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Abstract: The virus SARS-CoV2, which causes coronavirus disease (COVID-19) has 
become a pandemic and has spread to every inhabited continent. Given the increasing 
caseload, there is an urgent need to augment clinical skills in order to identify from among 
the many mild cases the few that will progress to critical illness. We present a first step 
towards building an artificial intelligence (AI) framework, with predictive analytics (PA) 
capabilities applied to real patient data, to provide rapid clinical decision-making 
support. COVID-19 has presented a pressing need as a) clinicians are still developing clinical 
acumen to this novel disease and b) resource limitations in a surging pandemic require 
difficult resource allocation decisions. The objectives of this research are: (1) to 
algorithmically identify the combinations of clinical characteristics of COVID-19 that predict 
outcomes, and (2) to develop a tool with AI capabilities that will predict patients at risk for 
more severe illness on initial presentation. The predictive models learn from historical data 
to help predict who will develop acute respiratory distress syndrome (ARDS), a severe 
outcome in COVID-19. Our results, based on data from two hospitals in Wenzhou, Zhejiang, 
China, identified features on initial presentation with COVID-19 that were most predictive 
of later development of ARDS. A mildly elevated alanine aminotransferase (ALT) (a liver 
enzyme), the presence of myalgias (body aches), and an elevated hemoglobin (red blood 
cells), in this order, are the clinical features, on presentation, that are the most predictive. The 
predictive models that learned from historical data of patients from these two hospitals 
achieved 70% to 80% accuracy in predicting severe cases. 
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1 Introduction 
Since December 2019, the virus SARS-CoV2, causing the Coronavirus disease (COVID-
19), has spread from Wuhan, China to every inhabited continent [World Health 
Organization (2020)]. As the COVID-19 outbreak is now a pandemic, it will be important 
to have tools to rapidly identify those at most risk of morbidity and mortality. Infections 
often result in nosocomial spread, affecting health workers and the general provision of 
healthcare. Caseloads can overwhelm hospitals, with a high need for oxygen, prolonged 
ventilation and even extracorporeal membrane oxygenation (ECMO), particularly for 
patients with acute respiratory distress syndrome (ARDS). However, over 80% of cases 
appear to be mild [Novel Coronavirus Pneumonia Emergency Response Epidemiology 
Team (2020)]. Symptoms usually begin as mild in all patients, with cough, fever, and 
occasional dyspnea, without a sudden onset of severe disease. In a minority of patients, 
severe symptoms including shortness of breath, pneumonitis and ARDS, may develop 5-8 
days into the illness [Xu, Wu, Jiang et al. (2020); Guan, Ni, Hu et al. (2020); Wang, Hu, 
Hu et al. (2020); del Rio and Malani (2020)]. Those who become more severely ill are 
more likely to be male and older, with progressively more risk with each decade over the 
age of 50 [Novel Coronavirus Pneumonia Emergency Response Epidemiology Team 
(2020)]. Despite these poor outcomes, most cases are mild; and there are asymptomatic 
infections in all age groups and both genders, as well as among some young adults [Bai, 
Yao, Wei et al. (2020); Kam, Yung, Cui et al. (2020); National Institute of Infectious 
Diseases (2020); Cai, Xu, Lin et al. (2020)].  
Acute respiratory distress syndrome has been a key feature of the pathophysiology and 
clinical course of declining outcomes in COVID-19 patients [Liu, Sun, Li et al. (2020); Xu, 
Shi, Wang et al. (2020)]. These clinical declines appear to be due to the virus alone; 
superinfections have been rare in reported studies [Yang, Yu, Xu et al. (2020)].  
Clinical outcomes have varied greatly within China, where mortality has been substantially 
lower outside of Hubei province [World Health organization (2020)]. In Wenzhou, Zhejiang, 
China, which has faced one of the larger outbreaks outside of Hubei, there has only been one 
death, which occurred outside of this study [Health Commission of Wenzhou (2020)].  
Faced with the initial mild presentation of COVID-19 in patients, it may be difficult to identify 
who will more likely develop severe illness by using established risk factors alone such as age, 
gender, and comorbidities. The ability to predict which patients on presentation are more likely 
to develop ARDS, and as such to face a greater risk of complications including death, would 
assist in triage. This is particularly important in a novel and accelerating outbreak when critical 
care resources and hospital beds are limited, and clinicians are forced to make difficult decisions 
without past specific experience to guide clinical acumen. 
Artificial intelligence (AI) has begun to tackle these difficult challenges in healthcare, and 
can provide clinical decision support if used carefully [Shortliffe and Sepulveda (2018); 
Gianfrancesco, Tamang, Yazdany et al. (2018)]. Deep learning algorithms can use large 
data sets to identify risk, oftentimes based on unexpected characteristics [Sun and McIntosh 
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(2018)]. Such techniques can predict risk of myocardial infarction from retinal images, risk 
stratify Ebola patients, or screen chest imaging for tuberculosis and mammograms for 
cancer [Geras, Wolfson, Shen et al. (2017); Colubri, Silver, Fradet et al. (2016); Qin, 
Sander, Rai et al. (2019); Bai, Yao, Wei et al. (2020)]. Decision trees, a predictive analytics 
technique used in this study, have been previously used for pneumonia risk prediction 
[Caruana, Lou, Gehrke et al. (2015)]. 
There are as of yet no prediction models for this novel infection, which has a different clinical 
trajectory than many other pneumonias; there are also no public patient datasets for further 
validation. This represents a first step which will require further validation using different 
models to identify similar results, albeit the current study provides insight to help doctors in 
real time. AI applications present opportunities for the future of healthcare and can be harnessed 
at this time, as clinicians take on the complexities of responding to COVID-19 [Gianfrancesco, 
Tamang, Yazdany et al. (2018); Yang, Yu, Xu et al. (2020); Richardson, Griffin, Tucker et al. 
(2020)]. Here, we explore the use of data available on initial presentation with a novel illness 
to better predict who will develop more serious disease. 

