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Abstract: In order to meet the higher accuracy requirement of trajectory prediction for 
Unmanned Aircraft System (UAS) in Unmanned Aircraft System Traffic Management 
(UTM), an Intent Based Trajectory Prediction and Smooth Based on Constrained 
State-dependent-transition Hybrid Estimation (CSDTHE-IBTPS) algorithm is proposed. 
Firstly, an intent inference method of UAS is constructed based on the information of 
ADS-B and geofence system. Moreover, a geofence layering algorithm is proposed. 
Secondly, the Flight Mode Change Points (FMCP) are used to define the relevant mode 
transition parameters and design the guard conditions, so as to generate the mode 
transition probability matrix and establish the continuous state-dependent-transition 
model. After that, the constrained Kalman filter (CKF) is applied to improve 
State-dependent-transition Hybrid Estimation (SDTHE) algorithm by applying equality 
constraint to the velocity of UAS in the straight phase and turning phase, respectively, 
and thus the constrained state-dependent-transition hybrid estimation (CSDTHE) 
algorithm is constructed. Finally, the results of intent inference and hybrid estimation are 
used to make trajectory prediction. Furthermore, each flight segment of trajectory is 
smoothed respectively by Rauch-Tung-Striebel (RTS) backward smooth method using 
the proposed CSDTHE-RTS algorithm, so as to obtain more accurate trajectory 
prediction results. The simulation shows that the proposed algorithm can reduce the 
errors of trajectory prediction and the time delay of intent inference. 
 
Keywords: Trajectory prediction, unmanned aircraft system, geofence, intent inference, 
hybrid estimation, Rauch-Tung-Striebel (RTS) backward smooth. 

1 Introduction 
The rapid increase of low-altitude Unmanned Aircraft System (UAS) brings new 
opportunities and challenges to the development of air transportation [Ni, Yu and 
Rathinam (2017)]. The Unmanned Aircraft System Traffic Management (UTM) under 
development includes the UTM of the United States [Kopardekar, Rios and Prevot et al. 
(2016)], the Unmanned Aircraft System Operation Management System (UOMS) of 
China and the U-SPACE of Europe, etc. They aim to promote the safe and efficient 
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operation of UAS in low-altitude airspace. Emerging airborne geofence system of UAS is 
an important part of UTM [Aweiss, Owens, Rios et al. (2018)], and it has been applied in 
some commercial-off-the- shelf UAS products, such as DJI [DJI (2019)] and Ardupilot 
[ArduPilot (2019)]. After obtaining the information of geofence published by UTM, 
geofence can divide the airspace into keep-in geofence (such as the operating area of 
plant protection UAS) and the keep-out geofence (such as no-fly zones, dangerous zone, 
thunderstorm zone, etc.) [Cho and Yoon (2018); Usach, Vila, Torens et al. (2018)]. 
NASA is developing a geofence system called Safeguard and has conducted a series of 
experiments [Dill, Young and Hayhurst (2016); Young, Dill, Hayhurst et al. (2017); Dill, 
Russell and Young (2018)]. They proposed to layer geofence to set warning boundaries, 
termination boundaries and hard boundaries, but did not propose a general geofence 
layering algorithm. UAS need trajectory prediction in flight to detect conflicts with 
geofence and other UAS in the same geofence and then to resolve conflicts autonomously 
[Seifert, Heller and Holzapfel (2018); Stevens, Rastgoftar and Atkins (2018); Fu, Liang, 
Zhang et al. (2019)]. Therefore, trajectory prediction is the basis of conflict detection. 
Trajectory prediction methodologies can be divided into three categories: nominal, 
worst-case and probabilistic [Kuchar and Yang (2000)]. The nominal trajectory 
prediction simply projects current state of the aircraft to the future to obtain a single 
trajectory without considering any uncertainties. Although it is simple, the method can 
only be applied to cruise flight with small change of heading. Worst-case trajectory 
prediction takes into account all possible maneuvers of an aircraft to obtain all possible 
flight trajectories. It is generally applicable to trajectory prediction for Visual Flight Rule 
(VFR) flight with numerous maneuvers being performed. Probabilistic trajectory 
prediction takes into account the influence of uncertainties such as wind and navigation 
errors in trajectory prediction. It is the most widely used method for trajectory prediction, 
and it is also the method used in this paper. Hybrid estimation has been widely used in 
trajectory prediction because it can reduce the influence of noise. Furthermore, 
Interactive Multiple Model (IMM) [Bar-Shalom, Kirubarajan and Li (2001)] algorithm is 
extensively used because of its low complexity and small tracking error. However, since 
IMM regards mode transition as a Markov process with a fixed probability, it is only used 
in certain types of stochastic hybrid systems. In recent years, a hybrid estimation 
algorithm called State-dependent-transition hybrid estimation (SDTHE) [Seah and 
Hwang (2009)] has been developed and applied in many aerospace fields [Lee, Lee and 
Hwang (2016); Lee, Lee and Hwang (2016)]. SDTHE algorithm is also based on IMM 
algorithm framework, but it uses the information of guard conditions related to 
continuous states in stochastic hybrid systems, which greatly reduces the error of mode 
estimation. Compared with IMM algorithm, SDTHE algorithm can be applied to much 
broader range of stochastic hybrid systems. However, the SDTHE algorithm does not 
take into account the constraints of the target dynamics, which leads to a large error in 
trajectory prediction. Hence, the algorithm still has limitations. 
Trajectory prediction based on hybrid estimation is only accurate in a short time, and 
prediction for long time will deviate from aircraft flight intent. Therefore, it is necessary 
to add intent inference to trajectory prediction. Trajectory prediction based on intent 
inference can be divided into two categories: one is based on the intent inference of pilot, 
which infers the operation of pilots according to different flight conditions of aircraft. It 
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uses discrete method in trajectory prediction [Rouse, Geddes and Curry (1987)]. The 
other is based on the position of aircraft where the real time position, heading and flight 
plan of the aircraft are obtained by ADS-B. This method can compute the possibility of 
aircraft going to different intent waypoints in real time, and then fly to the most likely 
intent waypoint. It uses a continuous research method. Since future UAS in low-altitude 
will operate autonomously without pilot, this paper adopts the second method based on 
intent inference. The typical method is Intent Inference Algorithms (IIA) [Krozel and 
Andrisani (2005, 2006)] proposed by Krozel. IIA can make correct intent inference based 
on aircraft dynamics, environmental information and flight plan. However, this method 
has a large time delay, and cannot get the real-time flight state and mode of aircraft. 
Moreover, the error of short-term trajectory prediction is very large. Hwang et al. use 
IMM algorithm and State-dependent-transition Hybrid Estimation (SDTHE) algorithm to 
predict trajectory based on intent inference. The proposed Intent Based Trajectory 
Prediction Based on IMM (IMM-IBTP) algorithm [Yepes, Hwang and Rotea (2007)] and 
Intent Based Trajectory Prediction Based on SDTHE (SDTHE-IBTP) algorithm [Hwang 
and Seah (2008)] combine the advantages of hybrid estimation algorithm which is more 
accurate in short-term prediction and IIA algorithm which has better performance in 
long-term prediction, and can get more accurate results. However, the along-track errors 
of these two algorithms increase gradually with time goes by, hence there is a large time 
delay in the long-term trajectory prediction. With the rapid increase of UAS in 
low-altitude airspace, it has become an important factor threatening the safety of 
low-altitude operation. However, few people have studied trajectory prediction method 
for UAS which is the basis of Sense and Avoid (SAA) technology in the presence of 
geofence. Compared with the manned aircraft, low-altitude UAS has smaller size and is 
flying autonomously, which requires higher accuracy for trajectory prediction. However, 
the accuracy of current trajectory prediction algorithm of manned aircraft cannot meet the 
requirements. 
The remainder of this paper is structured as follows: Section 2 constructs the intent 
inference method for low-altitude UAS and proposes the geofence layering algorithm; 
Section 3 proposes the Constrained State-dependent-transition Hybrid Estimation 
(CSDTHE) algorithm for trajectory prediction; Section 4 adds Rauch-Tung-Striebel (RTS) 
backward smooth to the proposed Intent Based Trajectory Prediction based on 
Constrained State-dependent-transition Hybrid Estimation (CSDTHE-IBTP) algorithm to 
construct Intent Based Trajectory Prediction and Smooth based on Constrained 
State-dependent-transition Hybrid Estimation (CSDTHE-IBTPS) algorithm. The 
simulation results are analyzed in Section 5 and conclusions are summarized in Section 6. 

