈𝑥 must return the original 
value 𝑥𝑥: 
x = g�(ẍ) (4) 
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The recipient (company) obtains two cryptograms, and after being decrypted, the same 
value 𝑥𝑥 should be reported by the two decryption functions 𝑓𝑓 and 𝑔𝑔 in normal cases. If 
the reported values are different, it means that the transferred data is altered during 
communication phase. 
Quite simply, the measured amount of electricity consumption is encrypted twice at the 
consumer side (smart meter), before being sent through the AMI networks for the 
concerned stakeholders (e.g., billing services). So two codes are generated of one value at 
the first stage. The recipient (company) decrypts the two cryptograms and performs a 
comparison between the two. In the normal process, the two obtained values must be the 
same because the two codes are generated from the same value; otherwise, if the received 
messages are different, meaning that an illegal manipulation of the real amount has 
occurred during the communication stage between the consumer and the company. The 
fraud detection model (FDM) is described in Fig. 2. 

4.2 RSA algorithm 
Utilizing various mathematic theorems, RSA cryptographic algorithm is promoted as one 
of the most effective encryption algorithms that have been widely applied in networks 
communication security protocols.  Being introduced in 1978 by Ron Rivest, Adi Shamir, 
and Leonard Adleman, the RSA algorithm is inspired from the Diffie et al. theorems 
proved earlier [Diffie and Hellman (1976)]. The main idea implemented by the RSA 
algorithm is public-key encryption [Milanov (2009)], where two keys are required in 
order to encrypt and decrypt the messages: the encryption keys are public, where the 

Large Prime Numbers p and q 

Modulus  𝒏𝒏 = 𝒑𝒑 ∗ 𝒒𝒒 

Totient 𝝋𝝋(𝒏𝒏) = (𝒑𝒑 − 𝟏𝟏) ∗ (𝒒𝒒 − 𝟏𝟏) 

e relatively prime to 𝜑𝜑(𝑛𝑛) 
𝟏𝟏 < 𝑒𝑒 ≤ 𝜑𝜑(𝒏𝒏) 

Public Key (e,n) 

𝑒𝑒 ∗ 𝒅𝒅 = 1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛) − 1) 

Private Key (d,n) 

Figure 1: RSA keys creation 
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decryption keys are private; in other words, only one who has the decryption keys can 
decipher the cryptograms. 
Formally, if 𝐴𝐴 wants to send a message 𝑀𝑀 to 𝐵𝐵  , he must use 𝐵𝐵’s encryption key 𝐸𝐸𝐵𝐵 
which is public (retrieving from the public file PF) to encrypt the message 𝑀𝑀 : 
𝐶𝐶 =  𝐸𝐸𝐵𝐵(𝑀𝑀) (5) 
And inversely,𝐵𝐵 must use his private decryption key DB to decrypt the cypher text: 
𝑀𝑀 =  𝐷𝐷𝐵𝐵(𝐶𝐶) (6) 
In nutshell, the whole RSA process consists of three stages: keys creation (public and 
private), message encryption (using the public key) and the message decryption (by 
means of the decryption key). Fig. 3 summarises the full process of the public and private 
keys generation. 
After the creation of the encryption key (𝑒𝑒,𝑛𝑛) and decryption key (𝑑𝑑,𝑛𝑛), the message 𝑀𝑀 
is encrypted by being raised to the eth power modulo 𝑛𝑛, in order to compute the cypher 
text 𝐶𝐶 . The same operation is performed to deduce the plain text 𝑀𝑀 by raising the cypher 
text 𝐶𝐶 to the dth power modulo n.  
C = Memod(n) (7) 
M = Cdmod(n) (8) 

