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Abstract: The creep behavior of bamboo due to the complicated influences of
environment and stress will lead to a sustained increase in deformation, which ser-
ious effects the service performance of structures. To investigate the creep beha-
vior of recombinant bamboo, twenty-four recombinant bamboo specimens were
tested under lasting compressive and tensile loads at different load levels. The
typical failure modes of recombinant bamboo under a lasting load at a high load
level were buckling failure and brittle fracturing due to creep compressive creep
and tensile creep development, respectively. At a high load level, the creep defor-
mation of recombinant bamboo initially develops unsteadily and increases rapidly
until failure; at a low load level, creep deformation rapidly develops in the early
stage and stabilizes in the middle and late stages. The load level has notable
effects on the overall creep deformation and the proportion of creep deformation.
The residual deformation of creep will generally increase and the recovery of
creep will decrease with increasing load level. Based on the Burgers model, pre-
dictive models that can take the load levels into account were proposed to eval-
uate the compressive and tensile creep behaviors of recombinant bamboo. The
proposed models can be used to accurately evaluate the strain-time behavior of
recombinant bamboo.

Keywords: Bamboo; creep; load level; Burgers model; creep behavior; predictive
model

1 Introduction

Due to the high energy consumption, cracking and corrosion of traditional concrete and steel materials,
researchers have been trying to develop new structural materials [1-5]. Bamboo, characterized by a low
carbon content, sustainable regeneration and excellent mechanical properties [6-12], has been increasingly
studied as a building material [13-20]. Researchers have noted the mechanical properties and applications
of bamboo materials [21-24]. The experimental study of the bending performance of bamboo by Obataya
et al. shows that the bending resistance capacity of bamboo is mainly determined by the combination of
the fiber-rich outer layer and the compressible inner layer [25]. Jain et al. tested the mechanical properties
of bamboo fiber composites and found that bamboo fiber composites exhibited near-linear elastic
behavior [26]. In addition, earlier studies found that the mechanical properties of bamboo are influenced
by many factors [27]. Cui et al. examined the relationship between the average number of vascular
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bundles and the compressive strength of Phyllostachys pubescens and Phyllostachys tall bamboo [28].
Chung et al. tested the compression and bending properties of two kinds of bamboo, Bambusa
pervariabilis and Phyllostachys pubescens, and determined the characteristic values of the strength and
Young’s modulus of bamboo species based on the limit state design method [14]. Zou et al. demonstrated
the effects of the moisture content on the bending strength, bending pattern and rigidity of bamboo and
showed that the bending strength and extent of bamboo materials decreased significantly with increasing
moisture content [29]. Kumar et al. studied the effects of bamboo density on its mechanical properties
and investigated the stretching, compression, shearing and bending properties of three test pieces with
different densities [30]. Das et al. treated bamboo strips with alkaline solutions to study the tensile
strength and elastic modulus of the strips [31]. Hu et al. investigated the effects of the strain rate on the
compression performance of bamboo and illustrated the damage pattern and failure mechanism of
bamboo through photographs of the final deformation of the bamboo microstructure [32]. Adopting steam
blasting technology to extract bamboo fibers from raw bamboo, Okubo et al. compared the mechanical
properties of that material with the mechanical properties of bamboo composite materials through
mechanically extracted fibers and revealed that the tensile strength and modulus of the polypropylene-
based composite materials extracted by steam blasting were 15% and 30% greater, respectively [33]. The
above discussion suggests that the basic mechanical properties of bamboo materials have been thoroughly
investigated.

