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Abstract: Coal rock mass instability fracture may result in serious hazards to 
underground coal mining. Acoustic emissions (AE) stimulated by internal structure 
fracture should carry lots of favorable information about health condition of rock mass. 
AE as a sensitive non-destructive test method is gradually utilized to detect anomaly 
conditions of coal rock. This paper proposes an improved multi-resolution feature to 
extract AE waveform at different frequency resolutions using Coilflet Wavelet Transform 
method (CWT). It is further adopt an efficient Light Gradient Boosting Machine 
(LightGBM) by several cascaded sub weak classifier models to merge AE features at 
different views of frequency for coal rock anomaly damage recognition. The results 
denote that the proposed method achieves excellent recognition performance on anomaly 
damage levels of coal rock. It is an effective method to detect the critical stability further 
to predict the rock mass bursting in time. 
 
Keywords: Acoustic emission, light gradient boosting machine, coal rock stability.  

1 Introduction 
During coal exploitation or the construction of roads and tunnels, if the geologic strain 
energy of the roof of the working face is suddenly released, the underground workers will 
be injured seriously [Zhao and Jiang (2010)]. Some current methods including micro 
seismic monitoring, electromagnetic emissions method and ultrasonic non-destructive 
method and so on, are wildly proposed to detect internal structure of rock mass for mine 
catastrophic hazards predication [Liu, Li and Xu (2014)]. Micro seismic monitoring 
served as a mature technology has been widely used in practice. Also Major production 
makers renew relative produce unceasingly. However, Micro seismic monitoring method 
is similar to Seismic monitoring technology, which is a passive detection method and 
necessary to collect data in multi-channel ways to construct geological profile and find 
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abnormal spot. The synchronization problems between channels threaten the accuracy of 
geological analysis. 
Acoustic emission (AE) source from inner rock, carries lots of information about rock 
conditions variation [Feng, Kai, Wang et al. (2018)]. AE is different from other 
monitoring signal used in detection of rock damage, which is a wide band ultrasonic 
wave with the detailed description in the time resolution [Becker, Cailleau, Kaiser et al. 
(2014)]. At present the crucial problem of AE signal processing is the useful information 
extraction to recognize the rock condition [He, Miao and Feng (2010)]. Wavelets analysis 
is a useful method to decompose non-stationary time-varying signals into several time-
frequency responses [Afshan, Sharif and Loganathan (2018)]. Based on previous 
researches, some useful characteristic frequency to present inner rock structure variation 
may be filtered clearly by Coiflet Wavelet Transform method (CWT). After five 
decomposing, the processed signal at different levels, respectively present rock condition 
in special views [Li, Yue, Yang et al. (2017)]. Also, as decomposition keeps going, the 
decomposed responses in both time and frequency domain may present the rock 
condition in more detailed ways. There is an attendant problem that decomposing results 
growing in exponential way overburdens computation complexity of following the 
recognition model. Besides, considering decomposition results fusion problems, the 
robustness and effectiveness recognition model should be solved urgently. 
Many methods have been proposed to boost recognition performance on conditions of 
coal rock at crisis and burst damage levels such as Support Vector Machines (SVM) 
[Feng and Seto (1998)], Scoring Functions (SF) [Rummel (1982)] and Neural Network 
(NN) [Li, Deng, Yang et al. (2017)]. However, these mythologies applied into micro 
seismic signal could be hardly utilized into AE signal processing due to complex 
characteristics of itself records structure [Xie, Liu, Ju et al. (2011)].  
To tackle this challenge, the Gradient Boosting served as fusion mythology [Friedman 
(2002)], could be applied to fuse above AE features at different views by cascading 
several sub classifiers further to boost recognition performances. Also, challenges of 
vanishing gradient problem from deep network structure could be solved effectively by 
residual learning. However, Gradient Boosting is necessary to scan all the data instances 
to estimate the information gain of all the possible split points. Its computational 
complexities are adversed to process big data. Ke et al. [Ke, Meng, Finley et al. (2017)] 
proposed an improved gradient boosting method named Light Gradient Boosting 
Machine (LightGBM) base on Gradient-based One-Side Sampling (GOSS) and Exclusive 
Feature Bundling (EFB). lightGBM method makes computational efficiency increasing 
and the feature space in quite sparse ways [Fang, Cai, Sun et al. (2018)]. 
Considering above all, the paper proposed a new coal rock stability recognition method 
based on AE signal from inner coal rock. After CWT processing, AE waveform are 
decomposed into several features in views of different frequency. LightGBM method is 
utilized to fuse different features for the current condition’s recognition of coal rock 
mass. Combined with boosting strategy of ensemble learning method, this proposed 
method designs a serial cascaded sub RefineNet for each view of AE features. The paper 
is organized as follows. In Section 2, it focuses on presenting coal rock stability 
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recognition model. In Section 3, the experiment and results will be introduced. Finally, 
the results will be concluded in Section 4. 