2 Experimental design and participants 
This case series was approved by the institutional ethics board of Wenzhou Central 
Hospital and Cangnan People’s Hospital in Wenzhou, China. 
All consecutive patients with confirmed COVID-19 admitted to Wenzhou Central Hospital 
and Cangnan People’s Hospital in Wenzhou, China, during the time period of the study, 
were included. Wenzhou Central Hospital is one of the major tertiary teaching hospitals 
and is responsible for the treatments for COVID-19 assigned by the government. Another 
hospital later began admitting patients after this study began. There has only been one 
reported death in Wenzhou as of yet, but not in this case series [Health Commission of 
Wenzhou (2020)].  A line listing was developed for expected clinical and epidemiologic 
characteristics of patients. Patient medical records were collected and analyzed by the 
clinical team from Wenzhou Central Hospital and Cangnan’s People Hospital. 
Epidemiological past medical history, clinical, laboratory, and radiological characteristics 
on admission presentation were collected and analyzed by physicians. Treatments 
(including antivirals, corticosteroids, antibiotics, and IVIG) and clinical outcomes data 
were obtained as they were collected over the following weeks until all patients were 
discharged. ARDS was the endpoint of interest and was identified by clinicians during the 
course of hospitalization using the Berlin definition [The ARDS Definition Task Force 
(2012)]. The durations from any known exposure and onset of disease to hospital admission 
and length of stay were recorded. 

3 Data description 
Of the 53 hospitalized patients with COVID-19 in the dataset, all tested positive by throat 
swab with real-time reverse transcription polymerase chain reaction (RT-PCR) assay.  

3.1 Presenting characteristics 
The median age was 43 years (interquartile range 32-48.5, 13-67 years) and 33 (62.2%) 
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were men (Tab. 1).  
 
 

Table 1: Baseline characteristics of patients diagnosed with COVID-19 
  No. (%) 
  Total (N=53) 
Age, median (IQR), y 43 (32-48.5) 13-67 
Sex  

Female 20 (37.8) 
Male 33 (62.2) 
Wuhan Exposure 36 (67.9) 
Infected  

Hospitalized patients 53 (100) 
Medical staff 0 (0) 
  Total (N=53) 
Signs and Symptoms  

Fever 47 (88.7) 
Cough 32 (60.4) 
  
