
Computers, Materials & Continua CMC, vol.63, no.1, pp.213-222, 2020

CMC. doi:10.32604/cmc.2020.07496 www.techscience.com/journal/cmc

Efficient Heavy Hitters Identification over Speed Traffic Streams

Shuzhuang Zhang1, Hao Luo1, Zhigang Wu1, Yanbin Sun2, *, Yuhang Wang2
and Tingting Yuan3

Abstract: With the rapid increase of link speed and network throughput in recent years,
much more attention has been paid to the work of obtaining statistics over speed traffic
streams. It is a challenging problem to identify heavy hitters in high-speed and
dynamically changing data streams with less memory and computational overhead with
high measurement accuracy. In this paper, we combine Bloom Filter with exponential
histogram to query streams in the sliding window so as to identify heavy hitters. This
method is called EBF sketches. Our sketch structure allows for effective summarization
of streams over time-based sliding windows with guaranteed probabilistic accuracy. It
can be employed to address problems such as maintaining frequency statistics and finding
heavy hitters. Our experimental results validate our theoretical claims and verifies the
effectiveness of our techniques.

Keywords: Traffic stream, heavy hitter, sliding window, frequency statistics.

1 Introduction
Detecting the most frequent items in large datasets and making accurate frequency
estimations is a common query in big data and is of great significance for data monitoring
[Zhou, Zhu, Liu et al. (2018); Tian, Su, Shi et al. (2019); Tian, Li, Qiu et al. (2019); Pan,
Yang, Sheng et al. (2019); Pan, Yu, Yi et al. (2019); Pan, Qin, Yi et al. (2019)] and
intrusion detection [Zhang, Yi, Wang et al. (2018)]. Abnormal traffic usually undergoes
dramatic frequency changes during a certain period, and these changes are always sharp
increases. This kind of data item is called a heavy hitter. The term “heavy hitter” is
commonly used in data stream and network monitoring researches [Wang and Tao (2018);
Galea, Moore, Antichi et al. (2018); Li, Sun, Jiang et al. (2018)]. A heavy hitter may
correspond to a stream, a connection, or an aggregation of streams or connections.
According to the definition above, it is obvious that many large-scale network attacks
have the characteristics of heavy hitters, such as DDoS attacks and Eclipse attacks [Tan,
Gao, Shi et al. (2018)].

1 Institute of Network Technology, Beijing University of Posts and Telecommunications, Beijing, China.
2 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China.
3 Inria Diana Sophia Antipolis-Mediterranee, Sophia Antipolis, France.
* Corresponding Author: Yanbin Sun. Email: sunyanbin@gzhu.edu.cn.
Received: 28 May 2019; Accepted: 01 July 2019.

mailto:sunyanbin@gzhu.edu.cn

 CMC, vol.63, no.1, pp.213-222, 2020 214

We need to work out algorithms to handle traffic streams in real time [Tian, Shi, Wang et
al. (2019)], find heavy hitters, alert systems to them, and take measures to maintain
network security. These algorithms must accurately reflect the heavy hitters (with
guaranteed error) and ensure efficiency and feasibility. Traffic streams are born naturally
over time. Each data item in a traffic stream carries a timestamp. We are more concerned
about the behaviors of new data items that have recently arrived when we identity heavy
hitters. We do not need to store the entire data stream and summarize the frequency of
each data item, which just consumes huge space and is of no benefit. Instead, we should
work out the frequency of data items over a recent period to determine whether there has
been a sharp increase in frequency.
Various time-decay models for querying streaming data have been proposed in the
literature [Edith and Martin (2003)], mostly concerning the relation of an item’s weight
with its age. The sliding window model [Datar, Gionis, Indyk et al. (2002); Ben, Einziger,
Friedman et al. (2016)] is one of the most prominent and intuitive time-decay models that
takes into account only the window of the most recent items seen in the stream so far. The
window itself may be time-based or count-based. The sliding window model maintains the
statistical properties of data, such as base counts and sums, but when the amount of data is
too large it will take too much space. Our work is to identify heavy hitters in the traffic
stream with guaranteed error and simultaneously use as little space as possible.
The rest of this paper is organized as follows: In Section 2, we discuss the related work
on heavy hitter identification. In Section 3, we describe the EBF-sketches algorithm and
analyze its complexity. In Section 4, we evaluate our experimental results. Finally, in
Section 5, we conclude the paper.

