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Abstract: With the rapid increase of link speed and network throughput in recent years, 
much more attention has been paid to the work of obtaining statistics over speed traffic 
streams. It is a challenging problem to identify heavy hitters in high-speed and 
dynamically changing data streams with less memory and computational overhead with 
high measurement accuracy. In this paper, we combine Bloom Filter with exponential 
histogram to query streams in the sliding window so as to identify heavy hitters. This 
method is called EBF sketches. Our sketch structure allows for effective summarization 
of streams over time-based sliding windows with guaranteed probabilistic accuracy. It 
can be employed to address problems such as maintaining frequency statistics and finding 
heavy hitters. Our experimental results validate our theoretical claims and verifies the 
effectiveness of our techniques. 
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1 Introduction 
Detecting the most frequent items in large datasets and making accurate frequency 
estimations is a common query in big data and is of great significance for data monitoring 
[Zhou, Zhu, Liu et al. (2018); Tian, Su, Shi et al. (2019); Tian, Li, Qiu et al. (2019); Pan, 
Yang, Sheng et al. (2019); Pan, Yu, Yi et al. (2019); Pan, Qin, Yi et al. (2019)] and 
intrusion detection [Zhang, Yi, Wang et al. (2018)]. Abnormal traffic usually undergoes 
dramatic frequency changes during a certain period, and these changes are always sharp 
increases. This kind of data item is called a heavy hitter. The term “heavy hitter” is 
commonly used in data stream and network monitoring researches [Wang and Tao (2018); 
Galea, Moore, Antichi et al. (2018); Li, Sun, Jiang et al. (2018)]. A heavy hitter may 
correspond to a stream, a connection, or an aggregation of streams or connections. 
According to the definition above, it is obvious that many large-scale network attacks 
have the characteristics of heavy hitters, such as DDoS attacks and Eclipse attacks [Tan, 
Gao, Shi et al. (2018)]. 
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We need to work out algorithms to handle traffic streams in real time [Tian, Shi, Wang et 
al. (2019)], find heavy hitters, alert systems to them, and take measures to maintain 
network security. These algorithms must accurately reflect the heavy hitters (with 
guaranteed error) and ensure efficiency and feasibility. Traffic streams are born naturally 
over time. Each data item in a traffic stream carries a timestamp. We are more concerned 
about the behaviors of new data items that have recently arrived when we identity heavy 
hitters. We do not need to store the entire data stream and summarize the frequency of 
each data item, which just consumes huge space and is of no benefit. Instead, we should 
work out the frequency of data items over a recent period to determine whether there has 
been a sharp increase in frequency. 
Various time-decay models for querying streaming data have been proposed in the 
literature [Edith and Martin (2003)], mostly concerning the relation of an item’s weight 
with its age. The sliding window model [Datar, Gionis, Indyk et al. (2002); Ben, Einziger, 
Friedman et al. (2016)] is one of the most prominent and intuitive time-decay models that 
takes into account only the window of the most recent items seen in the stream so far. The 
window itself may be time-based or count-based. The sliding window model maintains the 
statistical properties of data, such as base counts and sums, but when the amount of data is 
too large it will take too much space. Our work is to identify heavy hitters in the traffic 
stream with guaranteed error and simultaneously use as little space as possible. 
The rest of this paper is organized as follows: In Section 2, we discuss the related work 
on heavy hitter identification. In Section 3, we describe the EBF-sketches algorithm and 
analyze its complexity. In Section 4, we evaluate our experimental results. Finally, in 
Section 5, we conclude the paper. 