2 Intent inference for UAS 
The existing methods of intent inference for aircraft only aim at manned aircraft. And the 
sources of information in intent inference for UAS and manned aircraft are different. 
Therefore, intent inference for UAS needs to use information of emerging geofence 
system. The sketch of CSDTHE-IBTP algorithm presented in this paper is shown in Fig. 
1. The algorithm utilizes the position, velocity and flight plan provided by ADS-B and 
the information of the airborne geofence system such as the type, location, tethering and 
permission of geofence. 
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Figure 1: The sketch of CSDTHE-IBTP 

The framework of CSDTHE-IBTP algorithm is: 
Step 1. The state of UAS is estimated by CSDTHE according to the information provided 
by ADS-B. 
Step 2. The intent of UAS is inferred by using ADS-B information, information of 
geofence system and results of hybrid estimation. 
Step 3. Trajectory prediction is carried out by using results of hybrid estimation and 
intent inference. 
We design several intent models in CSDTHE-IBTP algorithm which is divided into two 
categories: regulation intent and flight plan intent. Each intent includes information such as 
position, altitude and velocity. Examples of these two kinds of intents are shown in Tab. 1. 

Table 1: Examples of intent 

Regulation intent Flight plan intent 
Avoid other UAS 

Avoid keep-out geofence 
Boundary maintaining with 

keep-in geofence 

…
 

 

Go to planned waypoint 
Return to planned waypoint 

…
 

 

Each intent model lI  contains a series of waypoints, which are denoted by 
{ , 1,..., }l l l lW W W N+ + , where lW  is the first waypoint of intent model lI , and the total 
number of waypoints is 1lN + . As shown in Fig. 2, the planned trajectory of UAS needs 
to cross keep-out geofence, which conflicts with the keep-out geofence. In Fig. 2, 

le denotes the unit vector of the UAS's intent heading pointing to intent waypoint. The 
green boundary around the periphery of keep-out geofence is layered geofence. The 
planned waypoint is a red one, and revised waypoint is a yellow one. If the UAS only 
uses flight plan intent, then the resulting trajectory is shown in Fig. 2(a), that is, the UAS 
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flies directly to the planned waypoint. If the UAS adopts the regulation intent, the 
corresponding trajectory is shown in Fig. 2(b), that is, the UAS will first avoid keep-out 
geofence, and then returns to planned waypoint. This paper assumes that UAS will adopt 
uniform flight rules when avoiding the geofence, i.e., clockwise avoidance, which can 
avoid the head-on conflict of UAS flying in opposite directions when avoiding geofence 
simultaneously. The revised waypoints about avoiding keep-out geofence are set at the 
vertex of the layered geofence, and the revised waypoint about avoiding keep-in geofence 
is the projection point of the planned waypoint on the nearest boundary of layered 
geofence. Based on our previous research in Fu et al. [Fu, Liang, Zhang et al. (2019)], 
geofence layering algorithm is as follows where scaling distance bδ  is set as follows: 

0 for keep-out geofence
0 for keep-in geofence

b

b

δ
δ

>
 <

 

Keep-out 
geofence

1W

1 1W +

1e
Layered 
geofence

 

(a) 

Keep-out 
geofence

2 1W +

2 2W +

2e

2W

Layered 
geofence

 

(b) 

Figure 2: (a) Flying by flight plan intent only; (b) Flying by both flight plan intent and 
regulation intent 
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Figure 3: Geofence layering algorithm 

Step 1. We set scaling distance bδ , and get the geofence 
1 1 1 2 2( ,..., ) [( , ), ( , ),..., ( , )]n n ng p p x y x y x y= = , where ip  is the i th vertex of the geofence. 

Layered geofence 'g  initializes: 'g g= . 
Step 2. The slope of each edge of geofence is given by: 

1

1

i i
i

i i

y y
m

x x
+

+

−
=

−
 (1) 

Interception of each edge is given by: 
*i i i ib y x m= −  (2) 

And iθ  is the half-angle of interior angle, which is given by: 

1 1

1 1

1= arctan arctan
2

i i i i
i

i i i i

y y y y
x x x x

θ + −

+ −

 − −
− − − 

 (3) 

Step 3. In Fig. 3, the distance ih  along the angular bisectors between the new and old 
edges spacing bδ  after scaling is computed by: 

| |
sin

b
i

i

h
δ
θ

=  (4) 

Convert iθ  to 0 ~ 2π  and get: 

1

1

arctan i i
i i

i i

y y
x x

φ θ +

+

−
= +

−
 (5) 

Step 4. If 0bδ <  (scaling inward), then: 
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'

'

cos *

sin *
i i i i

i i i i

x h x

y h y

φ

φ

= +

= +
 (6) 

If 0bδ >  (scaling outward), then: 
'

'

cos *

sin *
i i i i

i i i i

x h x

y h y

φ

φ

= − +

= − +
 (7) 

Finally, the layered geofence is given by: ' ' ' ' ' ' ' '
1 1 1 2 2' ( ,..., ) [( , ), ( , )..., ( , )]n n ng p p x y x y x y= = . 

During the flight of UAS, the intent correlation for each intent is computed respectively. 
Then it flies to the intent waypoint with the maximum intent correlation. For time k , the 
intent correlation of intent lI  is defined as: 

1 2( , ) ( , ) ( , )l l lI k I k I kκ κΛ =  (8) 

where 1κ  is spatial intent correlation and 2κ  is temporal intent correlation. 
When UAS is in Constant Velocity (CV) or Constant Acceleration (CA) mode, intent 
correlation *

1κ  indicates the difference between unit vector ace  and le  of UAS. *
1κ  is 

defined as: 
* 2
1 1 s( , ) ( ( ) ( );0, )l l acI k N k kκ ψ ψ σ= −  (9) 

where lψ  is the angle of le ; acψ is the angle of unit vector ace  which denotes the 
current actual heading of UAS (see Fig. 4); sσ is the design parameter and is set 
as s 5degσ = . 

le

ace

lψ

acψ

lW

 

Figure 4: Definition of lψ  and acψ  

Because *
1κ  is relevant to UAS’s state, and state estimation has noise, there will be 

errors in *
1κ  at each moment. However, the intent inference of CV/CA mode needs to 

consider *
1κ  at each moment of linear dynamics in the past comprehensively, which may 

lead to wrong intent. Therefore, intent inference of CV/CA mode needs to reduce the 
influence of noise at the past moment on the basis of considering inferred intent at all 
times of the current linear phase. In this paper, fading memory filter is used to filter *

1κ  
to get the intent 1κ  of CV/CA mode, which is given by: 