Bamboo has mechanical properties similar to those of wood and thus can be regarded as an anisotropic
viscoelastic material [28,29,34-36]. Due to the complicated influences of environment and stress, bamboo is
likely to exhibit creep phenomena similar to those of as wood. Creep phenomena will lead to the deformation
of the structural component exceeding the limit and cause potential security issues. To evaluate the long-term
performance of bamboo structures [37,38], it is important to study the creep characteristics and predictive
models of recombinant bamboo. The creep behavior of wood has been well studied [39-41]; some
scholars studied the effects of temperature and humidity on the creep properties of wood [42-45].
Tamrakar et al. applied the principle of time-temperature equivalence to simulate the long-term creep
properties of wood [46]. Reichel et al. considered the influence of environmental humidity and
established a mathematical model under the coupling effect of humidity and mechanical force [47].
Ozyhar et al. conducted creep tests of beech wood in all directions of tension and compression and
revealed the viscoelastic character of wood has a significant influence on the mechanical behavior [48].
Wang et al. provided an in-depth discussion on the important factors (load level) affecting wood creep
[49]. For bamboo creep, a small number of studies have been conducted. Gottron et al. conducted
bamboo creep tests, which showed that the fabric direction of the specimens had a significant effect on
the creep behavior and residual strength [50]. Xu et al. used a modified Burgers model to fit creep data of
bamboo-based fiber composites and showed that the fully stretched Burgers model can better predict the
tensile creep behavior of bamboo-based fiber composites [51]. Kanzaw et al. revealed the influence of
fiber content on microscopic creep [52]. However, quantitative creep models of bamboo under tensile and
compressive loads have not been systematically studied and established. Bamboo can be manufactured
into a number of various products, such as laminated bamboo lumber and recombinant bamboo. In these
modern bamboo products, recombinant bamboo has especially favorable mechanical properties and is
suitable for structural components. Therefore, recombinant bamboo was used in this test to investigate the
creep behavior of bamboo components. Twenty-four short-term creep test specimens are designed and
tested in this paper, and tests of tensile and compressive creep are carried out according to relevant
specifications. By carefully analyzing bamboo viscous elasticity mechanics, the Burgers model is used to
describe the creep characteristics of bamboo, and the relevant viscous elasticity parameters were
presented based on the test results, while complete creep models were established for recombinant
bamboo under tensile and compressive loadings.
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2 Materials and Methods

2.1 Materials
The recombinant bamboo specimens used in this test were made of parallel-to-grain bamboo-based

materials using a hot-pressing adhesive. The processing technology is shown in Fig. 1. There are five
main steps in the production of recombinant bamboo: the bamboo is split vertically, bamboo wax is
removed, bamboo fibers are rolled into bamboo fiber bundles, bamboo fibers are soaked in glue, and
finally, bamboo fibers are adhered by hot pressing. is the specifics of this process are described in detail
in the literature [53]. The density of the specimens is 1.23 g/cm3, the water content is 8.4%, and the
internal glue strength is 3.57 MPa. The material characteristic parameters of recombinant bamboo at
normal temperatures were obtained by the mechanical property test: the average compressive strength
was 72.25 MPa, and the corresponding variation coefficient was 17.50%; the average tensile strength was
98.48 MPa, and the corresponding variation coefficient was 21.35%. Additionally, the short-term creep
load level was determined according to the average of the limit load.

The short-term creep tests of recombinant bamboo were carried out in the Nanjing Forestry University
Structural Engineering Laboratory. The dimensions of the specimens are determined by referencing the U.S.
specification of ASTMD143-94 (2000), “Standard Test Methods for Small Clear Specimens of Timber 1”
[54], and China’s national standard GB/T1928-2009, “General Requirements for Physical and Mechanical
Tests of Wood” [55]. The dimensions of the compressive specimens were 120 mm (L) × 25 mm (W) ×
25 mm (H). For the tensile specimens, the dimensions were 420 mm (L) × 25 mm (W) × 10 mm (H),
and the length of the middle part of the tensile specimens was 63 mm with a width and height of 10 mm,
while the transition segments had a 444 circular curve radius. Diagrams of the samples are shown in Fig. 2.

raw bamboo splitting processing fiber drying

gluingdryingassemblinghot-pressingtesting

Figure 1: Recombinant bamboo production process

25 10

(a) (b) 

Figure 2: Sample diagram of the recombinant bamboo specimens. (a) Compressive specimen (mm). (b)
Tensile specimen (mm)
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2.2 Creep Experiment
The short-term compressive and tensile creep behaviors of recombinant bamboo were tested according

to Chinese standard GB1935-2009, “Method of testing in compressive strength parallel to grain of wood”
[56], and Chinese standard GB1938-2009, “Method of testing in tensile strength parallel to grain of
wood” [57], respectively.