4.3 Fraud detection system (FDS) 
As stated in the fraud detection model (FDM), the basic idea is to create two detection 
codes from the smart meter reading before it is sent to the utility for the billing task; thus, 
the electricity amount is encrypted twice using two different encryption keys (𝑒𝑒;𝑛𝑛) and 
(𝑒́𝑒; 𝑛́𝑛), so the Eq. (1) and Eq. (3) become: 
𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥)     =>    𝑥̇𝑥 = 𝑥𝑥𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛) (9) 
𝑥̈𝑥 = 𝑔𝑔(𝑥𝑥)     =>   𝑥̈𝑥 = 𝑥𝑥𝑒́𝑒𝑚𝑚𝑚𝑚𝑚𝑚(𝑛́𝑛) (10) 
The recipient (utility company) gets two codes  𝑥̇𝑥  and 𝑥̈𝑥 . Performing the decryption 
operation by means of the different decryption keys (𝑑𝑑;  𝑛𝑛) and (𝑑̀𝑑;  𝑛̀𝑛) associated to their 
encryption keys (𝑒𝑒,𝑛𝑛) and (𝑒̀𝑒, 𝑛̀𝑛)respectively, Eq. (2) and Eq. (4) report: 
𝑥𝑥 = 𝑓𝑓̅(𝑥̇𝑥)     =>    𝑥𝑥 = 𝑥̇𝑥𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛) (11) 

𝑥𝑥 = 𝑔̅𝑔(𝑥̈𝑥)     =>   𝑥𝑥 = 𝑥̈𝑥𝑑́𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑛́𝑛) (12) 
therefore, the final result of the two decryption operations must report the same value 𝑥𝑥 
which is the original electricity measurement sent. Otherwise, the dissimilarity between 
the results of the two decryption processes means that one or both communicated values 
𝑥̇𝑥  and 𝑥̈𝑥  have been changed intentionally or unintentionally, which seems to be a 
fraudulent behaviour. Fig. 4 shows the full conception of the fraud detection scheme 
based on cryptographic RSA algorithm. 
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Figure 2: RSA based Fraud Detection System (RSAFDS) 

4.4 RSA signature 
One more concern could be figured in this proposition, if an intruder attempts to use the 
company’s encryption keys (𝑒𝑒;𝑛𝑛) and (𝑒̀𝑒; 𝑛̀𝑛) in order to inject a false data pretending it 
comes from a legitimate smart meter. In that case, the receiver cannot guess the fraud 
attack because the final decrypted values are the same. 
To address this issue, the signature concept of RSA algorithm is applied to ensure that the 
messages come from a trusted smart meter.  
Basically, company generates a set of RSA keys couples (encryption and decryption 
keys), and allocates to each smart meter  its own RSA encryption key 𝐸𝐸𝑆𝑆  that has been 
preconfigured into its soft program, but its associated decryption key 𝐷𝐷𝑆𝑆  remains stored 
at the company side. So, anyone could discover those keys because they are privates and 
not shared. 
According to RSA proprieties cited in Milanov [Milanov (2009)], every message is the 
cipher-text of another message, and that every cipher-text can be interpreted as a message. 
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The principal idea consists of encrypting the returned values of RSA-FDS encryption 
algorithm with the smart meter encryption key 𝐸𝐸𝑆𝑆.  
Formally, in order to explain simply the signature concept, we consider that 𝐸𝐸𝑟𝑟  (that 
stands for (𝑒𝑒;𝑛𝑛) used previously) and 𝐸̀𝐸𝑟𝑟 (representing (𝑒̀𝑒; 𝑛̀𝑛)) represent the RSA-FDS 
encryption keys corresponding to the receiver (company) and M  is the meter reading: 
𝐸𝐸𝑟𝑟(𝑀𝑀) = 𝐶𝐶 
𝐸̀𝐸𝑟𝑟(𝑀𝑀) = 𝐶̀𝐶 

(13) 

After that, we sign the messages 𝐶𝐶  and 𝐶̀𝐶  by being encrypted with the smart meter 
(sender) encryption key 𝐸𝐸𝑆𝑆: 