  Total (N=40) 
Wet Cough 13 (32.5) 
Diarrhea 5 (12.5) 
Dyspnea 9 (22.5) 
Myalgias 4 (10.0) 
Wheezing 9 (22.5) 
  Total (N=29) 
Nasal Congestion 2 (6.8) 
Sore Throat 4 (13.9) 
Hemoptysis 0 (0.0) 
  Total (N=33) 
Comorbidities  

Hypertension 7 (21.2) 
Hepatitis B 3 (9.0) 
Unspecified Liver Disease 1 (3.0) 
Diabetes 1 (3.0) 
Gout 1 (3.0) 
Reported tobacco use 2 (6.0) 
 Total (N=53) 
 Median (IQR) 
Duration of symptoms 3 (1-5) 

Common symptoms included fever (in 47 patients, 88.7%) and cough (in 32, 60.4%). Of the 
40 patients from Wenzhou Central Hospital, a wet cough (in 13, 32.5%), diarrhea (in 5, 12.5%), 
dyspnea (in 9, 22.5%), myalgias (in 4, 10.0%), and wheezing (in 9, 22.5%) were also reported. 
Nasal congestion was noted in 2 (6.8%) and sore throat in 4 (13.9%) of the first 29 patients at 
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Wenzhou Central Hospital; none of these first 29 patients had hemoptysis (Tab. 1). 
On admission, the median white blood cell count was 4.8×109 cells/L (interquartile range 
3.6-6.4, 2.3-13.6) and the median lymphocyte count was 1.2×109 cells/L (interquartile 
range 0.9-1.63,.4-2.8) among all 53 patients (Tab. 2). 

Table 2: Findings on presentation to the hospital of patients diagnosed with COVID-19 
    Median (IQR) 
  Normal Range Total (N=53) 
White blood cell,  ×109 /L 3.5-9.5 4.8 (3.6-6.4) 
Lymphocyte count, ×109 /L 1.1-3.2 1.2 (0.9-1.63) 

    Total (N=40) 

Hemoglobin, g/dl 12.8-16.5 13.7 (12.9-14.4) 
Platelets,  ×109/L 125-350 170.5 (130-221) 
ESR, mm/hour <17.5 31.5 (19.3-42) 
CRP, mg/L <3 20.8 (7-25.7) 
AST (aspartate aminotransferase), U/L 15-40 25.5(21-37) 
ALT (alanine aminotransferase), U/L 9-50 24 (15-40.5) 
Sodium, mEq/L 135-145 137.9 (136.1-139) 
Potassium, mEq/L 3.5-5 3.55 (3.4-3.7) 
Creatinine, micromoles/L 64-104 64 (55-75) 
Creatinine kinase, U/L <25 80.5 (52-112) 
Lactate dehydrogenase, U/L 125-243 205.5 (178-259) 
Glucose, mmol/L 3.9-7.1 5.6 (5.2-6.84) 
Fio2% 0.21 0.21 (0.21-0.29; 0.21-0.37) 
    Total (N=29) 
Neutrophil, ×109/L 1.8-6.3 3 (1.9-4) 
    Total (N=26) 
Tropponin-I, ug/L <0.04 0.02 (0.02-0.05) 
    Total (N=7) 
Cycle Threshold values >40 28.2 (26.5-31.6) 
   
    Number (%) 
  Total (N=35) 
BNP, ng/L normal <125 35 (94.3)  
    Total (N=16) 
Procalcitonin, ng/ml  normal <0.25 15 (93.8%) 
  Total (N=49) 
Radiologic Fiundings   

Ground Glass Opacities or similar findings normal 43 (87.7) 
    Total (N=40) 
Supplemental Oxygen received 0.21 11 (27.5%) 