0 0

0 0

*
1 1

1( , ) ( , ), = , 0 1
k k

k k k k
l l k

i k i kk

I k f I i f fκ κ γ
γ

− −

= =

= < <∑ ∑  (10) 
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where 0k  is the initial time of the current mode and f  is fading memory factor, which 
is used to reduce the influence of inferred intent in the past time on the current intent 
inference exponentially. 
When UAS is in Coordinated Turn (CT) mode, the spatial intent above can’t get correct 
intent because the actual heading of UAS is always changing. In order to correct the 
wrong intent in CT mode, the change rate of *

1κ  is used to make intent inference of UAS 
in CT mode, that is: 

* *
1 1 1( , ) ( , ) ( , 1)l l lI k I k I kκ κ κ= − −  (11) 

Therefore, the spatial intent correlation 1κ  of UAS is defined as: 

0

0

* *
1 1

1 *
1

( , ) ( , 1) if flight mode = CT 
( , ) 1 ( , ) if flight mode = CV or CA

l l
k

l k k
l

i kk

I k I k
I k

f I i

κ κ
κ

κ
γ

−

=

 − −
= 



∑  (12) 

 

Figure 5: Comparison of different temporal intent correlations 

If UAS arrives at different waypoints in different headings that vary greatly, then the 
spatial intent correlation of each intent model will have a great difference. In this scenario, 
the correct intent can be obtained. However, it is difficult to get the correct intent of UAS 
by using the spatial intent correlation only if the waypoints are approximately in a 
straight line. Therefore, this paper designs the temporal intent correlation 2κ : 

2
1 reg

2 2
1 fp

(TTG( );0, ) if  is regultion intent
( , )

(TTG( );0, ) if  is flight plan intent
l

l

I l
l

I l

N W I
I k

N W I

σ
κ

σ

= 


 (13) 

where TTG( )
lIW  is the time to arrive at lIW . As is known, UAS would choose the 

regulation intent when there are both regulation intent and flight plan intent at the same 
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time. This paper defines the safe time interval between UAS and geofence or other UAS 
as 8 seconds, which is used in Yang et al. [Yang, Yin and Shen (2017)], so we 
set reg 100 sσ =  and fp 3 sσ = . These two kinds of intent correlation is shown in Fig. 5, 
where fI  is the flight plan intent and rI  is the regulation intent. If TTG(W ) 8.0 s

lI > , 
then 2 2( ) ( )f rI Iκ κ< , that is, UAS prefers to choose the regulation intent, so as to ensure 
the safe time interval between UAS and geofence or other UAS; If TTG(W ) 8.0 s

lI < , then 
2 2( ) ( )f rI Iκ κ> , UAS flies strictly by flight plan. Furthermore, the waypoint closer to the 

UAS's current position will be assigned higher weight based on 2κ . 
Based on the principle of maximum intent correlation mentioned above, the inferred 
intent of UAS at time k th is as follows: 
ˆ( ) arg max ( , )

l
lI

I k I k= Λ  (14) 

3 Trajectory prediction for UAS 
The trajectory of UAS consists of a series of flight modes, including CV, CT and CA. Each 
flight mode has the characteristic of continuous state dynamics, and the mode transition 
between different flight modes depends on the continuous state of UAS. The dynamics of 
UAS can be regarded as a stochastic hybrid system, which has interactive continuous state 
and continuous-state- dependent modes. Since the dynamics of UAS is a linear system, we 
regard the UAS dynamic model as a stochastic linear hybrid system model. 

3.1 Dynamic model of UAS 
There exists a continuous state vector 1( ) [ ( ), ( )]T n

nk x k x k= ∈x R…, , discrete mode 
( ) {1,2, }q k Ω r∈ = …, , and measurement vector 1( ) [ ( ), ( )]T p

pk z k z k= ∈z R…, , where k  is 
discrete-time. For each mode ( )q k , the dynamical equation of continuous state and 
measurement equation of UAS are as follows: 

( ) ( ) ( )( 1) ( ) ( )q k q k q kk k k+ = +x A x B w  (15) 

( ) ( )( ) ( ) ( )q k q kk k k= +z H x v  (16) 

where ( )
n n

q k
×∈A R , ( )

n m
q k

×∈B R  and ( )
p n

q k
×∈H R  are system, input and measurement 

matrices, and ( ) ( )q k kw  and ( ) ( )q k kv  are the process and measurement noise modeled as 
zero-mean white Gaussian noises with covariance ( )q kQ  and ( )q kR . 
The mode transition is modeled as a continuous state-dependent-transition model. It is 
determined by a series of guard conditions ( , ) , 1, 2,G i j i j r=， …, , which can be expressed 
by a linear function as follows: 

, ,( , ) {[ ] | 0}T T T
x ij ijG i j L L= + ≤θx θ x θ  (17) 

where ,
l n

x ijL ×∈R  and ,
l s

ijL ×∈θ R  are constant matrices, and s∈θ R  is a random vector 
describing uncertainty of system. 
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In actual flight, the Flight Mode Change Point (FMCP) of UAS is not deterministic due 
to various uncertainties (such as wind, navigation errors and so on). According to the 
central limit theorem, θ  obeys Gaussian distribution ( ; )N Σθθ θ θ,  with expectation 
θ  and covariance Σθ . If [ ] ( , )T T T G i j∈x θ , the mode will change from ( )q k i=  to 

( )q k j= , that is, mode transition depends on the continuous state ( )kx . The stochastic 
hybrid system mentioned above just is a stochastic linear hybrid system. 
The trajectory of UAS contains a series of flight modes: 
CV mode: 

2

2

2

2

1 0 0 0
0 1 0 0( 1) ( )+ ( )
0 0 1 0 0
0 0 0 1 0

T

T

T
T

k k k
T

T

  
  
  + =   
  
    

x x w  (18) 

where T is sample time. 
CT mode: 

2

2

sin( ) (1 cos( ))
2

(1 cos( )) sin( )
2

1 0 0
0 1 0( 1) ( )+ ( )
0 0 cos( ) sin( ) 0
0 0 sin( ) cos( ) 0

TT T

T T T
k k k

T T T
T T T

ω ω
ω ω
ω ω

ω ω

ω ω
ω ω

− −

−

  
  
  + =   −   
     

x x w  (19) 

where ω is turning rate of UAS, which denotes left turn when it’s positive and denotes 
right turn when it’s negative. 
CA mode: 

2 2

2 2

2 2

2 2

1 0 0 0 0
0 1 0 0 0( 1) ( )+ ( ) ( )
0 0 1 0 0 0
0 0 0 1 0 0

T T

T T

T
T

k k k k
T T

T T

    
    
    + = +    
    
        

x x u w  (20) 

where ( )=[ , ]Tk a aξ ηu  is acceleration of UAS. 
Assuming that the position of UAS can be obtained by monitoring system (such as radar, 
GPS, etc.), the measurement vector is as follows: 

0 0 01( ) ( ) ( )
0 0 01

k k k 
= + 
 

z x v  (21) 

3.2 Continuous state dependent transition 
In this paper, a general architecture of mode transition model for the flight of UAS is 
proposed. As shown in Fig. 6, the transition from mode i  to mode j  is denoted as ijC . 
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Figure 6: Flight mode transition 

3.2.1 Relevant transition of CT mode 
It corresponds to the mode transition from CV to CT when UAS starts to turn. Left-turn 
and right-turn are similar in terms of relevant guard conditions. Therefore, this paper 
takes left-turn as an example to describe the relevant conditions and parameter settings of 
relevant transition of CT mode. For each FMCP, the parameters used to define the guard 
conditions are shown in Fig. 7. ia  denotes the unit vector for heading of linear 
dynamics of UAS. sd  is the distance between the projection point of UAS’s current 
position on the planned trajectory and waypoint lW . *

1d  and *
2d  are random variables 

defining the distance between the UAS’s starting turning position and ending turning 
position and waypoint lW  which are modeled as Gauss distribution with mean and 
covariance and are determined by the dimension of geofence and turning trajectory. 
Because of the uncertainties of UAS’s navigation, the actual position of UAS at the 
beginning and end of the turn can only be determined randomly by the model. 