𝐸𝐸𝑠𝑠(𝐶𝐶) = 𝑆𝑆 and 𝐸𝐸𝑠𝑠�𝐶̀𝐶� = 𝑆̀𝑆 (14) 
This way, we can assure only that the receiver can decrypt the document. When it does, it 
gets the signature by: 
𝐷𝐷𝑠𝑠(𝑆𝑆) = 𝐶𝐶  ==>  𝐷𝐷𝑠𝑠�𝐸𝐸𝑠𝑠(𝐶𝐶)� = 𝐶𝐶 
𝐷𝐷𝑠𝑠�𝑆̀𝑆� = 𝐶̀𝐶  ==>  𝐷𝐷𝑠𝑠 �𝐸𝐸𝑠𝑠�𝐶̀𝐶�� = 𝐶̀𝐶 

(15) 

Now, we know the message came from the smart meter, since only his encryption key 𝐸𝐸𝑠𝑠 
could compute the signature. 
After that, the following procedures of the RSA-FDS algorithm are effectuated as 
presented previously.  

5 Evaluation 
In order to evaluate the effectiveness of the proposed fraud detection technique, we use 
the Electricity consumption benchmarks [Department of Industry (2014)] that stands for a 
survey responses matched with household consumption data for 25 households. It 
contains includes half hourly electricity usage reports (in Watt Hours (WH)) for each 
household in the sample from 1 April 2012 to 31 March 2014 (or such time as data are 
available after the installation of a smart meter). Therefore, it is a reasonable assumption 
that all samples belong to honest users. The large number and variety of customers, long 
period of measurements and availability to the public make this dataset an excellent 
source for research in the area of analysis of smart meters data. 
Then an abnormal vector of measures is created to simulate the six FDIs stated previously. 
The goal is not only to subject the two measurement vectors to the RSA-FDS, but also to 
evaluate the performance of the proposed algorithm by means of different metrics such as: 
• True Positive (TP): refers to the positive instances classified as positive. 
• False Negative (FN): refers to the misclassified positive instances. 
• True Negative (TN): refers to the negative instances classified as negative. 
• False Positive (FP): refers to the misclassified positive instances. 

Using those different instances, the following metrics are defined as: 

TPR = TP/P        &           FPR = FP/P (16) 
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Based on those two parameters (TPR, FPR), the ROC (Recipient operating characteristics) 
graph will be drawn in which TPR is plotted on the Y axis, and FPR is plotted on the X axis 
[Fawcett (2006)]. The ROC curve demonstrates a balance between the true classified class 
and the false alarm; in other words, it shows the classifier credibility. Hence, the more the 
TPR is higher and FPR is lower, the more the classifier is reliable, and inversely, the more 
the TPR is lower and the FPR is higher, the weaker the classifier becomes. 
To obtain comprehensive evaluation results in the unbalanced dataset, we use the AUC 
(Area Under Curve) and MAP (Mean Average Precision) values mentioned in Zheng et al. 
[Zheng, Chen, Wang et al. (2018)]. The two evaluation criteria have been widely adopted in 
classification tasks. The AUC is defined as the area under the receiver operating 
characteristic (ROC) curve, which is the trace of the false positive rate and the true positive 
rate. Define the set of fraudulent users F as the positive class and benign users B as the 
negative class. The suspicion Rank is in ascending order according to the suspicion degree of 
the users. AUC can be calculated using Rank as in the following equation: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖∈𝐹𝐹 − 1

2 |𝐹𝐹|(|𝐹𝐹| + 1)
|𝐹𝐹| ∗ |𝐵𝐵|  (17) 

Let 𝑌𝑌𝑘𝑘  the number of electricity thieves who rank at top 𝑘𝑘 , and define the precision 
𝑃𝑃@𝑘𝑘 = 𝑌𝑌𝑘𝑘

𝑘𝑘
.  