Further clinical information was available only for Wenzhou Central Hospital’s patients. 
Other labs were available on admission for the 40 Wenzhou Central Hospital’s patients: 
median hemoglobin was 13.7 g/dl (interquartile range 12.9-14.4, 11.2-16.2), median 
platelets was 170.5×109 cells/L (interquartile range 130-221, 94-430), median erythrocyte 
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sedimentation rate (ESR) was 31.5 mm/hour (interquartile range 19.3-41, 3-83), median 
c-reactive protein (CRP) was 20.8 mg/L (interquartile range 7-25.7, 0.6-101.9), median 
aspartate aminotransferase (AST) was 25.5 U/L (interquartile range 21-37, 14-89), median 
alanine aminotransferase (ALT) was 24 U/L (interquartile range 15-40.5, 8-206), median 
sodium was 137.9 mEq/L (interquartile range 136.1-139, 131.9-143), potassium was 3.55 
mEq/L (interquartile range 3.4-3.7, 2.9-4.4), median creatinine was 64 micromoles/L 
(interquartile range 55-75, 20-90), median creatine kinase was 80.5 U/L (interquartile 
range 52-112, 33-1725), median lactate dehydrogenase was 205.5 U/L (interquartile range 
178-259, 128-402), median glucose was 5.6 mmol/L (interquartile range 5.2-6.84, 4.3-9.1). 
Procalcitonin was available for 16 patients; the value was less than 0.25 ng/ml in 15 (93.8%) 
and 0.05 ng/ml or lower in 13 (81.3%) (Tab. 2). 
Some labs were not available on presentation for all patients. Neutrophil counts were 
available for 29 patients at Wenzhou Hospital; median neutrophil count was 3×109 cells/L 
(1.9-4, 1.4-7.6). D-dimer was available for 27 patients at Wenzhou Central Hospital; 
median was 155.5 mg/L (interquartile range 110.3-207.5; 43-747). Troponin-I was available 
for 26 patients at Wenzhou Central Hospital and the median was 0.02 ug/L (interquartile 
range 0.02-0.05, 0-0.09). BNP was over 125 ng/l in 2 (6%) of 35 patients at Wenzhou 
Central Hospital.  
Although all tested positive for SARS-CoV2, specific cycle threshold values were charted 
and available for 7 patients and ranged from 25-38 with a median of 28.2. 
Of the 49 patients for whom initial radiology was available, 6 (12.2%) had a normal chest 
computed tomography; the rest (87.8%) had ground glass opacities or equivalent findings. 
No patient with a normal CT scan developed ARDS. 
Median days from symptom onset to hospitalization was 3 days (IQR range 1-5, 0-30). 36 
infections were described as due to exposures in Wuhan; the rest locally in Wenzhou. 
None of the patients in the dataset were healthcare workers or the result of known 
nosocomial spread. One patient was identified on a chest computed tomography and 
developed symptoms the following day. No patients presented more than once.  
None were pregnant. No patient reported receiving the flu vaccine. Of the 33 patients at 
Wenzhou Central Hospital interviewed on smoking status, only two admitted to any 
smoking and reported they had quit. 7 were reported to have known hypertension, 3 were 
reported to have hepatitis B and another had unspecified liver disease. 1 had known 
diabetes, 1 had known gout and 1 had post brain aneurysm surgery. Liver enzymes for 3 
of the 4 patients with liver disease, showed no elevation. Aspartate aminotransferase (AST) 
ranged from 13-50 U/L, alanine aminotransferase, 17-58 U/L in those with liver disease or 
hepatitis; one had a mild elevation with AST 50 and ALT 58.  
On presentation, 11 of 40 patients (27.5%) at Wuhan Central Hospital were initiated on 
oxygen therapy. In total, median fraction of inspired oxygen (FiO2) was 0.21 (interquartile 
range 0.21-0.29; 0.21-0.37). Of those on oxygen, 10 out of 11 were started on FiO2 0.29 
(approximately 2 l/min), except for one on FiO2 0.37 (approximately 4 l/min). Of those 5 
who would develop ARDS, 3 (60%) were initiated on oxygen at presentation; FiO2 was 0.29 
(approximately 2 l/min) for 2 and 0.37 (approximately 4 l/min) for 1. 
Of those patients who developed ARDS, all were male, median age 46 (interquartile range 
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41-62; 23-67). None smoked. Four of the five had either high blood pressure or a 
potentially related condition (past brain aneurysm). All had fever, cough, wheezing, and 
dyspnea on arrival. 2 had myalgias. None had chills. Median CRP was 31.1 (interquartile 
range 22.8-37.8; 5.2-101.9), ALT 44 (interquartile range 24-66; 24-70) and hemoglobin 13.7 
g/dl (interquartile range 12.8-14.4; 11.6-14.7). Highest CRP was 68.6. Procalcitonin was low 
in all tested (3 had values <0.25). None had a troponin over 0.05 microg/L. Two were on 
room air on arrival; two were on 29% FiO2 and one was on 37% FiO2. 