The creep test instrument was a computer-controlled electronic creep long-term test machine
(UTM5504-GD) with a maximum test force of 50 kN and an environmental testing chamber (WGDY-
7350L) with temperatures ranging from –70°C to 350°C and humidity from 20% to 100%. This
instrument can be used for creep testing of materials, and according to the test results, the strength,
deformation, fracture elongation and other relevant creep parameters can be obtained. At the same time,
the corresponding stress-strain and creep test curves can be calculated.

A temperature of 40°C and a humidity of 60% were employed for the creep tests in this study. All the
creep specimens were polished, resulting in smooth surfaces. Before the short-term creep test, to ensure the
internal temperature and humidity balance, the specimens were placed in a chamber with a constant
temperature of 40°C and a constant humidity of 60% for more than 6 hours. After the preheat treatment,
an extensometer was placed along a 50 mm length in the middle parts of the specimens to determine the
deformation-time relationship of the reconstituted bamboo. The extensometer positions of the
recombinant bamboo are shown in Fig. 3.

2.3 Experimental Program
The test schemes are listed in Tab. 1. There were two types of tests performed: compressive creep and

tensile creep tests. The tests comprised eight groups, with a total of twenty-four specimens. In the specimen
number, the two digits after “C-” are the load level (%), and “01-03” represents the specimen number. In this

Figure 3: Test diagrams of the short-term creep tests of the recombinant bamboo. (a) Compressive creep. (b)
Tensile creep
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work, the average compressive and tensile strength values of the materials were measured. According to the
ultimate strength (72.25 MPa and 98.48 MPa, respectively) and loading level (10%, 20%, 40%, and 60%),
the stress values are calculated. Then, the creep tests were carried out for 6 hours.

3 Test Results

3.1 Creep Phenomenon
For the four groups of recombinant bamboo compressive creep specimens, when the short-term applied

compressive stress is lower than the 40% strength level, no distinct signs of macroscopic failure were
observed on the surfaces of the specimens after 6 hours of compressive creep testing, as shown in Fig. 4.
When the short-term compressive stress reaches the 60% strength level, with the increase in loading time,
a significant failure phenomenon was observed on the surface of the specimens, as shown in Fig. 5. Due
to the high stress level, the C-6001 and C-6002 specimens were subjected to buckling failure 30 minutes
into the test, and the C-6003 specimen was subjected to buckling failure at the 4.53 hours into the test. In
the C-6001 specimen, macroscopic cracks were observed in the longitudinal direction of the upper part,
and the upper part of the specimen showed a tendency to protrude outward, while bamboo fibers around
the crack were extruded (Fig. 5(a)). For the C-6002 specimen, vertical macroscopic cracks extended

Table 1: Short-term creep test schemes for the recombinant bamboo

Test type Groups Specimens Ultimate
stress (MPa)

Loading
level (%)

Stress
(MPa)

Test time
(hours)

Number of
specimens

Compressive
creep

C-10 C-1001-03 72.25 10 7.30 6 3

C-20 C-2001-03 20 14.50 6 3

C-40 C-4001-03 40 28.90 6 3

C-60 C-6001-03 60 43.40 6 3

Tensile creep T-10 T-1001-03 98.48 10 9.84 6 3

T-20 T-2001-03 20 19.69 6 3

T-40 T-4001-03 40 39.39 6 3

T-60 T-6001-03 60 59.08 6 3

Figure 4: Appearance of the bamboo compressive creep specimens at low load levels. (a) Group C-10. (b)
Group C-20. (c) Group C-40
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throughout the entire specimen, accompanied by the sound of splitting (Fig. 5(b)). In the C-6003 specimen,
macroscopic cracks were observed in the longitudinal direction of the upper end of the specimen, and the
bamboo fibers showed buckling failure (Fig. 5(c)). The creep curve measured at the 60% load level is
shown in Fig. 6. In general, the three creep specimens under compression performed well due to the
satisfactory bonding strength between the bamboo fibers.