Given a certain number of 𝑁𝑁, 𝑀𝑀𝑀𝑀𝑀𝑀@𝑁𝑁 is the mean of 𝑃𝑃@𝑘𝑘 defined in the equation: 

𝑀𝑀𝑀𝑀𝑀𝑀@𝑁𝑁 =
∑ 𝑃𝑃@𝑘𝑘𝑖𝑖𝑟𝑟
𝑖𝑖=1

𝑟𝑟
 (18) 

where 𝑟𝑟 is the number of electricity thieves who rank in the top 𝑁𝑁 and 𝑘𝑘𝑖𝑖 is the position 
of the i-th electricity thieves. In this paper we use 𝑀𝑀𝑀𝑀𝑀𝑀@50.  

6 Experiments 
In the experimental section, we chose 1000 smart meter readings as a normal set, whereas 
the fraudulent vector contains also 6000 of miss-reported measurements representing all 
the six false data injection (FDI) possibilities stated previously such as the off-set FDI, 
cut-off point, percentage, zero consumption and low profile FDI. Moreover, this 
experiment takes into account the fraud in energy production (the negative reported 
values), not just the energy stolen as the previous paper cited. Remembering the FDM 
concept that stands for encoding the real amount of electricity measurement twice at first, 
meaning that the pertinent data representing the consumption profile are the two 
cryptograms flowing into the AMI. Regardless of the stage where the attack could occur 
(HAN, WAN or LAN), three fraudulent scopes are expected from adversaries by 
manipulating the first value, the second one or both of them. Hence, three scenarios are 
accordingly studied in this way in order to evaluate the FDS-RSA algorithm performance 
for all possibilities. Using the cryptographic parameters reported in Tab. 3, an excerpt of 
30 statements is revealed in Tab. 4, reporting the results of the whole process of the 
presented detection technique, including 13 fraud vectors representing the three scenarios 
stated previously. Notice that the fraud vectors have been generated randomly to simulate 
a real situation that could occur at any stage between the household and the controller 
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(company). Recordings field stands for the smart meter readings; Code 1-1 and 1-2 stand 
for the two cryptograms obtained from the encryption phase at the consumer side; Code 
2-1 and 2-2 represent the two received cryptograms at the utility side that will be 
decrypted to calculate the final communicated amount Decrypted 1 and 2; and  finally the  
field Class shows the classification result of the received values where class ‘1’ stands for 
the normal profile and class ‘0’ represent the fraudulent behaviour.  

Table 3: RSA keys 
 First keys Second Keys 

Encryption key 709 347 
Decryption key 17805 299 

Modulo 33109 1191 

Table 4: RSA-FDS demonstration 

Recordings Code     
1-1 

Code 
1-2 

Fraud vector 

Code 
2-1 

Code 
2-2 Decrypted 1 Decrypted 2 Class 

386 10504 188 10504 188 386 386 1 
123 27666 117 27666 117 123 123 1 
1786 9666 1159 7277 1090 26543 1111 0 
655 14029 469 14029 469 655 655 1 
398 16817 398 16817 398 398 398 1 
354 20807 603 20807 603 354 354 1 
1149 4368 678 4368 210 1149 303 0 
436 29576 742 29576 742 436 436 1 
1732 10902 409 2955 409 25063 541 0 
1056 4670 165 4670 165 1056 1056 1 
324 10155 57 10155 57 324 324 1 
1034 27990 971 27990 971 1034 1034 1 
1964 22008 1052 22008 1052 1964 773 0 
1734 9303 1152 9303 1152 1734 543 0 
1468 8474 688 8474 688 1468 277 0 
580 8264 145 8264 8 580 62 0 
305 30290 650 30290 650 305 305 1 
1093 7291 346 7291 346 1093 1093 1 
635 20593 59 20593 59 635 635 1 
1418 25789 605 14321 454 23375 721 0 
1136 4604 17 4604 17 1136 1136 1 
236 9812 818 9812 818 236 236 1 
1971 24947 111 24947 111 1971 780 0 
1134 10606 192 214 108 15457 945 0 
1105 14875 1123 14875 1123 1105 1105 1 
480 9259 936 9259 936 480 480 1 
1907 2036 746 2036 746 1907 716 0 
1307 9351 179 9351 179 1307 116 0 
350 18902 368 3197 358 14276 940 0 
671 13157 677 13157 677 671 671 1 
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Table 5: Zero consumption confusion 