2 Related work 
In recent years, identifying heavy hitters in data streams has gained more and more 
attention. A large-scale data stream is characterized by continuous uninterrupted-arriving, 
fast and large-scaled number [Babcock, Babu, Datar et al. (2002)]. Since a data stream is 
infinite, it is obviously unrealistic to materialize the entire data stream, and since many 
applications require real-time performance, we need a one-shot scanning algorithm. At 
present, there are some commonly used methods to identify heavy hitters, such as data 
mining [Knorr and Ng (1998)], feature selection, and the neural network [Zhang, Qiu, 
and Li (2001)]. However, these methods require a lot of data training and high 
computational cost, and their real-time performance is very poor. Several algorithms have 
been proposed for maintaining different types of statistics over sliding window data 
streams, while requiring time and space that is significantly sub-linear [Gibbons and 
Tirthapura (2004); Qiao, Agrawal and Abbadi (2003); Tirthapura, Xu and Busch (2006)]. 
Most previous work on data stream processing has focused on developing space-efficient, 
one-pass algorithms for performing a wide range of centralized, one-shot computations 
on massive data streams; examples include computing quantiles [Greenwald and Khanna 
(2001)], estimating distinct values [Gibbons (2001)], counting frequent elements (i.e., 
“heavy hitters”) [Charikar, Chen and Farach (2002); Cormode and Muthukrishnan 
(2005)], and estimating join sizes and stream norms [Alon, Matias and Szegedy (1996); 
Cormode and Muthukrishnan (1970)]. Out of these efforts, flexible, general-purpose 
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sketch summaries, such as the AMS [Alon, Matias, and Szegedy (1996)] and the Count-
Min sketch [Cormode and Muthukrishnan (1970)], have found wide applicability in a 
broad range of stream-processing scenarios. However, these referenced works do not 
address the issues specific to the sliding window model. 
Existing work on the sliding window model has focused on algorithms for maintaining 
simple statistics, such as basic counts and sums. Exponential histogram [Datar, Gionis, 
Indyk et al. (2002)] is a deterministic technique for maintaining ε -approximate counts 

and sums over sliding windows using 1 log2O N
ε

 
 
 

 space. Deterministic waves 

[Gibbons and Tirthapura (2004)] solve the same basic counting/summation problem with 
the same space complexity as exponential histogram, but improve the worst-case update 
time complexity to ( )1O ; conversely, randomized waves [Gibbons and Tirthapura (2004)] 
rely on randomization through hashing to track duplicate-insensitive counts (i.e., Count-
Distinct aggregates) over sliding windows. 
Hung et al. [Hung and Ting (2008)] and Dimitropoulos et al. [Dimitropoulos, Stoecklin, 
Hurley et al. (2008)] proposed synopses based on Count-Min sketches for tracking heavy 
hitters and frequency counts over sliding windows; still, their techniques relied on 
keeping simple equi-width counters within the sketch, and thus, could not provide any 
meaningful error guarantees, especially for small query ranges. Similarly, the hybrid 
histograms of Qiao et al. [Qiao, Agrawal and Abbadi (2003)] combined exponential 
histogram with simplistic equi-width histograms for answering sliding window range 
queries; again, these structures could not give meaningful bounds on the approximation 
error. ECM sketches combine the functionalities of Count-Min sketches [Cormode and 
Muthukrishnan (1970)] and exponential histogram, and support both time-based and 
count-based sliding windows under the cash register model and give guaranteed error. 
Our work combines the functionalities of Bloom Filter and exponential histogram. The 
combination of the two structures greatly reduces the need of space, and its real-time 
processing requires no complicated training in advance, which leads to high efficiency. 

3 EBF sketches 
3.1 Problem statement 
In this paper, we format the data item in the traffic streams as follows: <key, value, 
timestamp>. We need to design an algorithm that can efficiently work on a collection of 
items with sharp changes during the recent periods. 
As introduced before, an algorithm that supports dynamic, constantly updating, large-
scale data queries are required to identify heavy hitters in traffic streams. Since traffic 
streams are constantly updating over time, queries should focus more on new data than 
on old data. Thus, we only work on the data within the sliding window that arrived 
recently. In simple terms, what we need to do is to calculate the frequency of data items 
that arrive during a certain period in real time and see whether it exceeds the threshold. 
We can define the problem as follows: 
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Problem 1. Given a threshold 0τ >  and a data stream S, S contains a large number of 
timestamped data items, and each of them is composed of a key, a value, and a timestamp, 
i.e., <key, value, timestamp>. What we should do is determine whether a data item appearing 
with frequency f  during a certain period is a heavy hitter, that is, whether f τ> . 