Wl r r( , )ξ η

*
2d

*
1d

1a

2a

sd

12FMCP

21FMCP

2ê

1̂e

 

Figure 7: Mode transition (left turn) 
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sd  is defined as follow: 

r

r

( )
( )

T
s id

ξ ξ
η η
− 

=  − 
a  (22) 

where ξ  and η  are Cartesian coordinates of UAS; rξ  and rη  are coordinates of 
waypoint lW . If *

s id d≤ , the UAS begins to turn. Therefore, *
s id d≤  is the transition 

condition, and its equivalent condition is given by: 
0i iL L+ ≤θx θ  (23) 

where [ ]Tξ η ξ ηx = 

  is continuous state of UAS, [ 0 0]T
i iL = a , = 1L −θ  and 

*
r r[ ]T T

i i id ξ η= +θ a . The corresponding mode transition probability under the transition 
condition is ( ( ); , )

il i iL kΦ Σθx θ , and the mean and covariance of iθ  are iθ  and i
Σθ , 

respectively. ( ( ); , )
il i iL kΦ Σθx θ  is a l-dimensional Gauss cumulative distribution 

function defined as ( , ) ( 0)l pµΦ Σ ≡ ≤y . On the contrary, the mode transition probability 
of *( )s id d¬ ≤  is 1 ( ( ); , )

il i iL k−Φ Σθx θ . If the UAS is in the middle of the turn where sd  
reaches the minimum, i  plus one, then the transition condition is changed to the one 
leaving the area. Guard conditions for turning are shown in Tab. 2. Moreover, the guard 
conditions for turning right are the same as for turning left. 

Table 2: Guard conditions for turning at FMCPij 

At the beginning of turn At the end of turn 

11 21 31 12C C C C= = = ¬  

12 22 32 1 1 0C C C L L= = = + ≤θx θ  

13 23 33C C C= = = ∅  
= 1L −θ  

*
1 1 1 r r= [ ]T Td ξ η+θ a  

12 22 32 11C C C C= = = ¬  

11 21 31 2 2 0C C C L L= = = + ≤θx θ  

13 23 33C C C= = = ∅  
= 1L −θ  

*
2 2 2 r r= [ ]T Td ξ η+θ a  

3.2.2 Relevant transition of CA mode 
Relevant mode transition about CA involves both CV mode and CA mode, and UAS also 
performs mode transition near FMCP. For each FMCP, the parameters used to define the 
guard conditions are shown in Fig. 8, and relevant guard conditions is shown in Tab. 3. 
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Figure 8: Mode transition from CV mode to CA mode 

Table 3: Guard conditions for CA mode at FMCPij 

Mode transition about CA mode 

13 23 33 13C C C C= = = ¬  

13 23 33 0C C C L L= = = + ≤x θx θ  

12 22 32C C C= = = ∅  
= 1L −θ  

*
1 1 r= [ ]T T

rd ξ η+θ a  

3.3 Constraint model for UAS 
The dynamics of UAS has the fixed flight mode, so we can add equality constraints to the 
dynamic model of UAS. Because the velocity constraint has faster detection times and 
fewer false alarms [Mann (2011)], it’s used to replace the position constraint in order to 
ensure the flexibility of the model. Equality constraints are defined as: 

( ) ( )( ) ( )q k q kD k kβ=x  (24) 

where ( ) ( )q kD k  is a given matrix, and ( ) ( )q k kβ  is usually a constant of zero or near zero. 
Equality constraints can take two different forms by different flight modes of UAS. When 
UAS is traveling in a straight line, velocity can be constrained to be orthogonal to the unit 
vector ib  which is perpendicular to the straight line, that is, to constrain the UAS’s 
velocity to always point to the current intent waypoint. Explicitly, 
[0 0 ] ( ) 0T

i k =b x  (25) 
The other form of constraint is the equality constraint in the CT mode. The turning 
trajectory model in CT mode is an arc which is tangent to both the former and the latter 
straight line segment, as shown in Fig. 9. The corresponding velocity constraint is to keep 
the UAS’s velocity tangent to the arc, that is, the UAS’s velocity is always orthogonal to 
the gradient of the arc. The circle where the arc is located is: 
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2 2 2
c c( ) ( )j jh Rξ ξ η η= − + − =  (26) 

and the gradient of the arc is: 

c c[2( ) 2( )]jh ξ ξ η η∇ = − −  (27) 
then the equality constraint is given by: 
[0 0 ] ( ) 0T

jh k∇ =x  (28) 

1 1( , )ξ η

R

2 2( , )ξ η

1b

2b

( , )c cξ η The former line

The latter line

r( , )l rW ξ η

ϕ

1a

2a

 

Figure 9: Arc between the former and the latter straight line segment 

In Fig. 9, the turning circle is tangent to both the former and the latter straight lines. The 
radius R  of the turning circle is given and relevant to the flight performance of the 
UAS. Then: 

1 1 r 1 r

2 2 r 2 r

1 1 r 1 1 r

2 2 r 2 2 r

[( ) ( )] sin

[( ) ( )] sin
( ) ( ) 0
( ) ( ) 0

T T

T T

R
R

a a
a a

η ξ

η ξ

ξ ξ η η ϕ

ξ ξ η η ϕ
ξ ξ η η

ξ ξ η η

 − − =


− − =
 − − − =
 − − − =

a
a

 (29) 

where 1 1( , )ξ η  is tangent point between the former straight line and the circle, and 
2 2( , )ξ η  is tangent point between the latter straight line and the circle, and ϕ  is the 

half-angle between the former line and latter straight line. 1a ξ  and 1a η  are the two 
components of 1a  on two coordinate axes. 2a ξ  and 2a η  are the two components of 

2a  on two coordinate axes. By formula (29), the beginning point 1 1( , )ξ η  entering CT 
mode and end point 2 2( , )ξ η  exiting CT mode of UAS can be determined. 
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3.4 Constrained state-dependent-transition hybrid estimation 
In this paper, CSDTHE algorithm for constrained stochastic linear hybrid system is 
proposed. The algorithm includes a series of constrained Kalman filters (CKF) [Simon 
and Chia (2000)], each of which corresponds to the continuous state of UAS and has state 
constraints in each mode. 1 { (1), (2),..., ( )}k k≡Z z z z  denotes the set of measurements up to 
time k , and mode probability ( )im k  is defined as the probability that UAS will be in 
mode i  when the state is ( )kz  at time k . We suppose the probability of the mode i  
at time 1k −  is given as: 

1
1( 1) ( ( 1) | ), 1, 2,...,i km k p q k i i r−− ≡ − = =Z  (30) 

Then we get the Gauss distribution of probability distribution function of continuous state 
as follows: 

1
1 ˆ( ( 1) | ( 1) , ) ( ( 1); ( 1), ( 1))k i ip k q k i N k k k−− − = = − − −x Z x x P  (31) 

where ˆ ( 1)i k −x  and ( 1)i k −P are the mean and covariance of state vector ( 1)k −x  
predicted by the i th CKF at time 1k −  respectively. Afterwards, ( )im k  and 

1( ( ) | ( ) , )kp k q k i=x Z  can be computed by ( )kz . The flow chart of CSDTHE is shown in 
Fig. 10. 
1) Mixing 
Firstly, we compute the mixing mode probability as: 

| 1
1

1 1
1 1

1
1

1

( ) ( ( 1) | ( ) , )