2 Related work
In recent years, identifying heavy hitters in data streams has gained more and more
attention. A large-scale data stream is characterized by continuous uninterrupted-arriving,
fast and large-scaled number [Babcock, Babu, Datar et al. (2002)]. Since a data stream is
infinite, it is obviously unrealistic to materialize the entire data stream, and since many
applications require real-time performance, we need a one-shot scanning algorithm. At
present, there are some commonly used methods to identify heavy hitters, such as data
mining [Knorr and Ng (1998)], feature selection, and the neural network [Zhang, Qiu,
and Li (2001)]. However, these methods require a lot of data training and high
computational cost, and their real-time performance is very poor. Several algorithms have
been proposed for maintaining different types of statistics over sliding window data
streams, while requiring time and space that is significantly sub-linear [Gibbons and
Tirthapura (2004); Qiao, Agrawal and Abbadi (2003); Tirthapura, Xu and Busch (2006)].
Most previous work on data stream processing has focused on developing space-efficient,
one-pass algorithms for performing a wide range of centralized, one-shot computations
on massive data streams; examples include computing quantiles [Greenwald and Khanna
(2001)], estimating distinct values [Gibbons (2001)], counting frequent elements (i.e.,
“heavy hitters”) [Charikar, Chen and Farach (2002); Cormode and Muthukrishnan
(2005)], and estimating join sizes and stream norms [Alon, Matias and Szegedy (1996);
Cormode and Muthukrishnan (1970)]. Out of these efforts, flexible, general-purpose

Efficient Heavy Hitters Identification over Speed Traffic Streams 215

sketch summaries, such as the AMS [Alon, Matias, and Szegedy (1996)] and the Count-
Min sketch [Cormode and Muthukrishnan (1970)], have found wide applicability in a
broad range of stream-processing scenarios. However, these referenced works do not
address the issues specific to the sliding window model.
Existing work on the sliding window model has focused on algorithms for maintaining
simple statistics, such as basic counts and sums. Exponential histogram [Datar, Gionis,
Indyk et al. (2002)] is a deterministic technique for maintaining ε -approximate counts

and sums over sliding windows using 1 log2O N
ε

 
 
 

 space. Deterministic waves

[Gibbons and Tirthapura (2004)] solve the same basic counting/summation problem with
the same space complexity as exponential histogram, but improve the worst-case update
time complexity to ()1O ; conversely, randomized waves [Gibbons and Tirthapura (2004)]
rely on randomization through hashing to track duplicate-insensitive counts (i.e., Count-
Distinct aggregates) over sliding windows.
Hung et al. [Hung and Ting (2008)] and Dimitropoulos et al. [Dimitropoulos, Stoecklin,
Hurley et al. (2008)] proposed synopses based on Count-Min sketches for tracking heavy
hitters and frequency counts over sliding windows; still, their techniques relied on
keeping simple equi-width counters within the sketch, and thus, could not provide any
meaningful error guarantees, especially for small query ranges. Similarly, the hybrid
histograms of Qiao et al. [Qiao, Agrawal and Abbadi (2003)] combined exponential
histogram with simplistic equi-width histograms for answering sliding window range
queries; again, these structures could not give meaningful bounds on the approximation
error. ECM sketches combine the functionalities of Count-Min sketches [Cormode and
Muthukrishnan (1970)] and exponential histogram, and support both time-based and
count-based sliding windows under the cash register model and give guaranteed error.
Our work combines the functionalities of Bloom Filter and exponential histogram. The
combination of the two structures greatly reduces the need of space, and its real-time
processing requires no complicated training in advance, which leads to high efficiency.