Table 6: Zero consumption fix 

 
Although, the RSA-FDS is able to detect any kinds of FDI cited previously whether the 
target of the attack is stated in the first, second or third scenario, the proposed algorithm 
fails in detecting the zero-consumption FDI, where adversaries ‘goal’ is to erase the real 
communicated amount to report zero consumption amount. 
As we can spot from Tab. 5, the two recordings were classified as normal consumption 
patterns in spite of the zero consumption attack that targets the first vector. So the proposed 
detector misclassifies the real zero readings from the zero consumption attack. To get rid of 
this shortcoming, before the encryption processes, the real zero electricity measurements 
will be raised by “Amax”, which represents the multiple of the maximum reported value that 
will never be reached at any time. For example, the maximum value in the dataset is 2000 
kwh, so the Amax=6000 kwh. Inversely, after decrypting the received cryptograms, if the 
results are equal to the predefined threshold Amax, that amount will be decreased to find 
finally the real zero amount of electricity consumption. And the received cryptograms that 
report zero values will be classified as abnormal consumption profile. 
Tab. 6 clarifies the solution of the zero consumption confusion by setting two different 
cases where the first recording is subjected to a zero consumption attack, and the second 
one reports a real zero amount of electricity consumption. It is clear that the ambiguity is 
elucidated when the reported smart meter readings are well classified. 
After performing the RSA-FDS on the full data set including the fraud vector that 
simulates the three scenarios with all the FDI cited previously, the results are as 
illustrated RSA-FDS performance metrics presented in Tab. 7. 

7 Results and discussion 

Recordings Code     1-1 
Code 
1-2  

Code 
2-1 

Code 2-2 Decrypted 1 Decrypted 2 Class 

1820 1650 812  0 0 0 0 1 
0 0 0  0 0 0 0 1 

Recordings Amend 
Code 

1-1 
Code 

1-2 
 

Code 
2-1 

Code 
2-2 

Decrypted 
1 

Decrypted 
2 Class 

1820  1650 812  0 0 0 0 0 
0 6000 7370 23906  7370 23906 6000 6000 1 

Table 7: RSA-FDS Performance Metrics 
Metrics (%) Scenario 1 Scenario 2 Scenario 3 