3.2 Characteristics of hospital courses 
During hospitalization, a total of 19 patients (47.5%) at Wuhan Central Hospital were 
treated with oxygen. Of those 19 on oxygen, median FiO2 was 0.29 (interquartile range 
0.29-0.35; 0.29-0.50) and 13 did not received more than FiO2 0.29 (2 l/min). No patients 
were intubated, required ECMO or dialysis. 5 developed ARDS, as charted by a clinician 
with information on Pa02, FiO2, chest imaging, and clinical course. Only 1 was cared for 
in the ICU and none died (Tab. 3). 
During hospitalization, the peak procalcitonin was available for 16 cases in Wenzhou 
Central Hospital; the median was 0.045 ng/ml (interquartile range 0.02-0.095; <0.02-2.49); 
the value was greater than or equal to 0.05 ng/ml in 25%, and only 2 saw values over 0.25 
ng/ml (12.5%). Peak CRP was available for 27 cases in Wenzhou Central Hospital; the 
median was 25.9 U/L (interquartile range 17.55-39.6, 1.5-129) (Tab. 3). 

Table 3: Characteristics of hospitalization course for patients with COVID-19 
  No. % 
Laboratory values   
 Total (N=16) 
Peak procalcitonin  0.045 (0.02-0.095) 
  Total (N=27) 
Peak CRP  25.9, (17.55-39.6) 
  
Complications Total (N=53) 
ARDS  5 (9.4) 
ICU 1 (1.9) 
Supplemental Oxygen 19 (47.5%) 
Length of Stay  27 (23-31.5) 
Treatment   
Ritonavir/Lopinavir   53 (100) 
Umifenovir 29 (55.7) 
  
 Total  (N=29) 
Moxifloxacin 4 (13.9) 
Levofloxacin 3 (10.3) 
Amoxicillin/Clavulanic 7 (24.1) 
Moxifloxacin/Biapenem 1 (3.4) 
Moxifloxacin/Amoxicillin/Clavulanic  1(3.4) 
IVIG 6 (20.9) 
Methylprednisolone 2 (6.9) 
Rectal suppositories of recombinant human Interferon 43 (81.1) 
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All 53 patients took lopinavir and litonavir tablets; dose was 200 mg twice a day of 
lopinavir. 29 patients took umifenovir. 43 patients took rectal suppositories of recombinant 
human interferon-2a (Tab. 3). 
Of the first 29 patients at Wenzhou Central Hospital, there was clinical concern for 
secondary infection in 13 (44.8%) based on clinical exam or chest computed tomography; 
no bacterial or fungal cultures are available. Of these 29 patients, 28 were determined to 
have pneumonia affecting both lungs. 13 patients were reported to have received antibiotics 
with courses largely for 3 days. 6 patients received amoxicillin/clavulanic injections 2.4 
gm twice a day; 1 other received reduced amoxicillin/clavulanic dosing 600 mg twice a 
day intravenously (IV). 3 received 500 mg of levofloxacin, orally daily. 4 received 400 mg 
of moxifloxacin, orally daily. Courses involved 2 antibiotics in 2 additional patients: one 
changed from moxifloxacin to biapenem 300 mg three times a day, another changed to 
amoxicillin/clavulanic 2.4 gm twice a day, after 2 days of moxifloxacin. In addition, 2 
patients were known to have received steroids (IV methylprednisolone) and 6 were known 
to have received IVIG. 
All 53 patients have now been discharged. The median length of stay was 27 days 
(interquartile range 23-31.5, 9-45). Discharge required normal temperature for over three 
days, no respiratory and gastrointestinal symptoms, PCR swab negative twice over at least 
2 days, and PCR stool sample negative as well. 