2 Materials and methods 
2.1 Equipment 
The experiments were performed by uniaxial compression equipment, where a servo-
controlled testing machine (MTS815) increases stress cyclic loading on the test sample. 
According to the acting load stress-strain, AE records were recorded simultaneously. 
AE records were collected from the Disp-24 acquisition system produced by PAC 
Corporation. R3 low frequency AE sensors have excellent performance on recording 20-
180 kHz frequency signals, which is sensitive to capture slight AE signal made by the 
rock fracture. The selected data acquisition card, PCI-DSP-4, has four mutually 
independent channel with 10 MHz A/D converters respectively, the AE signal sample 
rate is set at 1MSPS. 

2.2 Experimental materials and spectral data acquisition 
The paper collected samples from Sanhejian Mine, Xuzhou, Jiangsu Province, China. 
According to the International Society for Rock Mechanics (ISRM), all samples were 
processed into cylindrical samples with 50 mm diameter and the 100 mm length. All 
processed samples were sealed in an airtight glass container with Vaseline to keep their 
original states [Jia, Wei, Wen et al. (2018)]. Also labeled by lithology including 
sandstone and coal.  
As the stress load on samples increasing, samples condition change from the health to the 
macroscopic failure. Combined the relationship of stress-strain with the evolution 
procedure of samples facture, the AE records could be labeled by three tags including: 
safe, critical and burst. Safe is the steady condition including the initial loading stage and 
after the burst stage. Critical is the crucial condition with numerous cracks development 
standing for forthcoming burst. The burst stage is the terrible condition, where the rock 
mass is undergoing completely damage. 

2.3 Multi-resolution AE feature extraction 
Wavelets analysis is a useful method to decompose non-stationary time-varying AE 
signals into several time-frequency responses for further feature extraction. The previous 
researches show that the optimal wavelet decomposition level for feature appearing of 4 
levels. AE records be decomposed into five resolutions using CWT as shown in Fig. 1.  
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Figure 1: CWT decomposition structure 

It is important to select crucial feature from these decomposed results to construct feature 
sets. The highest frequency part at the 1st level usually is viewed as random noise and 
filtered away. According to previous researches, these three yellow parts in Fig. 1 are 
selected as the multi resolutions of AE records. Original AE records are labeled by OF. 
Decomposed results at the high frequency scale of the 2nd level is labeled by HF. The 
other decomposed results at the low frequency scale of the 4th level are labeled by LF. 

2.4 Coal rock condition detection model using AE and LightGBM 
Ensemble learning represented by GBDT algorithm is widely used in big data processing, 
which can be used to enhance learning and generalization ability of model. LightGBM is 
a gradient lifting framework that serial weak classifiers including decision tree can be 
merged further to develop a strong classifier. It is more efficient, uses less memory, 
performs higher accurate, supports parallel learning and can handle large amounts data. 

Supposed a sample set { }1
, N

i iy x , where { }1,...,= nx xx is input variables, iy  is input label. It is 
considering ( )if x  evaluated model at each sample point ix , the corresponding composite 
model will be taken as following: 
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( )F x is the composite model. 0 ( )f x  is an initial guess, and 1{ ( )}M
mf x  are increment function 

named steps or boosts, which is defined by the optimization method. It is further to define 
( , ( ))Ψ y F x as the loss function, which includes squared error, absolute error for regression 

and negative binomial log-likelihood for classification. The optimal parameter can be 
calculated by numerical optimization methods. 
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Steepest-decent is taken to be 
( ) ( )m m mf x g xρ= −                                                                                                                  (3) 

with  
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The multiplier mρ  by the line search is calculated as following: 
, 1arg min ( , ( ) ( ))m y x m mE y F x g x

ρ
ρ ρ−= Ψ −

                                                                                   (6) 
It is calculated the updated ( )mF x  that the current approximation at the m-th iteration is 
given as 1( )−mF x . The best greedy step towards the minimizing solution ( )F x∗

 is calculated 
to be ( ; )h x a . ( ; )h x a  is utilized to take place the above unconstrained function ( )mg x  in the 
steepest decent strategy. The solution can be obtained to be: 
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The updated ( )mF x  is approximation to be: 