( ( ) | ( 1) , ) ( ( 1) | )
( ( ) | )

( 1) ( 1)

( 1) ( 1)

i j k

k k

k

i
ij

r
l

lj
l

m k p q k i q k j
p q k j q k i p q k i

p q k j
k m k

k m k

π

π

−

− −

−

=

= − = =

= − = − =
=

=

− −
=

− −∑

Z
Z Z

Z
 (32) 

where 1
1( 1) : ( ( ) | ( 1) , )k

ij k p q k j q k iπ −− = = − = Z  is mode transition probability, which is 
computed as: 

1 1
1 1

,

, , ,

( 1) : ( ( ) | ( 1) , ( 1) , ) ( ( 1) | ( 1) , )

ˆˆ( , ) ( ; ( 1), ( 1))

ˆ( ( 1) , ( 1) )

n

n

k k
ij R

T i i
l ij ij ij ijR

i T i T
l ij ij ij ij ij ij

k p q k j q k i k p k q k i d

L L L L N k k d

L k L L L L k L

π − −− = = − = − = × − = − =

= Φ Σ − −

= Φ − Σ + −

∫
∫ x θ, θ, θ θ,

x θ, θ, θ θ, x x

x x Z x x Z x

x + θ x x P x

x + θ P

 (33) 

Using the mixing probability, the initial conditions of the CKF matching mode j  are 
obtained as follows: 
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Figure 10: Flow chart of CSDTHE 
0 |

1

0 | 0 0

1

ˆ ˆ( 1) ( ) ( 1)

ˆ ˆ ˆ ˆ( 1) ( ){ ( 1) [ ( 1) ( 1)][ ( 1) ( 1)] }

r
j i j i

i
r

j i j i i j i j T

i

k m k k

k m k k k k k k

=

=

− = −

− = − + − − − − − −

∑

∑

x x

P P x x x x
 (34) 

2) Mode-conditioned Estimation (CKF) 
The state constraints of UAS need to be included in trajectory prediction algorithm, so this 
paper uses CKF to incorporate the state constraints of UAS by constraining the prior 
distribution of traditional Kalman filter. For mode j , the prediction equations are as follows: 

0

0

ˆ ˆ( | 1) ( 1)

( | 1) ( 1)

j j
j

j j T T
j j j j j

k k k

k k k

− = −

− = − +

x A x

P A P A B Q B
 (35) 

For ( )kz , prior mean and covariance can update as follows: 

ˆ ˆ ˆ( ) ( | 1)+ ( )( ( ) ( | 1))

( ) ( ( ) ) ( | 1)

j j j
j

j j
j

k k k k k k k

k k k k

= − − −

= − −I

x x K z H x

P K H P
 (36) 

where 
1( ) ( | 1) ( ( | 1) )j T j T

j j j jk k k k k −= − − +K P H H P H R  (37) 
In this paper, constraints are imposed by projecting unconstrained state estimation onto 
the constraint surface. The state constraints of UAS are equality constraints, which are 
equivalent to solving the following minimum problems: 
ˆ ˆ ˆ( ) arg min{[ ( )] [ ( )] : }j j T j

c j jk k k β= − − =
x

x x x W x x D x  (38) 
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where W  is a positive definite weighting matrix. The constrained optimization problem 
can be solved by Lagrange multiplier method. The cost function is defined as: 

ˆ ˆ( ) [ ( )] [ ( )] 2 ( )j T j T
j jk k βΨ = − − + −x x x W x x λ D x  (39) 

where λ  is a Lagrange multiplier vector. We take the partial derivative and set it to zero 
to get: 

ˆ2[ ( )] 2 0

0

j T T
j

j j

k λ

β

∂Ψ
= − + =

∂
∂Ψ

= − =
∂

x x W D
x

D x
λ

 (40) 

After rearranging, we can get: 
ˆ ˆ ˆ( ) ( ) ( ( ) )j j j

c j j jk k k β= − −x x J D x  (41) 

where jJ  is defined as: 
1 1 1( )T T

j j j j
− − −≡J W D D W D  (42) 

The corresponding prior covariance is as follows： 
( ) ( )( ( ) ( ) )( )j j T j T T

c j j j j j j j jk k k= − + −P I J D A P A B Q B I J D  (43) 
3) Mode probability update 
Mode probability which is updated by Bayes rule is given by: 

1

1 1
1 1

( ) ( ( ) | )
1 ( ( ) | ( ) , ) ( ( ) | )

j k

k k

m k p q k j

p k q k j p q k j
c

− −

= =

= = =

Z

z Z Z
 (44) 

where c  is a normalization constant. Mode- conditioned likelihood function is given by: 
1

1 ˆ( ( ) | ( ) , ) ( ( ) ( | 1);0, ( ))k j j
jp k q k j N k k k k−= = − −z Z z H x S  (45) 

where 
( ) ( ) ( | 1) ( )j j j j T jk k k k k= − +S H P H R  (46) 

Prior mode probability is given by: 
1

1
1

( ( ) | ) ( 1) ( 1)
r

k i
ij

i
p q k j k m kπ−

=

= = − −∑Z  (47) 

4) Output 
Applying mode-conditioned estimation ˆ ( )j

c kx , corresponding covariance ( )j
c kP  and 

mode probability ( )jm k , we can get continuous state estimation ˆ ( )kx  and covariance 
( )kP  which are given by: 

1

1

ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) { ( )+[ ( ) ( )][ ( ) ( )] } ( )

r
j j

c
j

r
j j j T j

c c c
j

k k m k

k k k k k k m k

=

=

=

= − −

∑

∑

x x

P P x x x x
 (48) 
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5) Iterative Computation 
Repeat Steps 1-4 to propagate state estimation to the future and we can get predicted 
trajectory. 

4 Smoothing for predicted trajectory 
The CSDTHE-IBTP algorithm enables the predicted trajectory to follow the trajectory 
determined by the waypoints and achieve a better mode matching, which can reduce the 
cross-track error of trajectory prediction. In order to reduce the cross-track error of 
trajectory prediction, a smoothing algorithm for predicted trajectory is proposed in this 
paper. At the initial time of trajectory prediction, the waypoint iW  would be allocated a 
control arrival time (CTA) it . Once the predicting time t  reaches it , a pseudo- 
measurement it

z  is generated to correct predicted trajectory. The measurement model is 
given by: 

2 2[ ]
i i it t tx y x y= + +z v    (49) 

Initialization for CSDTHE-IBTP

Determine intent 
waypoint Wi

t = ti   ?

CSDTHE-RTS smoothing

Trajectory prediction using 
CSDTHE-IBTP

t=t+1

?t N≤

Finish prediction

Initial state for prediction

No

Yes

No
i=i+1

One-step prediction using 
pseudo-measurement

it
z

Yes

 

Figure 11: Flow chart of CSDTHE-IBTPS 
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where it
z  is determined by the position and expected velocity of waypoint iW , and it

v  
is additive noise which is modeled as Gauss distribution with zero-mean and covariance 

it
R . 

it
R  determines the confidence of waypoint information, that is how confident UAS 

will fulfill its intent. Explicitly, the smaller 
it

R  is, the more confident it will be. One-step 
prediction can be made to obtain the predicted trajectory at time it  based on 
pseudo-measurement. Since the pseudo-measurement model is nonlinear, it is necessary to 
replace CKF in CSDTHE algorithm with UKF [Julier and Uhlmann (2004)] in one-step 
prediction. 
The flow chart of CSDTHE-IBTPS algorithm is shown in Fig. 11, and the total prediction 
time is NT . The flow of CSDTHE-IBTPS algorithm is as follows: 
Step 1. Intent inference is performed according to the initial state of UAS at the beginning 
of trajectory prediction, and intent waypoint iW  is determined. 