3 EBF sketches
3.1 Problem statement
In this paper, we format the data item in the traffic streams as follows: <key, value,
timestamp>. We need to design an algorithm that can efficiently work on a collection of
items with sharp changes during the recent periods.
As introduced before, an algorithm that supports dynamic, constantly updating, large-
scale data queries are required to identify heavy hitters in traffic streams. Since traffic
streams are constantly updating over time, queries should focus more on new data than
on old data. Thus, we only work on the data within the sliding window that arrived
recently. In simple terms, what we need to do is to calculate the frequency of data items
that arrive during a certain period in real time and see whether it exceeds the threshold.
We can define the problem as follows:

 CMC, vol.63, no.1, pp.213-222, 2020 216

Problem 1. Given a threshold 0τ > and a data stream S, S contains a large number of
timestamped data items, and each of them is composed of a key, a value, and a timestamp,
i.e., <key, value, timestamp>. What we should do is determine whether a data item appearing
with frequency f during a certain period is a heavy hitter, that is, whether f τ> .

In this paper, we just compute approximately with guaranteed error to sacrifice a bit of
accuracy in exchange for space savings. We show this in detail using Bloom Filter [Broder
and Mitzenmacher (2002)] and exponential histogram [Datar, Gionis, Indyk et al. (2002)].
Now, we introduce the EBF-sketches algorithm. It is a structure that maintains statistics of
data streams on sliding windows. The core of the EBF-sketches structure is a modified
Bloom Filter. The standard Bloom Filter is just a bit array used to determine whether an
element belongs to a collection. Without the counting device, it cannot answer the
frequency of data items in a sliding window. We combine it with sliding window structures
for the sake of efficiency. We maintain a counter for each bit in the Bloom Filter array so as
to store information of every data item. Each counter is implemented as a time-based
sliding window, which overlays the elements reached in the last N time units.
We have already discussed before how to implement the sliding window. To ensure that
the Bloom Filter’s error is guaranteed, the number of bits of the array is very large. We
maintain a counter for each bit and hope it occupies as little memory as possible;
otherwise, the space required for the entire dataset will not be acceptable. Therefore, we
use the exponential histogram. Each bit of Bloom Filter points to an exponential
histogram, and when computing on the sliding window with a time span of N units, the
relative error will not exceed ε . For example, if a certain bit really counts as x, the
returned counting statistics within the sliding window will be in the range of ()1 xε± .

3.2 Working process
The pseudo-code of the main functions is shown in Fig. 1. When a data item arrives, as
the first step, the k hash functions of EBF-sketches hash the key and get k results. The k
hash functions can be derived from two initial hash functions, using the high and low 32
bits of a 64-bit hash function for cyclic shifting. In the second step, we use these k results
as an index to find the corresponding counter in the Bloom Filter counter array, which is
implemented as an exponential histogram, and increase it by one. As mentioned above,
the counter here cannot simply use an accumulation counter because we never know the
starting moment of an infinite data stream, and we never know when to start
accumulating. Therefore, we use the sliding window model to implement the counters.
Exponential histogram is a typical sliding window model that greatly reduces the storage
space and computation time. In the third step, since we have already obtained the values
of k counters that correspond to the data item, we choose the smallest one to reduce the
error brought by hash collision. Then, we compare the smallest value with the threshold.
If the threshold is exceeded, we report it as a heavy hitter. The entire process does not
need complicated calculations. With only ()O N time cost, the proposed method has
high real-time performance.