Similar to the compressive specimens, no significant visible damage occurred in the tensile creep
bamboo specimens at low load levels (below the 40% load level), as shown in Fig. 7. When the short-
term tensile stress reached the 60% strength level, the process of tensile fracturing of the fibers can
usually be divided into three stages: the formation of micropores, slow crack growth, and rapid crack
propagation [58]. The typical failure mode of the recombinant bamboo tensile specimens at high load
levels (60% load level) is shown in Fig. 8. As shown in Fig. 9, the T-6001 specimen was subjected to
mixed failure (plastic failure and brittle failure) 57 minutes into the test, and macroscopic cracks were
observed in its middle part. With increasing time, accompanied by slight fiber breakage, the cracks spread

Figure 5: Failure phenomena of the bamboo compressive creep specimens at high load levels. (a) C-6001.
(b) C-6002. (c) C-6003
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Figure 6: Measured creep curves at the 60% load level
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Figure 7: Appearance of the bamboo tensile creep specimens

Figure 8: Failure phenomena of the bamboo tensile creep specimens at high load levels. (a) T-6001. (b)
T-6002. (c) T-6003
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Figure 9: Measured creep curves at the 60% load level
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randomly and steadily, and mixed damage occurred in the T-6001 specimen. In the process of failure,
continuous breakage and plastic deformation of the bamboo fiber occurred, and brittle rupturing occurred
suddenly. The T-6002 specimen was subjected to brittle fracturing 62 minutes into the test. When failure
occurred due to creep development, the crack spread rapidly, and brittle fracturing suddenly occurred in
the middle part of the specimen, accompanied by a cracking sound. At this time, the accumulated energy
inside the fibers was completely released. The T-6003 specimen exhibited no distinct signs of
macroscopic failure after 6 hours of compressive creep testing.

3.2 Creep Test Results and Analysis
3.2.1 Creep Model

When the creep properties of wood materials were investigated, researchers found that the Maxwell
model, Kelvin-Voigt model and standard linear solid model each have limitations in terms of reproducing
the theoretical model, and the Burgers model can better describe the creep properties of wood materials
[59]. The creep deformation of the recombinant bamboo in this study was examined in reference to the
creep of wood materials, and the strain-time curves of the compressive creep test data were compared to
the theoretical model (Burgers model) and the classical empirical model (Findley model) results.

Burgers Model
The Burgers model is a four-element model obtained by connecting the Maxwell model and the Kelvin-

Voigt model. As shown in Fig. 10, the Burgers model has the advantages of both the Maxwell model and the
Kelvin-Voigt model, which can suitably describe the creep properties of viscoelastic materials and is widely
used in the study of viscoelastic materials.

The strain in the Burgers model is composed of elastic deformation, viscous deformation and
viscoelastic deformation. To define the constant stress σ = σ0, the constitutive equation of the Burgers
model is as follows:

eðtÞ ¼ r0
Ee

þ r0
gv

t þ r0
Eev

1� exp �Eev

gev
t

� �� �
(1)

where ε(t) is the material strain; σ0 is the constant stress on the material; t is the load lasting time; Ee is the
instantaneous elastic modulus; Eev is the delayed elastic modulus; ηv is the viscosity coefficient; and ηev is the
viscoelastic coefficient.
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Figure 10: The creep curve of the Burgers model
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To clearly model the creep test results in this study, Eq. (1) is simplified into a parametric form as
follows:

eðtÞ ¼ Aþ Bt þ C 1� expð�DtÞ½ � (2)

where ε(t) is the deformation of the material; t is the load lasting time during creep; A is the instantaneous
elastic strain; B is the coefficient related to viscous deformation; and C and D are the coefficients related to
viscoelastic deformation.