1( ) ( ) ( ; )m m m i mF x F x h x aρ−= +                                                                                                   (8) 
LightGBM adopts an efficient leaf growth strategy with depth limitations named Gradient-
based One-Side Sampling (GOSS). The advantages of strategy include traveling all the 
leaves before splitting to the definition of information gain, attention on those instances 
with larger gradients, keeping splitting and repeats in the cycle. It proves that larger 
gradients will contribute more to the information gain. GOSS can achieve a more accurate 
gain estimation than uniformly random sampling. Besides, the maximum depth of GOSS is 
utilized to prevent overfitting in Leaf-wise [Guolin, Meng, Finley et al. (2017)]. 
The other advantage of LightGBM is feature sparsity using Exclusive Feature Bundling 
(EFB). It bundles exclusive features into a single feature using Histogram-based 
Algorithm, which can build the same feature histograms as those from individual features. 
In this way, the complexity of GBDT model reduces from O (#data×#feature) to O 
(#data×#bundle), while #bundle << #feature. Then the training of GBDT model can be 
significantly speed. 



                                                                              CMC, vol.63, no.1, pp.151-162, 2020 156 

HF Feature

X0 y0

X1 y1

OF 

Output

HF 

X2 y2

LF 

OF Feature

wavelet 
decomposition

wavelet 
decomposition

LF Feature

RefineNet D

RefineNet E

RefineNet A

RefineNet B

RefineNet C

RefineNet

DT DT DT

 

Figure 2: Coal rock condition detection model frame 

To further merge three different views of features together, the fusion strategy is 
considered and described in Fig. 2. First of all, three weak classifiers named RefineNet A, 
B and C are trained by OF HF and LF feature respectively. Then, results of RefineNet A 
and RefineNet B are mapped into the cascade RefineNet D. Finally, results of RefineNet 
D and RefineNet C are mapped into the cascade RefineNet E. The synthesized output of 
RefineNet E can be expressed the coal rock condition detection results. 

3 Experiment and result analysis 
3.1 AE waveform pre-processing 
AE waveform is firstly processed by normalization. Then. Based on multi-resolution AE 
feature extraction method, waveform at HF and LF resolutions can be calculated from 
original waveform at OF resolution using the CWT method. Fig. 3 presents AE 
waveform of coal at OF, LF, HF resolutions, Fig. 4 shows AE waveform of rock at OF, 
LF, HF resolutions respectively. 
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Figure 3: AE from coal at three different resolutions 
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Figure 4: AE from sandstone at three different resolutions  

The collected original AE waveform in Figs. 3(a) and 4(a) presents obvious 
discontinuous tendency in the time domain. Each interval of signal fluctuations are 
response to large energy releasing of coal rock, which has a great possibility of the 
internal crack growing [Li, Feng, Zhao et al. (2017)]. As crack growing, the stain-stress 
of internal samples keeps changing to hold the whole sample in steadies. If crack stops 
growing, the stain-stress of internal samples will achieve new balance and AE signal will 
disappear. Figs. 3(b) and 4(b) presents AE feature waveform at HF resolution that these 
are more detailed in high frequency components generated by tiny cracks. Figs. 3(c) and 
4(c) show AE feature waveform at the LF resolution that these are low-frequency 
components generated by large cracks. Considering the relationship between various 
cracks effects and coal rock instability grade, AE feature at the LF resolution is an 
important criterion to evaluate and predict the coal rock failure. 
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3.2 Feature vector construction 
Based on extracted AE waveform at different views, the feature vector is further to 
construct for coal rock condition detection. AE served as non-stationary signal, is divided 
into some equal frames to keep the characteristic approximately constant in a short time 
interval. By general agreement, the frame length and the frame shift are set at 512 and 
256 respectively. Various feature vector at different views are constructed including: 
short-time releasing energy, zero-crossing, average amplitude and short-time kurtosis as 
shown in Tab. 1. 

Table 1: Feature list  
Index Feature description 

1 Stress-strain records 
2 Short-time releasing energy and its statistics 
3 Zero-crossing and its statistics 
4 Average amplitude and its statistics 
5 Short-time kurtosis and its statistics 

3.3 Estimation stability of coal rock conditions 
During the experimental process of the sample compression, combined with the status of 
the sample under loading, coal rock condition could be labeled as safe, crisis and burst 
conditions. As the name suggests, safe condition presents coal rock samples keeping in 
safety. The crisis condition shows lots of cracks development in coal rock surface and 
interior, where large stress-strain loading on the samples. The Burst condition brings 
completely the damage stage and the sample getting into shattering. Then, Safe, Crisis 
and Burst conditions at the coal sample the training data were 1521, 958 and 1235 items, 
and testing data were 507, 318 and 431 items. The items of sandstone sample the training 
data were 1533, 859 and 1127, items of the testing data were 310, 304 and 427. 
In the experiment, the parameters settings are: the learning rate 0.1, the number of leaves 
100, the max depth 12 and the number of trees is 300_ 0=n estimators , the objective 
function is negative binomial log-likelihood for classification.  
The recognition performance on accuracy has been demonstrated in Fig. 5. Algorithm stop 
trained at 547 iterations, due to its early stopping rules. The loss function shown in Fig. 5 
presents an excellent computational convergence be utilized to detect rock sample conditions. 