Efficient Heavy Hitters Identification over Speed Traffic Streams 217

Algorithm Arrival (key, value, time)
1 result[]=hash(key);
2 count=MAX_VALUE;
3 for i=0 to result.length-1do
4 temp= BF_Array[i].EH_Add(value, time);
5 If temp<count then
6 count=temp;
5 end if
6 end for
7 if count >τ then
8 report();

Algorithm EH_Add (value,time)
1 update expired time
2 if the last bucket is expired then
3 delete the last bucket and update related data;
4 end if
5 add the new coming data;
6 if merge is needed then
7 merge the buckets;
8 else
9 return;
10 end if

Figure 1: Pseudo-code of main functions

3.3 Complexity analysis
We use N to denote the number of data items within the sliding window, that is, the
number of data items represented by each exponential histogram. A previous study [Datar,
Gionis, Indyk et al. (2002)] stated that each bucket in the exponential histogram
maintains its size and timestamp. The bucket size occupies at most loglog N bits, and the
timestamp occupies at most log N bits; therefore, each bucket occupies at most
log loglogN N+ bits. For an exponential histogram, there are at most ()log / EHO N ε
buckets, and thus the total space required for each exponential histogram is
()21 / logEHO Nε . Count queries can be processed in ()1O time cost because the

exponential histogram maintains two counts: the size of the last bucket and the sum of all
the buckets. While inserting a new element, the insertion time cost is optimally ()1O ,
and the worst time cost can be ()logO N due to bucket merge.

The space complexity of EBF sketches is () 21 ln 1 / logBF
EH

O N Nε
ε

 
 
 

, where BFε and

EHε denote the error of the Bloom Filter and exponential histogram, respectively. In

 CMC, vol.63, no.1, pp.213-222, 2020 218

order to guarantee the error, the length of the bit array is at least about ()ln 1 / BFn ε . Each

bit is implemented as an exponential histogram, which space required is 21 log
EH

O N
ε

 
 
 

.

In terms of time complexity, every time a data item is added, it needs k times of hashing,
and needs to update k exponential histograms. Therefore, the average time complexity is
()O k and the worst-case time complexity is ()logO k N .

4 Experimental evaluation
Our EBF sketches are implemented in Java 1.7, and the machine is a 64-bit laptop. In
terms of dataset, we use a real network dataset that we call blog. The blog dataset
contains 15 million blog items.

Figure 2: Comparison of EBF sketches and DBF sketches in terms of the observed error
and average processing time

Efficient Heavy Hitters Identification over Speed Traffic Streams 219

Figure 3: Comparison of EBF sketches and ECM sketches in terms of the observed error
and average processing time

Fig. 2 plots the observed error and average processing time of the Bloom Filter combined
with exponential histogram (the EBF sketches) and those of the deterministic waves (the
DBF sketches). Fig. 2(a) shows the observed error in correlation with the required
memory for the dataset. We can see that the EBF sketches require much less space than
the DBF sketches for the same ε . The EBF sketches require about 90 kB to get a relative
error of 0.01, but with identical memory the DBF sketches can only reach a relative error
of 0.04. However, we can see from Fig. 2(b) that, concerning the average processing time,
the DBF sketches are slightly faster than the EBF sketches, mainly due to its ()O k
worst-case complexity per update compared to the ()logO k N for the EBF sketches.
However, considering the advantages of high accuracy and high memory efficiency, the
slight disadvantage of processing time can be completely ignored.
Fig. 3 plots the observed error and average processing time of exponential histogram
combined with the Bloom Filter (the EBF sketches) and the Count-Min sketch (the ECM
sketches). Fig. 3(a) shows the observed error in correlation with the required memory for
the dataset. We can see that the EBF sketches require less space than the ECM sketches
for the same ε . We have explained above that a Count-Min sketch is implemented as a

 CMC, vol.63, no.1, pp.213-222, 2020 220

two-dimensional array of counters, that is, an array for each hash function. However, the
Bloom Filter uses only one counter array so that it requires less memory. The EBF
sketches require about 90 kB to get a relative error of 0.01, but with identical memory the
ECM sketches can only reach a relative error of 0.025. As seen in Fig. 3(b), concerning
the average processing time, the two structures have very close performance. This is
mainly because they both use exponential histogram to implement the counter. For these
two algorithms, the time cost for every update mainly depends on the performance of the
exponential histogram.
In summary, these results demonstrate the superiority of the EBF sketches compared to
the DBF sketches and the ECM sketches, in terms of accuracy, memory efficiency, and
computational performance.