In this paper, we just compute approximately with guaranteed error to sacrifice a bit of 
accuracy in exchange for space savings. We show this in detail using Bloom Filter [Broder 
and Mitzenmacher (2002)] and exponential histogram [Datar, Gionis, Indyk et al. (2002)]. 
Now, we introduce the EBF-sketches algorithm. It is a structure that maintains statistics of 
data streams on sliding windows. The core of the EBF-sketches structure is a modified 
Bloom Filter. The standard Bloom Filter is just a bit array used to determine whether an 
element belongs to a collection. Without the counting device, it cannot answer the 
frequency of data items in a sliding window. We combine it with sliding window structures 
for the sake of efficiency. We maintain a counter for each bit in the Bloom Filter array so as 
to store information of every data item. Each counter is implemented as a time-based 
sliding window, which overlays the elements reached in the last N  time units. 
We have already discussed before how to implement the sliding window. To ensure that 
the Bloom Filter’s error is guaranteed, the number of bits of the array is very large. We 
maintain a counter for each bit and hope it occupies as little memory as possible; 
otherwise, the space required for the entire dataset will not be acceptable. Therefore, we 
use the exponential histogram. Each bit of Bloom Filter points to an exponential 
histogram, and when computing on the sliding window with a time span of N units, the 
relative error will not exceed ε . For example, if a certain bit really counts as x, the 
returned counting statistics within the sliding window will be in the range of ( )1 xε± . 

3.2 Working process 
The pseudo-code of the main functions is shown in Fig. 1. When a data item arrives, as 
the first step, the k hash functions of EBF-sketches hash the key and get k results. The k  
hash functions can be derived from two initial hash functions, using the high and low 32 
bits of a 64-bit hash function for cyclic shifting. In the second step, we use these k results 
as an index to find the corresponding counter in the Bloom Filter counter array, which is 
implemented as an exponential histogram, and increase it by one. As mentioned above, 
the counter here cannot simply use an accumulation counter because we never know the 
starting moment of an infinite data stream, and we never know when to start 
accumulating. Therefore, we use the sliding window model to implement the counters. 
Exponential histogram is a typical sliding window model that greatly reduces the storage 
space and computation time. In the third step, since we have already obtained the values 
of k counters that correspond to the data item, we choose the smallest one to reduce the 
error brought by hash collision. Then, we compare the smallest value with the threshold. 
If the threshold is exceeded, we report it as a heavy hitter. The entire process does not 
need complicated calculations. With only ( )O N  time cost, the proposed method has 
high real-time performance. 
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Algorithm Arrival (key, value, time) 
1 result[]=hash(key); 
2 count=MAX_VALUE; 
3 for i=0 to result.length-1do 
4   temp= BF_Array[i].EH_Add(value, time); 
5  If temp<count then 
6   count=temp; 
5 end if 
6 end for 
7 if count >τ then 
8 report(); 

 
Algorithm EH_Add (value,time) 
1 update expired time 
2 if the last bucket is expired then 
3   delete the last bucket and update related data; 
4 end if 
5 add the new coming data; 
6 if merge is needed then 
7 merge the buckets; 
8 else  
9   return; 
10 end if 

Figure 1: Pseudo-code of main functions 

3.3 Complexity analysis 
We use N  to denote the number of data items within the sliding window, that is, the 
number of data items represented by each exponential histogram. A previous study [Datar, 
Gionis, Indyk et al. (2002)] stated that each bucket in the exponential histogram 
maintains its size and timestamp. The bucket size occupies at most loglog N  bits, and the 
timestamp occupies at most log N  bits; therefore, each bucket occupies at most 
log loglogN N+  bits. For an exponential histogram, there are at most ( )log / EHO N ε  
buckets, and thus the total space required for each exponential histogram is 
( )21 / logEHO Nε . Count queries can be processed in ( )1O  time cost because the 

exponential histogram maintains two counts: the size of the last bucket and the sum of all 
the buckets. While inserting a new element, the insertion time cost is optimally ( )1O , 
and the worst time cost can be ( )logO N  due to bucket merge. 