 
                                                                

 

    

          
                                                                 

 1

    

 
(a) Coal samples                                               (b) Sandstone samples 

Figure 5: The loss of coal rock condition detection model 
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The recognition rate of coal rock conditions using the proposed method are respectively 
shown in Tab. 2. Among the averaged recognition rate of three coal conditions, the Burst 
condition performs 93.28%, which is 2.87% and 6.91% over the Safe and Crisis condition. 
Similarly, among the averaged recognition rate of three sandstone conditions, the Burst 
condition performs 98.36%, which is 3.84% and 5.82% over Crisis and safe condition. By 
contrast, the averaged recognition rate of sandstone Burst condition reaches 98.36% 
presenting better performance, which is 5.08% over the averaged recognition rate of coal 
Burst condition. The averaged recognition rate of sandstone Burst condition reaches 
94.52%, which is 8.15% over the averaged recognition rate of coal Crisis condition. The 
averaged recognition rate of sandstone Burst condition reaches 92.54%, which is 4.11% 
over the averaged recognition rate of coal Safe condition. So there seems the proposed 
method is a useful method to detect coal rock whether steadily or not. From the view of 
lithological, the proposed method performs better adaptability of the sandstone. 

Table 2: Recognition result of coal rock sample 

Sample 
Coal Recognition Result (%) Sandstone Recognition Result (%) 

Safe Crisis Burst Safe Crisis Burst 
Safe 90.41 6.58 3.01 92.54 4.35 3.11 
Crisis 9.76 86.37 3.87 3.27 94.52 2.21 
Burst 4.05 2.67 93.28 0.91 0.73 98.36 

3.4 Analysis of coal rock recognition performance on different methods 
We use the above network to carry out the experiments to analyze coal rock recognition 
performance on different methods. Tab. 3 presents the recognition performance with SVM 
and BP algorithm. Since multi-class results must be figured out in this paper, the libsvm 
toolbox invented by Lin from Taiwan University was chosen to improve the tradition two-
classify. Parameters of BP algorithm are: the learning rate 0.1η = , the training derivation 
0.0001 and the max training time 1000J = . The Bp is a single-hidden-layer including input, 
hidden and output layers which has a 14-nodes input layer a 3-nodes output layer and a 
hidden layer with number of nodes in 7 and 15 named BP1 and BP2 respectively. 
Tab. 3 tabulated the average recognition results of three status of coal rock mass using BP 
and SVM methods. It can be seen that the BP1, BP2 and SVM methods present 21.71%, 
17.71% and 9.76% under proposed method for coal condition detection. And the BP1, 
BP2 and SVM methods present 23.03%, 24.25% and 12.8% lower than proposed method 
at sandstone conditions detection. So the proposed method achieves obviously better 
performance on coal rock condition detection. 

Table 3: Comparison of SVM and BP 
Average Recognition Result (%) 
 Coal Sandstone 

BP1 68.31 72.11 
BP2 72.31 70.89 
SVM 80.26 82.34 
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4 Conclusions 
In this paper, a novel multi-resolution feature fusion method based on residual learning 
frame was proposed for rock mass degradation condition evaluation. AE datasets were 
collected from uniaxial compression. AE waveform features at three different resolutions 
extracted by Coiflet wavelet reconstruction. After CWT processing, AE signals are 
decomposed into several features in views of different frequency. AE feature vectors 
made by tress-strain records, short-time releasing energy, zero-crossing, average 
amplitude and short-time kurtosis. LightGBM method is utilized to fuse different features 
for the current condition of coal rock mass recognition. Combined with boosting strategy 
of ensemble learning method, this proposed method designs a serial cascaded sub 
RefineNet for each view of AE features. The proposed algorithm was tested to evaluate 
the degradation conditions of coal rock. The results show that it has excellent 
performance in evaluating the three critical conditions including safe, crisis, and burst. 
In the further work, more useful feature vectors will be selected and the optimal feature 
fusion strategy will be searched for the analysis of the practical application of coal rock 
damage evaluation and prediction. 
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