TPR 100 100 100 
FPR 0 0 0 

Accuracy 100 100 100 
AUC 100 100 100 

MAP@50 100 100 100 
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Great results are reported by applying the RSA-FDS in various fraudulent windows. 
The experimented dataset that is subjected to different FDI attacks is examined in order 
to check the performance of the proposed detection algorithm. In the FDM context, the 
goal is successfully reached when the normal smart meter readings are correctly 
classified (TPR=100%). In the meantime, the false alarms (FPR=0%) are avoided, 
meaning that any fraudulent manipulations are correctly classified as abnormal profiles 
of electricity consumption. 
Furthermore, one serious concern confronted in previous works based in machine 
learning schemes [Jokar, Arianpoo and Leung (2016); Kosek (2016); Liu and Hu (2016); 
Ozay, Esnaola, Vural et al. (2016); Zanetti, Jamhour, Pellenz et al. (2016); Zheng, Yang, 
Niu et al. (2017); Zheng, Chen, Wang et al. (2018)], is the indispensable prior data 
required for the classifiers’ training. Those should be as significant as possible so that 
they entirely present the consumers’ profiles. Knowing that one consumer may present 
more consumption profiles according to period of day (the peak hours), weekends, 
holidays and seasons. In fact, it complicates the task of harmonizing different 
consumption windows in one training set. It is very difficult, if not impossible, to do so in 
reality in terms of a practical view of the obtained results in the proposed context. 
One more challenge in the machine learning algorithm, is the sudden changes in normal 
consumption profiles because of the introduction of new appliances, or shutting down a 
functioning one. These behaviours could generally infer on the algorithm accuracy by 
classifying this new consumption patterns as abnormal which increases the false alarms 
[Zanetti, Jamhour, Pellenz et al. (2017)]. This constraint does not infer on the RSA-FDS 
algorithm at all, because it treats the real instantaneous reading neglecting any other prior data. 
Furthermore, the privacy is highly protected in the proposed approach comparing with 
the existing works, thanks to the RSA cryptographic advantages. 
Tab. 8 illustrates a comparative frame of the RSA-FDS approach with the best works in 
that field.  
Fig. 5 demonstrates a comparative illustration between the proposed RSA-FDS technic 
with the best knowing machine learning based FDS approaches. The most popular SVM 
algorithm is qualified as an supervised learning approach  that performs a good results 
[Jokar, Arianpoo and Leung (2016)], meanwhile, an unsupervised technics is applied in 
Zanetti et al. [Zanetti, Jamhour, Pellenz et al. (2017)] in which the well-known FCM 
(fuzzy c-mean) algorithm outperforms other  clustering methods in that field. 
The average results of SVM approach shows that the false alarms are slightly important 
comparing with the FCM and RSA-FDS, which could be linked with the short changes in 
the normal consumption profiles, that happens with the introduction of new appliance 
into household, or removing an existing one as discussed previously. The FPR has 
decreased with the [Zanetti, Jamhour, Pellenz et al. (2017)] proposition to 7%, that 
introduced the short lived (SL) patterns with the FCM clustering algorithm which 
improves the robustness against normal changing profiles. 
The proposed RSA-FDS algorithm outperforms the existing technics by removing the 
false alarms, because it does not care about any disturbing in the electricity consumption 
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profiles, hence, the only required data is just the instantaneous reading to find whether the 
real amount has been altered or no. 
By means of the RSA-FDS, the confronted limits are successfully surpassed due to the FDM 
simplicity conception which does not require any prior data in order to perform the detection 
task. Moreover, the presented algorithm is able to detect any kinds of fraudulent attempts that 
may take place in any stage after recording the electricity consumption amount. One more 
benefit is that the original data still remain disguised when flowing through the AMI 
networks. It is impossible to guess the real amount without being decrypted. So, adversaries’ 
attack objectives will very unlikely be reached with the FDM concept. 
However, our technic discards the case where the energy fraud has occurred physically, 
or before reporting the real smart meter reading (e.g., shutting down the smart meter), 
that is will be the purpose of the future works. 

 
Figure 5: Metrics performances comparison between FCM, SVM and RSA-FDS 

Table 8: Comparison with related works 

Parameters 
Wide & Deep CNN 
[Zheng, Yang, Niu 

et al. (2017)] 

SVM [Jokar, 
Arianpoo and 
Leung (2016)] 

[Zanetti, 
Jamhour, Pellenz 

et al. (2017)] 
RSA-FDS 

FPR NA 0.11 2.7 0 

ACC NA 0.94 87.1 1 

MAP@50 0.94 NA NA 1 

AUC 0.78 NA NA 1 

Detection delay daily daily Daily-weekly Instantaneous 

Required prior data high high low No required 
data 

Privacy preservation medium low high Extremely 
high 

Robustness against 
normal changing 

pattern 
low low medium Extremely 

high 
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8 Conclusion 
Numerous approaches have been performed aiming to combat electricity fraud in smart 
grid; hence, machine learning algorithms were widely applied in that context given their 
capability and performance in the classification of consumer's profiles, thus leading to the 
detection of abnormal behaviour in electricity consumption. However, the learning process 
requires prior data in order to build a meaningful learning database that should be able to 
dominate the client pattern variation over time. In fact, this task represents a serious 
challenge to researchers. This paper offers an opportunistic frame by introducing a new 
FDM concept using only the instantaneous measurement of electricity conception as data 
require. This approach stands for encrypting the smart meter recordings twice before they 
are sent to the utility, where they will be decrypted and checked to verify the correctness of 
the communicated values. Benefiting from its robustness and strength against hacking, the 
RSA algorithm is applied in this way to develop the Fraud Detection System (RSA-FDS). 
Any kind of fraud attempts aiming at illegal manipulation of the communicated data have 
been successfully detected where the FPR=0% with a precision=100%. The RSA-FDS’ 
simplicity of conception and its exemplary results highlight the fact that it is one of the 
most promoted approaches performed in the real world.  

Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 

References 
Abreua, J.; Pereira, F.; Ferrão, P. (2012): Using pattern recognition to identify habitual 
behavior in residential electricity consumption. Energy And Buildings, vol. 49, pp. 479-487. 
Ahmad, T.; Chen, H.; Wang, J.; Guo, Y. (2018): Review of various modeling 
techniques for the detection of electricity theft in smart grid environment. Renewable And 
Sustainable Energy Reviews, vol. 82, pp. 2916-2933. 
Batista, N. C.; Melício, R.; Mendes, V. M. F. (2014): Layered smart grid architecture 
approach and field tests by zigbee technology. Energy Conversion And Management, vol. 
88, pp. 49-59. 
Bian, D.; Kuzlu, M.; Pipattanasomporn, M.; Rahman, S. (2014): Analysis of 
communication schemes for advanced metering infrastructure (ami). IEEE PES General 
Meeting Conference & Exposition, pp. 1-5. 
Chen, P. Y.; Yang, S.; McCann, J. A.; Lin, J.; Yang, X. (2015): Detection of false data 
injection attacks in smart-grid systems. IEEE Communications Magazine, vol. 53,no. 2, 
pp. 206-213. 
Department of Industry, I. a. S. (2014): Electricity consumption benchmarks. 
http://data.gov.au/dataset/0f3d60db-bd63-419e-9cd9-0a663f3abbc9. 
Diffie, W.; Hellman, M. (1976): New directions in cryptography. IEEE Transactions On 
Information Theory, vol. 22, no. 6, pp. 644-654. 
Fawcett, T. (2006): An introduction to roc analysis. Pattern Recognition Letters, vol. 27, 
no. 8, pp. 861-874. 



 
 
 
 