4 Methods 
Predictive analytics (a form of artificial intelligence) learns from historical data to help 
predict future outcomes. The technology uses machine learning algorithms that can extract 
insights and rules from experience (historical examples) in order to determine data 
attributes (features) with the most predictive power for making accurate predictions.  
In predictive analytics, a feature (also known as variable, or observation), is an individual 
measurable attribute. The features for every patient that we considered in this analysis are 
outlined in Tabs. 1 and 2, and represent baseline characteristics.  
The predictive analytics problem addressed in this report can be formulated as follows: 
Given historical data of patients that tested positive for coronavirus, identify features from 
Tabs. 1 and 2 that are predictive to ARDS; hence the severity of the patients with COVID-
19. In the following section, we explain the data pre-processing methods, feature 
engineering algorithms and predictive models used in this study.  
In predictive analytics, feature engineering (also known as feature selection) is the process 
of algorithmically reducing the dimensionality of the feature space to a smaller set of 
features with higher predictive power vis-a-vis the predictive label, which is ARDS in our 
case. The goal is to identify the best subset that contains the least number of dimensions 
that most contribute to the accuracy of predicting ARDS.  
There are two major types of feature selection methods: filter methods and wrapper 
methods. Filter methods used in this study are based on entropy that is widely applied in 
information theory. In the case of this experiment, entropy is a metric that measures how 
much information a feature encapsulates to help predict the final class label ARDS of the 
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sample. The higher the entropy of a feature, the more variance that feature exhibits, and 
thus the more likely that feature contains valuable information for predicting the final label. 
In our case, the entropy of any discrete variable X is given by Bellaachia et al. [Bellaachia 
and Bari (2012)] as: 
𝐻𝐻(𝑋𝑋) =  −∑ 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)  ∙ ln (𝑃𝑃(𝑋𝑋 = 𝑥𝑥))𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 𝑥𝑥   (1) 

4.1 Information gain 
We also adopted information gain as a measure to rank features. Each feature is assigned 
a value corresponding to its information gain, the amount of information acquired after 
knowing the value of the feature, with respect to the class label ARDS. The formula for 
information gain is represented in Eq. (2): 
𝐼𝐼𝐼𝐼(𝑉𝑉) =   −∑ 𝑃𝑃(𝑐𝑐)𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃(𝑐𝑐)𝑐𝑐 ∈{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛𝑝𝑝𝑛𝑛𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝} +
∑ 𝑃𝑃(𝑣𝑣𝑗𝑗)𝑚𝑚
𝑗𝑗=1 ∑ 𝑃𝑃�𝑐𝑐|𝑣𝑣𝑗𝑗�𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃�𝑐𝑐|𝑣𝑣𝑗𝑗�𝑐𝑐 ∈{𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛𝑝𝑝𝑛𝑛𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}  (2) 

In Eq. (2), V represents the feature variable, c represents the class label, m represents the 
total number of subcategories of the dataset if the dataset is categorized by feature V. 

4.2 Gini index 
Each feature is assigned a value based on the Gini index, a measure of the impurity of the 
dataset. Assuming we split the dataset based on each feature, features that resulted in less 
impure class distributions are assigned higher values. The formula for the Gini index is 
shown below: 

𝐼𝐼𝐼𝐼(𝑉𝑉) =  ∑ 𝑃𝑃(𝑣𝑣𝑗𝑗)𝑚𝑚
𝑗𝑗=1 [1 −  𝑃𝑃�𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝|𝑣𝑣𝑗𝑗�

2 −  𝑃𝑃�𝑛𝑛𝑝𝑝𝑙𝑙𝑛𝑛𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝|𝑣𝑣𝑗𝑗�
2]  (3) 

In the above formula, V represents the feature variable, m represents the total number of 
subcategories of the dataset if split by feature V.  

4.3 Chi-Squared statistics  
Each feature is assigned a value based on the Chi-Square value, a statistical measure that 
indicates how dependent two variables are, for the class label variable and that feature 
variable. The higher the Chi-Square value, the more the class label is dependent on the 
given feature. The formula for the Chi-Squared Statistics is shown below: 

𝒳𝒳𝜈𝜈
2(𝑉𝑉) =  ∑ (𝑂𝑂𝑖𝑖− 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖
2𝑗𝑗
𝑝𝑝=1   (4) 

In Eq. (4), V represents the feature variable, ν represents the degrees of freedom that will 
be used in the Chi-Squared test without affecting the value calculated, O represents the 
observed frequency, E represents the expected frequency, j represents the total number of 
possible values of the feature V, 2 represents the number of different class labels in this case.  
We also adopted the feature engineering methods that are based on wrappers. A wrapper-
based method uses greedy algorithms to select the best features, as opposed to ranking the 
feature. We adopted the forward selection algorithm that starts with an empty set of features, 
and iteratively adds features to the set until the inclusion of additional features stops 
improving the framework performance. 
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5 Experiment results 
In the experiment, the predictive power for developing ARDS among patients testing 
positive for SARS-CoV2 was evaluated with the following features: lymphocyte count, 
white blood count, temperature, cycle threshold, creatinine, hemoglobin, gender, CRP, age, 
fever, CK, LDH, Glu, ALT, AST, K+ and N+; as listed in Tab. 4.  