5 Conclusions
In this work, we considered the problem of identifying heavy hitters in the network. Our
proposal, the EBF sketches, utilizes the functionality of Bloom Filter, which answers
existence problems with deterministic sliding window synopses. This structure provides
probabilistic accuracy guarantees for the estimated quality and has good memory
efficiency. We introduced how to combine Bloom Filter and exponential histogram to
solve the considered problem and provide guaranteed accuracy. The EBF sketches were
thoroughly evaluated with a set of experiments, and the results verified the high
performance of the structure.

Acknowledgement: This study is supported by National key research and development
program (2016YFB0801200).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Alon, N.; Matias, Y.; Szegedy, M. (1996): The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, vol. 58, no. 1, pp. 20-29.
Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. (2002): Models and issues
in data streams system. Proceedings of the Twenty-First ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 1-16.
Ben-Basat, R.; Einziger, G.; Friedman, R.; Kassner, Y. (2016): Heavy hitters in
streams and sliding windows. IEEE INFOCOM 2016-the 35th Annual IEEE International
Conference on Computer Communications, pp. 1-9.
Broder, A.; Mitzenmacher, M. (2002): Network applications of bloom filters: a survey.
Internet Mathematics. Internet Mathematics, vol. 1, no. 4, pp. 485-509.
Charikar, M.; Chen, K.; FarachColton, M. (2002): Finding frequent items in data
streams. Theoretical Computer Science, vol. 312, no. 1, pp. 693-703.

Efficient Heavy Hitters Identification over Speed Traffic Streams 221

Cormode, G; Muthukrishnan, S. (1970): An improved data stream summary: the
count-min sketch and its applications. LATIN 2004: Theoretical Informatics, vol. 55, no.
1, pp. 29-38.
Cormode, G.; Muthukrishnan, S. (2005): What’s hot and what’s not: tracking most
frequent items dynamically. ACM Transactions on Database Systems, vol. 30, no. 1, pp.
249-278.
Datar, M.; Gionis, A.; Indyk, P.; Motwani, R. (2002): Maintaining stream statistics
over sliding windows. Siam Journal on Computing, vol. 31, no. 6, pp. 1794-1813.
Dimitropoulos, X.; Stoecklin, M.; Hurley, P.; Kind, A. (2008): The eternal sunshine of
the sketch data structure. Computer Networks the International Journal of Computer &
Telecommunications Networking, vol. 52, no. 17, pp. 3248-3257.
Edith, C.; Martin, J. S. (2003): Maintaining time-decaying stream aggregates. Journal
of Algorithms, vol. 59, no. 1, pp. 223-233.
Galea, S.; Moore, A. W.; Antichi, G.; Bianchi, G.; Bifulco, R. (2018): Revealing
hidden hierarchical heavy hitters in network traffic. Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos, pp. 81-83.
Gibbons, P. B. (2001): Distinct sampling for highly-accurate answers to distinct values
queries and event reports. Proceedings of the 27th International Conference on Very
Large Data Bases, pp. 541-550.
Gibbons, P. B.; Tirthapura, S. (2004): Distributed streams algorithms for sliding
windows. Theory of Computing Systems, vol. 37, no. 3, pp. 457-478.
Greenwald, M.; Khanna, S. (2001): Space-efficient online computation of quantile
summaries. Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, vol. 30, no. 2, pp. 58-66.
Hung, R. Y. S.; Ting, H. F. (2008): Finding heavy hitters over the sliding window of a
weighted data stream. LATIN 2008: Theoretical Informatics. Springer Berlin Heidelberg,
vol. 4957, pp. 699-710.
Knorr, E. M.; Ng, R. T. (1998): Algorithms for mining distance-based outliers in large
data sets. Proceedings of 24th International Conference on Very Large Databases, pp.
392-403.
Li, M.; Sun, Y.; Jiang, Y.; Tian, Z. (2018): Answering the min-cost quality-aware
query on multi-sources in sensor-cloud systems. Sensors, vol. 18, no. 3, pp. 4486.
Pan, Z.; Qin, H.; Yi, X.; Zheng, Y.; Khan, A. (2019): Low complexity versatile video
coding for traffic surveillance system. International Journal of Sensor Networks, vol. 30,
no. 2, pp. 116-125.
Pan, Z.; Yang, C. N.; Sheng, V. S.; Xiong, N.; Meng, W. (2019): Machine learning for
wireless multimedia data security. Security and Communication Networks, vol. 2019, no.
7682306, pp. 2.
Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F. et al. (2019): Recent progress on generative
adversarial networks (GANs): a survey. IEEE Access, vol. 7, pp. 36322-36333.