Findley Model
The Findley model is a parabolic empirical model and is generally used to describe the creep behavior of

polymer materials. Its model expression is as follows:

eðtÞ ¼ y0 þ mtn (3)

where ε(t) is the deformation of the material; y0 is the initial elastic deformation; t is the load lasting time
during creep; and m and n are constants that are a function of the test conditions.

3.2.2 Measured and Fitted Creep Curves
The measured strain-time curves of the compressive creep tests and tensile creep tests are shown in Figs.

11 and 12, respectively. regarding the development of creep deformation, in general, within the first 1.5
hours, creep deformation develops rapidly, and after 1.5 hours, creep deformation tends to develop stably
when the stress is lower than the 40% strength level. For the bamboo specimens at high load levels (the
60% load level; C-60 01-03 and T-60 01-03), creep deformation quickly tends to develop nonuniformly
and increases rapidly until failure. The fitting curves using the theoretical model (Burgers model) and the
classical empirical model (Findley model) are also depicted in these figures. The specimens that fail early
in the tests show different creep behaviors compared to the other specimens; thus, these two groups of
specimens exhibiting early fracture failure at high load levels (C-60 01-03 and T-60 01-03) were
excluded in the fitting process. The fitting curves using the Burgers model and Findley model agree well
with the measured curves in terms of the overall trends.

The relevant fitting parameters of compressive creep and tensile creep from both the Burgers model and
the Findley model are listed in Tabs. 2 and 3, respectively. The relevant parameters of the theoretical model
and empirical model include the instantaneous elastic strain (A), coefficient related to the viscous
deformation (B), coefficients related to the viscoelastic deformation (C and D), correction determinant
coefficient (R2adj) and coefficients related to the empirical model. In this study, tensile and compressive
deformation data are collected by extensometers (Figs. 3(a) and 3(b)). The correlation coefficients (R2adj)
of the creep deformation data fitted by the two models are above 0.95, which indicates that both the
theoretical and empirical models can describe the creep properties of the recombinant bamboo very well.
To accurately illustrate the variation in the creep components of the recombinant bamboo, the theoretical
model (Burgers model) was used to analyze the short-term creep behaviors of the recombinant bamboo
(Section 3.2.3 and Section 3.2.4) and to establish a long-term creep prediction model (Section 4).

3.2.3 Influence of the Load Level on the Creep Performance
Figure 13 displays the average creep deformation curves of the specimens at the different load levels and

the Burgers model fitting curves of the average creep deformation curves. As shown in Fig. 13 and Tabs. 4
and 5, for compressive creep, the results indicate that when the load level increased from 10% to 20%, the
total strain (εl) of the specimen increased from 0.660 × 10-3 to 1.462 × 10-3, an increase of 2.22 times; when
the load level increased from 20% to 40%, the total strain of the specimen increased from 1.462 × 10-3 to
4.660 × 10-3, an increase of 3.19 times. For tensile creep, the specific results show that when the load
level increased from 10% to 20%, the total strain of the specimens increased from 1.181 × 10-3 to 2.116
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Figure 11: Fitted curves and measured curves of compressive creep. (a) Burgers model fitting curves at the
10% load level. (b) Findley model fitting curves at the 10% load level. (c) Burgers model fitting curves at
the 20% load level. (d) Findley model fitting curves at the 20% load level. (e) Burgers model fitting
curves at the 40% load level. (f) Findley model fitting curves at the 40% load level
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× 10-3, an increase of 1.80 times; when the load level increased from 20% to 40%, the total strain of the
specimens increased from 2.116 × 10-3 to 4.721 × 10-3, an increase of 2.23 times, indicating that the total
deformation of creep increased with the increase in load level. Both the compressive and tensile creep
increase with increasing load level, and the creep rate increases with increasing load level.
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Figure 12: Fitted curves and measured curves of tensile creep. (a) Burgers model fitting curves at the
10% load level. (b) Findley model fitting curves at the 10% load level. (c) Burgers model fitting curves at
the 20% load level. (d) Findley model fitting curves at the 20% load level. (e) Burgers model fitting
curves at the 40% load level. (f) Findley model fitting curves at the 40% load level
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3.2.4 Creep Composition Analysis
In viscoelastic mechanics, creep deformation consists of three parts, including the initial elastic