Table 4: Feature ranking 
Predictive features of ARDS in this order using feature selection 
algorithms described in Section 4.  
1. ALT  
2. Myalgias 
3. Hemoglobin 
4. Gender 
5. Temperature 
6. Na+ 
7. K+ 
8. Lymphocyte Count 
9. Creatinine 
10. Age 
11. White Blood Count  

The accuracy of the algorithms is based on 10-fold cross validation. The algorithms were 
applied to all patients who tested with COVID-19 in order to predict ARDS using high 
predictive features following the previous experiment with ALT, myalgias, hemoglobin, 
gender, temp, Na+, K+, lymphocyte count, creatinine, age and white blood count. A 
decision tree based on the one feature ALT reached a 70% accuracy. Overall accuracy 
collectively reached 70-80% as shown in Tab. 5. The most predictive features were alanine 
aminotransferase (ALT), myalgias, and hemoglobin, in this order.  

Table 5: Predictive algorithms accuracy 

Predictive Algorithm                                           Accuracy 
Logistic Regression 50% 

KNN (k=5) 80% 

Decision Tree (based on Gain Ratio) 70% 

Decision Tree (based on Gini Index) 70% 

Random Forests 70% 

Support Vector Machine 80% 
 

There were no funds or time allocated for patient and public involvement (PPI), so we were 
unable to involve patients. However, we have invited patients to help us develop our 
dissemination strategy. 

6 Discussion 
Artificial intelligence (AI) can be used to recognize unexpected patterns in novel clinical 
presentations. Such tools can fine-tune a clinician’s ability to detect a “sick” versus “not 
sick” diagnosis in relation to a previously unencountered infection like COVID-19.  
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A framework was developed here to identify the few who would develop more severe 
illness, specifically ARDS, from among the many patients with mild initial presentations 
of COVID-19. Decision trees, random forests and support vector machines are the types of 
machine learning models used in this study. These tools sometimes have advantages over 
more traditional methods such as logistic regression, which was found here to be much less 
predictive. This approach can more adeptly work with datasets that are small or imbalanced 
as seen in early epidemics, or containing data that is not linearly separable as expected with 
disease data analytics. In turn, this approach better allows for actionable responses early in 
an epidemic rather than waiting for large, complete data sets. It also avoids reliance on a 
single biomarker or a difficult to obtain lab, and instead pulls together an ensemble of 
common predictors for robust determinations. Furthermore, in the predictive analytics 
models adopted in this study, the decision thresholds are determined automatically during 
the model training process, rather than being set manually and potentially more arbitrarily 
as in logistic regression. We intend to expand the algorithms used here to deep learning 
algorithms and swarm intelligence as soon as we can obtain larger clinical data [Bellaachia 
and Bari (2012)]. 
Characteristics that are hallmarks of COVID-19 diagnosis, such as ground glass opacities 
on chest computed tomography, as well as fever, cough, and lymphopenia, assist in initial 
clinical diagnosis. However, given uniformity, these did not distinguish risk of disease 
progression and were not highly predictive. Trending some clinical values over the course 
of the illness has also been shown to be predictive, though this will not help with initial 
triage and resource allocation [Wang, Hu, Hu et al. (2020)]. Other characteristics, including 
older age, male gender, and comorbidities, have been associated with worsened outcomes 
in separate studies [Xu, Wu, Jiang et al. (2020); Guan, Ni, Hu et al. (2020); Wang, Hu, Hu 
et al. (2020)]. Age and gender were not strong predictors of outcome, as severe or mild 
cases have been found in all age groups. In our study, patients were in their thirties or 
forties and none were over age 67. Identifying risks beyond gender, age, and comorbidities 
will be particularly important in identifying those young adults who will go on to develop 
ARDS [Wang, Hu, Hu et al. (2020)].  
Cycle threshold (Ct) might have been expected to predict severity of this coronavirus, as it 
does in other infections including in another emerging disease Ebola [Crowe, Maenner, 
Kuah et al. (2016)]. However, in COVID-19, Ct has so far not been shown to be predictive; 
high viral loads (low Ct) have been seen in asymptomatic individuals and peak soon after 
the onset of symptoms which may be well before some patients present to medical care 
[National Institute of Infectious Diseases (2020); Huang, Wang, Li et al. (2020); Zou, Ruan, 
Huang et al. (2020)]. 
Other well validated testing tools for pneumonia severity did not perform well. None of 
the patients who developed ARDS would have met the criteria for requiring hospitalization 
as set by the pneumonia patient outcomes research team (PORT) score.  
Instead, a combination of factors commonly collected at first presentation was found to 
predict disease progression to ARDS. As there were no deaths in this study, ARDS 
represents the clinical syndrome of significance and has been associated with death in other 
studies [Liu, Sun, Li et al. (2020); Xu, Shi, Wang et al. (2020)].    
The features that machine learning showed best predicted ARDS were not the indicators a 
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clinician would standardly select, nor were these values grossly abnormal clinically. 
Multiple iterations showed that the most predictive features included an increase in alanine 
aminotransferase (ALT) and hemoglobin, and the presence of myalgias.  
These features do not need to be causal to be predictive, but correlations do raise clinical 
questions for physicians to consider. Liver function tests were not substantially elevated in 
our study; none of the patients with liver disease developed ARDS, yet small elevations in 
ALT featured prominently in the predictions. Myalgias are not normally featured in 
classification of illness severity, but could represent generalized inflammatory and 
cytokine response not captured well by other indicators. Higher hemoglobin levels were 
associated with poorer outcomes; this may be due to correlation with other factors 
including male gender or even unreported tobacco use. 
Other data more commonly expected to affect clinical risk did contribute, but to a lesser 
degree. Gender, temperature, and sodium further added to the predictive features of this 
model, as do potassium, lymphocyte, creatinine, age, and white blood cell count. Other 
factors like dyspnea on presentation, which would have logically been expected to correlate 
with ARDS, did not feature as predictive in this model, as this was common in many patients. 