The space complexity of EBF sketches is ( ) 21 ln 1 / logBF
EH

O N Nε
ε

 
 
 

, where BFε  and 

EHε  denote the error of the Bloom Filter and exponential histogram, respectively. In 
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order to guarantee the error, the length of the bit array is at least about ( )ln 1 / BFn ε . Each 

bit is implemented as an exponential histogram, which space required is 21 log
EH

O N
ε

 
 
 

.  

In terms of time complexity, every time a data item is added, it needs k  times of hashing, 
and needs to update k  exponential histograms. Therefore, the average time complexity is 
( )O k  and the worst-case time complexity is ( )logO k N . 

4 Experimental evaluation 
Our EBF sketches are implemented in Java 1.7, and the machine is a 64-bit laptop. In 
terms of dataset, we use a real network dataset that we call blog. The blog dataset 
contains 15 million blog items. 

 

 

Figure 2: Comparison of EBF sketches and DBF sketches in terms of the observed error 
and average processing time 
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Figure 3: Comparison of EBF sketches and ECM sketches in terms of the observed error 
and average processing time 

Fig. 2 plots the observed error and average processing time of the Bloom Filter combined 
with exponential histogram (the EBF sketches) and those of the deterministic waves (the 
DBF sketches). Fig. 2(a) shows the observed error in correlation with the required 
memory for the dataset. We can see that the EBF sketches require much less space than 
the DBF sketches for the same ε . The EBF sketches require about 90 kB to get a relative 
error of 0.01, but with identical memory the DBF sketches can only reach a relative error 
of 0.04. However, we can see from Fig. 2(b) that, concerning the average processing time, 
the DBF sketches are slightly faster than the EBF sketches, mainly due to its ( )O k  
worst-case complexity per update compared to the ( )logO k N  for the EBF sketches. 
However, considering the advantages of high accuracy and high memory efficiency, the 
slight disadvantage of processing time can be completely ignored. 
Fig. 3 plots the observed error and average processing time of exponential histogram 
combined with the Bloom Filter (the EBF sketches) and the Count-Min sketch (the ECM 
sketches). Fig. 3(a) shows the observed error in correlation with the required memory for 
the dataset. We can see that the EBF sketches require less space than the ECM sketches 
for the same ε . We have explained above that a Count-Min sketch is implemented as a 
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two-dimensional array of counters, that is, an array for each hash function. However, the 
Bloom Filter uses only one counter array so that it requires less memory. The EBF 
sketches require about 90 kB to get a relative error of 0.01, but with identical memory the 
ECM sketches can only reach a relative error of 0.025. As seen in Fig. 3(b), concerning 
the average processing time, the two structures have very close performance. This is 
mainly because they both use exponential histogram to implement the counter. For these 
two algorithms, the time cost for every update mainly depends on the performance of the 
exponential histogram.  
In summary, these results demonstrate the superiority of the EBF sketches compared to 
the DBF sketches and the ECM sketches, in terms of accuracy, memory efficiency, and 
computational performance. 

5 Conclusions 
In this work, we considered the problem of identifying heavy hitters in the network. Our 
proposal, the EBF sketches, utilizes the functionality of Bloom Filter, which answers 
existence problems with deterministic sliding window synopses. This structure provides 
probabilistic accuracy guarantees for the estimated quality and has good memory 
efficiency. We introduced how to combine Bloom Filter and exponential histogram to 
solve the considered problem and provide guaranteed accuracy. The EBF sketches were 
thoroughly evaluated with a set of experiments, and the results verified the high 
performance of the structure. 
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