deformation, the viscous deformation that cannot be restored after stress unloading, and the viscoelastic
deformation that can be partially restored. To investigate the individual proportions of the creep deformation
components of recombinant bamboo at the different load levels, the proportions of elastic, viscous and
viscoelastic strain of the total deformation were determined and are summarized in Tabs. 4 and 5

Table 2: Fitting parameters of compressive creep

Specimens Burgers model Findley model

A × 10-3 B × 10-5 C × 10-5 D R2adj m × 10-4 n y0 × 10-5 R2adj

C-1001 0.633 1.053 5.283 1.212 0.990 0.626 0.415 0.260 0.987

C-1002 0.595 0.310 2.769 0.604 0.961 0.219 0.489 0.107 0.957

C-1003 0.531 0.905 1.332 3.407 0.972 0.167 0.734 0.123 0.967

Average 0.586 0.756 3.128 1.741 – 0.337 0.546 0.184 –

C-2001 1.340 1.504 7.301 1.502 0.992 1.073 0.339 0.364 0.997

C-2002 1.270 2.548 11.520 1.956 0.997 1.713 0.334 0.573 0.998

C-2003 1.180 1.562 8.963 1.332 0.996 1.219 0.340 0.414 0.996

Average 1.263 1.871 9.261 1.597 – 1.335 0.338 0.451 –

C-4001 3.260 15.301 98.756 1.405 0.992 15.900 0.272 4.317 0.998

C-4002 3.150 17.494 81.512 2.005 0.997 12.400 0.319 3.961 0.999

C-4003 2.720 12.047 48.222 1.398 0.998 6.478 0.413 2.673 0.999

Average 3.043 14.947 76.163 1.603 – 11.593 0.335 3.878 –

Table 3: Fitting parameters of tensile creep

Specimens Burgers model Findley model

A × 10-3 B × 10-5 C × 10-5 D R2adj m × 10-4 n y0 × 10-5 R2adj

T-1001 0.886 1.481 1.768 15.624 0.960 3.618 0.084 0.718 0.958

T-1002 1.090 0.995 0.578 3.346 0.971 0.988 0.226 1.050 0.958

T-1003 1.01 1.262 0.949 6.275 0.973 2.316 0.118 8.812 0.978

Average 0.995 1.246 1.098 8.415 – 2.307 0.142 3.526 –

T-2001 1.930 0.631 1.538 2.376 0.980 4.709 0.075 1.590 0.955

T-2002 2.130 1.731 1.534 2.599 0.989 4.055 0.123 1.880 0.994

T-2003 1.640 1.181 1.296 5.925 0.972 3.662 0.081 1.410 0.973

Average 1.900 1.181 1.456 3.633 – 4.142 0.093 1.627 –

T-4001 2.990 1.890 1.787 2.768 0.982 5.072 0.109 2.660 0.994

T-4002 3.700 3.490 2.766 2.178 0.986 6.690 0.149 3.300 0.998

T-4003 3.750 4.441 3.307 1.945 0.988 7.213 0.176 3.350 0.999

Average 3.480 3.274 2.620 2.297 – 6.325 0.145 3.103 –
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according to the test results. The values of the initial elastic deformation (ε0) and terminal deformation (εl)
were obtained from the test, and the viscoelastic strain (εev) was obtained from the fitted Burgers model (Eq.
(2)). According to the monotonicity of the exponential function, 6 hours into the test, the viscoelastic strain
(εev) is approximately equal to C. Then, the viscous deformation (εη) is obtained based on Eq. (4), and the
viscous deformation (εη) is calculated via Eq. (1).

eg ¼ el � e0 � C (4)
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Figure 13: Burgers model fitting curves of the average creep deformation. (a) Compressive creep. (b)
Tensile creep