7 Conclusion  
This study explored the clinical spectrum of illness and predictive indicators in a case series 
from Wenzhou, Zhejiang, China. The outbreak seen has not matched the clinical severity 
seen in the initial Wuhan, Hubei epicenter or in other settings where lab testing and clinical 
surge capacity has been stretched. Reduced caseloads from public health measures, coupled 
with increased surveillance, may have resulted in detection of a larger number of milder 
cases. Clinical management, including treatment with antivirals, and clinical insights from 
earlier in the epidemic, may have modified the course as well. 
A clear limitation of this study is the size of the dataset; 53 patients with some incomplete 
data as well as a limited spectrum of severity. Overall, the models were 70%-80% 
predictive for this population. Further validation and refinement of this model will require 
data describing a wider clinical spectrum. 
Nonetheless, this study shows that predictive analytics can play a role in augmenting 
clinical skills in distinguishing between “sick” from not “sick”. The model highlights that 
some pieces of clinical data may be underappreciated by clinicians, such as mild increases 
in ALT and hemoglobin as well as myalgias. Key characteristics predictive of diagnosis, 
including fever, lymphopenia, chest imaging, were not as predictive of severity. Likewise 
epidemiologic risks such as age and gender were not as predictive; all ARDS patients in 
this study were male but most males did not develop ARDS.  
Just as predictive text is intended to augment, but not replace writers, the goal is not to 
create a black box to supersede clinical reasoning, but to create models that can provide 
insight. Clinical acumen is based on both personal learning and collective professional 
learning; machine learning can add further insight.  
AI tools need to be developed iteratively and include clinicians in their development to be 
clinically applicable. Further refinement of these models with more data, from different 
settings with different spectrums of severity, would strengthen the predictive power of the 
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model and allow it to be a useful tool in identifying early from the many with COVID-19, 
who will develop more serious disease and require closer clinical attention and resources 
including early initiation of treatments, which will likely be in limited supply, if available 
in the future. 
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