Step 2. It judges whether the predicting time t  is equal to CTA it . If it is equal, skip to 
Step 3, otherwise, skip to Step 4. 
Step 3. The pseudo-measurements it

z  are generated and UKF is used to make one-step 
prediction. Then the CSDTHE-RTS algorithm based on CSDTHE algorithm is used to 
smooth the predicted trajectory from 1it −  to it . Then 1i i= +  and it determines the next 
intent waypoint iW  and returns to Step 2. 
Step 4. The CSDTHE-IBTP algorithm is used to predict one-step trajectory based on 
results of hybrid estimation and intent inference. 
Step 5. The predicting time t  is added a time step T  to determine whether the 
prediction time t  is larger than NT . If it is larger than NT , the CSDTHE-IBTPS 
algorithm terminates, otherwise, returns to Step 2. 
In this paper, RTS backward smoothing is added to CSDTHE algorithm proposed above, 
and then CSDTHE-RTS algorithm is constructed. CSDTHE-RTS algorithm can smooth 
the predicted trajectory according to the reverse recursive computation of the former n  
step prediction results. It’s simpler and more rigorous than the one proposed in Nadarajah 
et al. [Nadarajah, Tharmarasa, Mcdonald, et al. (2012)]. One cycle of CSDTHE-RTS 
algorithm is as follows: 
1) Smoothed mode probability 
Posterior backward mode transition probability is given by: 

1,
1

1

1 1

1 1

ˆ { ( ) | ( 1), }

{ ( ) | ( 1), }

{ ( 1) | ( ), } { ( ) | }
{ ( 1) | ( ), } { ( ) | }

( ) ( | )
( ) ( | )

k k j i n
ij

j i k

i j k j k

i j k j k
j

j
ji

j
jij

p m k m k

p m k m k
p m k m k p m k

p m k m k p m k

k m k k
k m k k

π

π
π

+ +

= +

+
=

+

=

∑

∑

Z

Z
Z Z

Z Z



 (50) 
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where the first equation uses hypothesis in Nadarajah et al. [Nadarajah, Tharmarasa, 
Mcdonald et al. (2012)], that is, ( )jm k  is independent of the all measurement 1

n
k+Z  in 

future when ( 1)jm k +  is given. The fourth equation uses of the hypothesis by analogy 
with IMM algorithm, that is 1{ ( 1) | ( ), } ( )i j k

jip m k m k kπ+ =Z . Mode transition probability 
( )ji kπ  can be computed as follows: 

1 1
1 1

,

, , ,

( ) : ( ( ) | ( 1) , ( 1) , ) ( ( 1) | ( 1) , )

ˆˆ( , ) ( ; ( 1 | ), ( 1 | ))

ˆˆ( ( 1 | ) , ( 1 | ) )

n

n

k k
ij R

T i i
l ij ij ij ijR

i T i T
l ij ij ij ij ij ij

k p q k j q k i k p k q k i d

L L L L N k n k n d

L k n L L L L k n L

π + += = + = + = × + = + =

= Φ Σ + +

= Φ + Σ + +

∫
∫ x θ, θ, θ θ,

x θ, θ, θ θ, x x

x x Z x x Z x

x + θ x x P x

x + θ P

 (51) 

Smoothed mode probability ( | )jm k n  is given by: 

1 1

1,

( | ) { ( ) | ( 1), } { ( 1) | }

ˆ ( 1 | )

j j i n i n

i
k k i
ij

i

m k n p m k m k p m k

m k nπ +

= + +

= +

∑

∑

Z Z
 (52) 

where 1( 1 | ) [ ( 1) | ]i i nm k n E m k+ + Z  can be obtained by the previous circle. 
2) Smoothed mode-conditioned estimation 
Posterior forward mode transition probability is given by: 

, 1
1

1 1

1 1

1,

1,

ˆ { ( 1) | ( ), }

{ ( ) | ( 1), } { ( 1) | }
{ ( ) | ( 1), } { ( 1) | }

ˆ ( 1 | )
ˆ ( 1 | )

k k i j n
ij

j i n i n

j i n i n
i
k k i
ij

k k i
iji

p m k m k

p m k m k p m k
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π
π

+

+

+

+

+ +
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+ +

+
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+

∑

∑

Z

Z Z
Z Z



 (53) 

Mode conditional smoothing: 

1

1 1

| , 1

ˆ ( | ) [ ( ) | ( ), ]

[ ( ) | ( ), ( 1), ] | ( ),

ˆ ˆ( | )

j j n

j i n j n

j i k k
ji

i

k n E k m k

E E k m k m k m k

k n π +

 = + 
= ∑

x x Z

x Z Z

x



 (54) 

, 1 | | |ˆ ˆ ˆ ˆ( | ) [ ( | ) ( ( | ) ( | ))( ( | ) ( | )) ]j k k j i j i j j i j T
ji

i
k n k n k n k n k n k nπ += + − −∑P P x x x x  (55) 

where |
1ˆ ( | ) [ ( ) | ( ), ( 1), ]j i j i nk n E k m k m k +x x Z . 

For simplicity, some approximations is made as follows: 
1

1

ˆ( ( 1) | ( 1), ) ( ( 1); ( 1 | ), ( 1 | ))
ˆ( ( ) | ( ), ) ( ( ); ( | ), ( | ))

i n i i

i k i i

f k m k N k k n k n
f k m k N k k k k k

+ + ≈ + + +

≈

x Z x x P
x Z x x P

 (56) 

|ˆ ( | )j i k nx can be obtained by Kalman backward smooth which is given by: 
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| |

| |

| 1

ˆ ˆ ˆ ˆ( | ) ( | ) ( )( ( 1 | ) ( 1 | ))
( | ) ( | ) ( )( ( 1 | ) ( 1 | ))( ( ))
( ) ( | )( ( )) ( ( 1 | ))

j i j j i i j

j i j j i i j j T

j j i T i j

k n k k k k n k k
k n k k k k n k k k
k k k k k k −

= + + − +

= + + − +

= +

x x Κ x x
P P Κ P P Κ
Κ P A P

 (57) 

where |
1ˆ ( 1 | ) [ ( 1) | ( ), ( 1), ]i j j i kk k E k m k m k+ + +x x Z  and | ( 1 | )i j k k+P  is error covariance 

matrix. 
3) Smoothed overall estimation 
ˆ ˆ( | ) ( | ) ( | )

ˆ ˆ ˆ ˆ( | ) ( | )[ ( | ) ( ( | ) ( | ))( ( | ) ( | )) ]

i i

i
i i i i T

i

k n m k n k n

k n m k n k n k n k n k n k n

=

= + − −

∑

∑

x x

P P x x x x
 (58) 

5 Simulation 
In the simulation, there are both regulation intent and flight plan intent. Regulation intent 
has two categories: avoiding keep-out geofence and avoiding keep-in geofence. It is 
assumed that UAS can acquire measurements and flight plan (planned waypoints) 
through ADS-B system during flight, and location of the geofence can be obtained 
through the airborne geofence system. The scaling distance bδ  of geofence is set as 

30 m± , and predicting time step is  0.5 sT = . Total time of simulation is  222 sNT = , 
and default velocity and turning rate of UAS is 10 m/s  and 0.04π rad/s , respectively. The 
process noise covariance ( CVQ  and CTQ ), measurement noise covariance R  and initial 
state ( 0x and 0P ) of each mode are set as follows: 