 
116                                                                                CMC, vol.63, no.1, pp.97-117, 2020 

Han, W.; Xiao, Y. (2017): A novel detector to detect colluded non-technical loss frauds 
in smart grid. Computer Networks, vol. 117, pp. 19-31. 
Huang, Y.; Tang, J.; Cheng, Y.; Li, H.; Campbell, K. A. et al. (2014): Real-time 
detection of false data injection in smart grid networks: an adaptive cusum method and 
analysis. IEEE Systems Journal, vol. 10, no. 2, pp. 532-543. 
Jian, R.; Lu, R.; Wang, Y.; Luo, J.; Shen, C. et al. (2014): Energy-theft detection 
issues for advanced metering infrastructure in smart grid. Tsinghua Science And 
Technology, vol. 19, no. 2, pp. 105-120. 
Jokar, P.; Arianpoo, N.; Leung, V. C. (2016): Electricity theft detection in ami using 
customers’ consumption patterns. IEEE Transactions On Smart Grid, vol. 7, no. 1, pp. 
216-226. 
Khorshidi, R.; Shabaninia, F. (2015): A new method for detection of fake data in 
measurements at smart grids state estimation. IET Science Measurement & Technology, 
vol. 9, no. 6, pp. 765-773. 
Kosek, A. M. (2016): Contextual anomaly detection for cyber-physical security in smart 
grids based on an artificial neural network model. Joint Workshop on Cyber-Physical 
Security and Resilience in Smart Grids (CPSR-SG), pp. 1-6. 
Kosut, J. P.; Santomauro, F.; Jorysz, A.; Fern´andez, A.; Lecumberry, F. et al. (2015): 
Abnormal consumption analysis for fraud detection: Ute-udelar joint efforts. IEEE PES 
Innovative Smart Grid Technologies Latin America (ISGT LATAM), pp. 887-892. 
Liu, Y.; Hu, S. (2016): Cyberthreat analysis and detection for energy theft in social 
networking of smart homes. IEEE Transactions On Computational Social Systems, vol. 2, 
no. 4, pp. 148-158. 
LLC, N. G. (2015): Emerging markets smart grid: outlook 2015. Northeast Group,  LLC. 
Mahmud, R.; Vallakati, R.; Mukherjee, A.; Ranganathan, P.; Nejadpak, A. (2015): 
A survey on smart grid metering infrastructures: threats and solutions. IEEE International 
Conference on Electro/Information Technology, pp. 386-391. 
Milanov, E. (2009): The rsa algorithm. RSA Laboratories. 
Nasim, B. M.; Jelena, M.; Vojislav, B. M.; Hamzeh, K. (2014): A framework for 
intrusion detection system in advanced metering infrastructure. Security and 
Communication Networks, vol. 7, no. 1, pp. 195-205. 
Ozay, M.; Esnaola, I.; Vural, F. T. Y.; Kulkarni, S. R.; Poor, H. V. (2016): Machine 
learning methods for attack detection in the smart grid. IEEE Transactions On Neural 
Networks and Learning Systems, vol. 27, no. 8, pp. 1773-1786. 
Skopik, F.; Ma, Z. (2012): Attack vectors to metering data in smart grids under security 
constraints. Computer Software and Applications Conference Workshops (COMPSACW), 
pp. 134-139. 
Tariq, M.; Poor, H. V. (2016): Electricity theft detection and localization in grid-tied 
microgrids. IEEE Transactions On Smart Grid, vol. 9, no. 3, pp. 1920-1929. 



 
 
 
 
 
A Cryptographic-Based Approach for Electricity Theft Detection in Smart Grid         117 

Varun Badrinath, K.; Gabriel, A. W.; William, H. S. (2015): Pca-based method for 
detecting integrity attacks on advanced metering infrastructure. 12th International 
Conference on Quantitative Evaluation of Systems, pp. 70-85. 
Yaacoub, E.; Abu-Dayya, A.  (2014): Automatic meter reading in the smart grid using 
contention based random access over the free cellular spectrum. Computer Networks, vol. 
59, pp. 171-183. 
Yang, X.; Zhao, P.; Zhang, X.; Lin, J.; Yu, W. (2016): Toward a gaussian-mixture 
model-based detection scheme against data integrity attacks in the smart grid. IEEE 
Internet of Thing Journal, vol. 4, no. 1, pp. 147-161. 
Zanetti, M.; Jamhour, E.; Pellenz, M.; Penna, M. (2016): A new svm-based fraud 
detection model for ami. International Conference on Computer Safety, Reliability, and 
Security, pp. 226-237. 
Zanetti, M.; Jamhour, E.; Pellenz, M.; Penna, M.; Zambenedetti, V. et al. (2017): A 
tunable fraud detection system for advanced metering infrastructure using short-lived 
patterns. IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 830-840. 
Zheng, K.; Chen, Q.; Wang, Y.; Kang, C.; Xia, Q. (2018): A novel combined data-
driven approach for electricity theft detection. IEEE Transactions on Industrial 
Informatics, vol. 15, no. 3, pp. 1809-1819. 
Zheng, Z.; Yang, Y.; Niu, X.; Dai, H. N.; Zhou, Y. (2017): Wide & deep convolutional 
neural networks for electricity-theft detection to secure smart grids. IEEE Transactions 
on Industrial Informatics, vol. 14, no. 4, pp. 1606-1615. 
 


	A Cryptographic-Based Approach for Electricity Theft Detection in Smart Grid
	Khelifi Naim0F , *, Benahmed Khelifa1F  and Bounaama Fateh2F