 CMC, vol.63, no.1, pp.213-222, 2020 222

Qiao, L.; Agrawal, D.; Abbadi, A. E. (2003): Supporting sliding window queries for
continuous data streams. Proceeding of the 15th International Conference on Scientific
and Statistical Database Management, pp. 85-94.
Tan, Q. F.; Gao, Y.; Shi, J. Q.; Wang, X. B.; Fang, B. X. et al. (2018): Towards a
comprehensive insight into the eclipse attacks of tor hidden services. IEEE Internet of
Things Journal, vol. 6, no. 2. pp. 1584-1593.
Tian, Z. H.; Shi, W.; Wang, Y. H.; Zhu, C. S.; Du, X. J. et al. (2019): Real time lateral
movement detection based on evidence reasoning network for edge computing
environment. IEEE Transactions on Industrial Informatics, pp. 1-9.
Tian, Z. H; Su, S.; Shi, W.; Du, X. J.; Mohsen, G. et al. (2019): A Data-driven model
for future internet route decision modeling. Future Generation Computer Systems, vol.
95, pp. 212-220.
Tian, Z. H.; Li, Mohan; Qiu, M. K.; Sun, Y. B.; Su, S. (2019): Block-DES: a secure
digital evidence system using blockchain. Information Sciences, vol. 491, pp. 151-165.
Tirthapura, S.; Xu, B.; Busch, C. (2006): Sketching asynchronous streams over a
sliding window. Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles
of Distributed Computing, pp. 82-91.
Wang, S.; Tao, Y. (2018): Efficient algorithms for finding approximate heavy hitters in
personalized pageranks. Proceedings of the 2018 International Conference on
Management of Data, pp. 1113-1127.
Zhang, H. B.; Yi, Y. Z.; Wang, J. S.; Cao, N.; Duan, Q. (2018): Network security
situation awareness framework based on threat intelligence. Computers, Materials &
Continua, vol. 56, no. 3, pp. 381-399.
Zhang, G. J.; Qiu, J. J.; Li, J. H. (2001): Outlier identification and justification based
on neural network. Proceeding of the Chinese Society of Electrical Engineering, vol. 21,
no. 8, pp. 104-107.
Zhou, A. P.; Zhu, H. S.; Liu, L. J.; Zhu, C. G. (2018): Identification of heavy hitters
for network data streams with probabilistic sketch. IEEE 3rd International Conference on
Cloud Computing and Big Data Analysis, pp. 451-456.

	Efficient Heavy Hitters Identification over Speed Traffic Streams
	Shuzhuang Zhang0F , Hao Luo1, Zhigang Wu1, Yanbin Sun2, *, Yuhang Wang2
	and Tingting Yuan3

	5 Conclusions
	References