2 2

CV CT2 2

0.003 0 0.001 0
0 0.003 0 0.001

   
= =   
   

Q Q， ,
2

2

3 0
0 3

 
=  
 

R ，

2 2 2([5 5 0.1 ])
it

diag=R , [ ]0 440 440 7 7= − −x , ( )2 2 2 2diag 1 1 0.01 0.010  =  P  

In Fig. 12(a), it’s the trajectory prediction result of SDTHE-IBTP algorithm proposed in 
Hwang et al. [Hwang and Seah (2008)]. It can be seen that SDTHE-IBTP algorithm can 
get the revised waypoints according to regulation intent. The predicted trajectory can 
avoid keep-out geofence and keep-in geofence. Obviously, there is a notable error in the 
prediction results of the SDTHE-IBTP algorithm without constraints. In Fig. 12(b), it’s 
the trajectory prediction result of CSDTHE-IBTP algorithm. Compared with 
SDTHE-IBTP algorithm, the predicted trajectory of CSDTHE-IBTP algorithm with 
equality constraints is smoother, which effectively reduces the cross-track error of the 
predicted trajectory. However, it is obvious that the predicted trajectory of 
CSDTHE-IBTP algorithm still has a large time delay. Fig. 12(c) is the prediction result of 
CSDTHE-IBTPS algorithm. It can be seen that the cross-track error of CSDTHE-IBTPS 
algorithm is approximately equivalent to CSDTHE-IBTPS algorithm. However, due to 
the smoothing based on pseudo- measurements, the time delay of trajectory prediction is 
greatly reduced. 
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(a) 

 

(b) 
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(c) 

Figure 12: (a) Trajectory prediction of SDTHE-IBTP; (b) Trajectory prediction of 
CSDTHE-IBTP; (c) Trajectory prediction of CSDTHE-IBTPS 

The intent inference results of CSDTHE-IBTP algorithm and CSDTHE-IBTPS algorithm 
in trajectory prediction in Fig. 12 are shown in Fig. 13. In the prediction of 
CSDTHE-IBTP algorithm at first waypoint, intent inference has a delay of 6 seconds 
compared with real intent. And the longer the prediction time is, the longer the time delay 
between intent inference and real intent is, and the time delay has reached 40 s in the 
third waypoint prediction. CSDTHE-IBTPS algorithm has the same delay as 
CSDTHE-IBTPS algorithm in the prediction at first waypoint because there is no 
correction of pseudo-measurement. In the prediction of next two waypoints, the delay of 
intent inference is reduced because of the correction of the pseudo-measurements 
provided by the waypoints and smoothing of CSDTHE-RTS. At the third waypoint, the 
delay is only 2 s. It can be seen that the CSDTHE-IBTPS algorithm eliminates the 
disadvantage of the CSDTHE-IBTP algorithm that the time delay of intent inference 
increases with prediction time. 
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Figure 13: Comparison of inferred intent between CSDTHE-IBTP and CSDTHE-IBTPS 

In this paper, the SDTHE-IBTP, CSDTHE-IBTP and CSDTHE-IBTPS algorithm are 
used to simulate the scenarios in Fig. 12 100 times by Monte Carlo simulations, and the 
Root Mean Square Error (RMSE) of cross-track and the RMSE of along-track are 
computed, respectively, as shown in Fig. 14. As can be seen from Fig. 14(a), the 
cross-track RMSE of SDTHE-IBTP algorithm is larger than that of CSDTHE-IBTP 
algorithm and CSDTHE-IBTPS algorithm. The cross-track RMSE of CSDTHE-IBTP 
algorithm is effectively reduced compared with SDTHE-IBTP algorithm because of the 
equality constraints on velocity in trajectory prediction. For different modes, the 
cross-track RMSE of CV/CA mode is smaller (see 72 s-128 s, 140 s-195 s and 200 s-222 
s). Because the velocity is constrained to the direction of the intent waypoint, the 
cross-track RMSE decreases continuously. Fig. 14(a) also shows that the RMSE of the 
cross-track of CT mode is dependent on the turning angle. For the same CT mode, the 
RMSE of the cross-track increases with the increase of the turning angle; for different CT 
modes, the larger the turning angle of the whole process is, the larger the maximum value 
of the RMSE of the cross-track is. Because CSDTHE-RTS algorithm is used for 
smoothing, the maximum value of cross-track RMSE of CSDTHE-IBTPS algorithm in 
CT mode is lower than that of CSDTHE-IBTP algorithm, and the cross-track RMSE in 
CV/CA mode is approximately unchanged. 
In Fig. 14(b), it shows that the performance of CSDTHE-IBTP algorithm is not 
significantly improved compared with SDTHE-IBTP algorithm in terms of along-track 
RMSE Because of the application of pseudo-measurements at each waypoint, the 
CSDTHE-IBTPS algorithm eliminates the time-cumulative characteristics of along-track 
RMSE in the CSDTHE-IBTP algorithm in trajectory prediction after the first waypoint. 
That is, the along-track RMSE predicted by CSDTHE-IBTPS algorithm will not increase 
with time, as shown in Fig. 14(b). But before reaching the first waypoint, the RMSE of 
the two algorithms are basically the same because the information of the waypoints is not 
used. To sum up, it is not difficult to find that the performance of CSDTHE-IBTP 
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algorithm is basically the same as CSDTHE-IBTPS algorithm when the number of 
predicted waypoints is 1. When the number of predicted waypoints is larger than 1, the 
accuracy of trajectory prediction of CSDTHE-IBTPS algorithm is greatly improved 
compared with CSDTHE-IBTP algorithm. 

 

（a）Cross-track RMSE 

 

（b）Along-track RMSE 
Figure 14: Comparison of RMSE of different algorithms 
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6 Conclusions 
In this paper, the problem of trajectory prediction for low-altitude UAS is studied. Due to 
the rapid increase of low-altitude UAS, requirements for higher accuracy of trajectory 
prediction of low-altitude UAS are put forward, and the characteristics of confined airspace 
caused by the emergence of geofence make the existing trajectory prediction algorithms 
difficult to meet the trajectory prediction requirements of low-altitude UAS. To solve this 
problem, this paper proposes a CSDTHE-IBTPS algorithm with higher accuracy. 
CSDTHE-IBTPS algorithm can reduce the along-track RMSE and cross-track RMSE by 
combining the spatial and temporal information of UAS’s intent the algorithm consists of 
two parts: 1) CSDTHE prediction based on intent inference. In the CSDTHE algorithm, 
the continuous state-dependent-transition model is adopted. The parameters of mode 
transition are defined by using FMCP points, and the conditions of mode transition are 
designed. Equality constraint is imposed on the velocity of UAS in two stages: straight 
line and turning stage phase. Using information of ADS-B and emerging geofence system, 
the intent inference is carried out, and a geofence layering algorithm is proposed, so that 
the predicted trajectory of UAS is consistent with the intent. 2) CSDTHE-RTS smoothing 
for predicted trajectory. At the CTA of the intent waypoint, the algorithm generates 
pseudo-measurement based on the information of the waypoint and uses the proposed 
CSDTHE-RTS algorithm to smooth the predicted trajectory. The simulation results show 
that the algorithm can eliminate the time-cumulative effect of along-track RMSE in 
trajectory prediction. It improves the accuracy of trajectory prediction and the real-time 
of intent inference greatly compared with the existing algorithms. Furthermore, the 
proposed algorithm can provide theoretical reference for UTM system. 
The future research of trajectory prediction for low-altitude UAS can focus on the 
dynamic geofence of which the location is time-varying, so that the information of 
geofence in the trajectory prediction algorithm is more correspond to the actual 
low-altitude environment.  
 
Data availability: The results.mat data used to support the findings of this study are 
available from the corresponding author upon request. 
 
Conflicts of Interest: The authors declare that there is no conflict of interest regarding 
the publication of this paper. 
 
Acknowledgment: This work was financially supported by the Major Program of 
National Natural Science Foundation of China; the National Natural Science Foundation 
of China [Grant No. 61703427]. 

References 

ArduPilot (2019): Mission planner configuration and tuning.  
http://ardupilot.org/planner/docs/mission-planner-configuration-and-tuning.html?highligh
t=geofence 



Intent Inference Based Trajectory Prediction and Smooth for UAS               443 

Aweiss, A. S.; Owens, B. D.; Rios, J. L.; Homola, J. R.; Mohlenbrink, C. P. (2018): 
Unmanned aircraft systems (UAS) traffic management (UTM) national campaign Ⅱ. 
Proceedings of the 2018 AIAA Information System, pp. 1-16. 
Bar-Shalom, Y.; Kirubarajan, T.; Li, X. R. (2001): Estimation with applications to 
tracking and navigation. Wiley, pp. 476-477. 
Cho, J. W.; Yoon, Y. J. (2018): How to assess the capacity of urban airspace: a 
topological approach using keep-in and keep-out geofence. Transportation Research Part 
C- Emerging Technologies, vol. 92, no. 1, pp. 137-149. 
Dill, E. T.; Russell, V. G.; Young, S. S. (2018): Safeguard: flight test results of an 
on-board system designed to assure conformance to geospatial limitations. Proceedings 
of 2018 Digital Avionics Systems Conference. 
Dill, E. T.; Young, S. D.; Hayhurst, K. J. (2016): SAFEGUARD: an assured safety net 
technology for UAS. Proceedings of 2016 the Digital Avionics Systems Conference. 
DJI (2019): Limited flight zone query. https://www.dji.com/cn/flysafe/geo-map. 
Fu, Q. X.; Liang, X. L.; Zhang, J. Q.; He, L. L.; Zhou, W. Y. (2019): Design and 
implementation of autonomous flight unmanned aircraft system geo-fence algorithm. 
Journal of Xi’an Jiaotong University, vol. 53, no. 5, pp. 167-175. 
Hwang, I.; Seah, C. (2008): Intent based probabilistic conflict detection for the next 
generation air transportation system. Proceedings of the IEEE, vol. 96, no. 12, pp. 
2040-2059. 
Julier, S. J.; Uhlmann, J. K. (2004): Unscented filtering and nonlinear estimation. 
Proceedings of the IEEE, vol. 92, no. 3, pp. 401-422. 
Kopardekar, P.; Rios, J.; Prevot, T.; Johnson, M.; Jung, J. et al. (2016): Unmanned 
aircraft system traffic management (UTM) concept of operations. Proceedings of the 16th 
AIAA Aviation Technology, Integration, and Operations Conference, pp. 1-16. 
Krozel, J.; Andrisani, D. (2005): Intent inference and strategic path prediction. 
Proceedings of the AIAA Guidance, Navigation, and Control Conference. 
Krozel, J.; Andrisani, D. (2006): Intent inference with path prediction. AIAA Journal of 
Guidance, Control and Dynamics, vol. 29, no. 2, pp. 225-236. 
Kuchar, J.; Yang, L. (2000): A review of conflict detection and resolution modeling 
methods. IEEE Transactions on Intelligent Transportation Systems, vol. 1, no. 4, pp. 
178-189. 
Lee, J.; Lee, S.; Hwang, I. (2016): Hybrid system modeling and estimation for estimated 
time of arrival prediction in terminal airspace. AIAA Journal of Guidance, Control and 
Dynamics, vol. 39, no. 4, pp. 903-910. 
Lee, S.; Lee, J.; Hwang, I. (2016): Maneuvering spacecraft tracking via state-dependent 
adaptive estimation. AIAA Journal of Guidance, Control and Dynamics, vol. 39, no. 9, pp. 
2034-2043. 
Mann, G. W. (2011): Aircraft Taxiway Conformance Monitoring with Constrained 
Stochastic Linear Hybrid Systems (Ph.D. Thesis), Department of Aeronautics and 
Astronautics, Purdue University. West Lafayette, IN. 

https://www.dji.com/cn/flysafe/geo-map


                                       CMC, vol.63, no.1, pp.417-444, 2020 444 

Nadarajah, N.; Tharmarasa, R.; Mcdonald, M.; Kirubarajan, T. (2012): IMM 
forward filtering and backward smoothing for maneuvering target tracking. IEEE 
Transactions on Aerospace and Electronic Systems, vol. 48, no. 3, pp. 2673-2078. 
Ni, D. H.; Yu, G. Z.; Rathinam, S. (2017): Unmanned aircraft system and its 
applications in transportation. Journal of Advanced Transportation, vol. 2017, pp. 1-2. 
Rouse, W. B.; Geddes, N. D.; Curry, R. E. (1987): An architecture for intelligent 
interfaces: outline of an approach to supporting operators of complex systems. Human 
Computer Interaction, vol. 3, no. 2, pp. 87-122. 
Seah, C. E.; Hwang, I. (2009): State estimation for stochastic linear hybrid systems with 
continuous-state-dependent-transitions: an IMM approach. IEEE Transactions on 
Aerospace and Electronic Systems, vol. 45, no. 1, pp. 376-392. 
Seiferth, D.; Heller, M.; Holzapfel, F. (2018): Automatic safe area detection for novel 
unmanned air vehicle. Proceedings of 2018 4th International Conference on Control, 
Automation and Robotics. 
Simon, D.; Chia, T. L. (2000): Kalman filtering with state equality constraints. IEEE 
Transactions on Aerospace and Electronic Systems, vol. 38, no. 1, pp. 128-136. 
Stevens, M. N.; Rastgoftar, H.; Atkins, E. M. (2018): Geo-fence boundary violation 
detection in 3D using triangle weight characterization with adjacency. Journal of 
Intelligent & Robotic Systems, vol. 92, no. 1, pp. 1-12. 
Usach, H.; Vila, J. A.; Torens, C.; Adolf, F. (2018): Architectural design of a safe 
mission manager for unmanned aircraft systems. Journal of Systems Architecture, vol. 90, 
no. 2, pp. 94-108. 
Yepes, J.; Hwang, I.; Rotea, M. (2007): New algorithm for aircraft intent inference and 
trajectory prediction. AIAA Journal of Guidance, Control and Dynamics, vol. 30, no. 2, 
pp. 370-382. 
Yang, J.; Yin, D.; Shen, L. C. (2017): Reciprocal geometric conflict resolution on 
unmanned aerial vehicles by heading control. AIAA Journal of Guidance, Control and 
Dynamics, vol. 40, no. 10, pp. 2511-2523. 
Young, S. D.; Dill, E. T.; Hayhurst, K. J.; Gilabert, R. V. (2017): Safeguard: progress 
and test results for a reliable independent on-board safety net for UAS. Proceedings of 
2017 Digital Avionics Systems Conference. 


	1 Introduction
	2 Intent inference for UAS
	3 Trajectory prediction for UAS
	3.1 Dynamic model of UAS
	3.2 Continuous state dependent transition
	3.3 Constraint model for UAS
	3.4 Constrained state-dependent-transition hybrid estimation

	4 Smoothing for predicted trajectory
	5 Simulation
	6 Conclusions
	Data availability: The results.mat data used to support the findings of this study are available from the corresponding author upon request.
	Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this paper.
	Acknowledgment: This work was financially supported by the Major Program of National Natural Science Foundation of China; the National Natural Science Foundation of China [Grant No. 61703427].
	References