Table 4: Proportions of the deformation components for compressive creep

Specimens Strain Proportions of the deformation components (%)

ε0 (× 10-3) εl (× 10-3) εη (× 10-4) ε0/εl εev/εl εη/εl
C-1001 0.632 0.747 0.610 84.770 7.070 8.150

C-1002 0.587 0.641 0.180 92.860 4.320 2.820

C-1003 0.518 0.596 0.520 89.070 2.240 8.700

Average 0.579 0.661 0.437 88.900 4.540 6.560

C-2001 1.305 1.497 0.840 89.510 4.880 5.610

C-2002 1.227 1.530 1.450 83.010 7.530 9.460

C-2003 1.171 1.360 0.900 86.760 6.590 6.650

Average 1.234 1.462 1.063 86.430 6.330 7.240

C-4001 2.78 5.133 8.850 63.510 19.240 17.250

C-4002 2.824 4.950 9.850 63.640 16.470 19.900

C-4003 2.515 3.896 6.940 69.820 12.380 17.810

Average 2.706 4.660 8.547 65.650 16.030 18.320
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The proportions of the elastic, viscoelastic and viscous strain in the total deformation are plotted in
Fig. 14. It can be observed that the elastic deformation is relatively large, which dominates the total
deformation of the specimens under lasting loading. The viscoelastic deformation and viscous
deformation are smaller than the elastic deformation, accounting for a small proportion, indicating that
the creep recovery of the recombinant bamboo material is strong and the irreversible residual deformation
is relatively small. A low load level has a slight effect on the creep deformation; when the load level
increased, the viscoelastic and viscous deformation increased significantly. For compressive creep, when
the load level increased from 10% to 20%, the ratio of viscoelastic deformation to total deformation
increased from 4.54% to 6.33%, and the ratio of viscous deformation to total deformation increased from

Table 5: Proportions of the deformation components for tensile creep

Specimens Strain Proportions of the deformation components (%)

ε0 (× 10-3) εl (× 10-3) εη (× 10-4) ε0/εl εev/εl εη/εl
T-1001 0.836 1.140 0.770 77.710 15.510 6.780

T-1002 1.078 1.222 0.740 89.200 4.730 6.070

T-1003 0.864 0.945 0.809 91.4288.402 0.012 8.560

Average 0.957 1.181 0.755 86.112 6.751 7.136

T-2001 1.832 2.123 0.390 90.910 7.240 1.850

T-2002 2.039 2.389 1.060 89.160 6.420 4.420

T-2003 1.569 1.835 0.650 89.370 7.060 3.560

Average 1.813 2.116 0.700 89.806 6.906 3.276

T-4001 2.884 3.583 4.140 83.450 4.990 11.560

T-4002 5.017 6.253 1.236 80.233 17.790 1.977

T-4003 3.548 4.329 2.480 86.630 7.640 5.740

Average 3.816 4.721 2.618 83.437 10.140 6.426
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Figure 14: Proportions of the creep deformation components. (a) Compressive creep. (b) Tensile creep
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6.56% to 7.24%. At the 40% strength load level, the viscoelastic deformation and viscous deformation are
16.03% and 18.32%, respectively. For tensile creep, the percentage of the viscoelastic deformation is
between 6.75% and 10.14%, and the percentage of the viscous deformation is between 3.28% and 7.13%.
The load level has clear effects on the overall creep deformation and the proportions of creep deformation
components for the recombinant bamboo. It can be concluded that the residual deformation of creep will
generally increase and the recovery of creep will decrease with increasing load level. According to the
analysis of the proportions of the creep deformation components of the recombinant bamboo, the laws
reflecting the internal mechanism of the creep deformation were determined, and the long-term creep
prediction model was further established.

4 Long-term Creep Prediction Model

To effectively predict the creep behavior of recombinant bamboo, based on the Burgers model (Eq. (2)),
the expression for the relative creep coefficient (ε(t)/�e0) at different load levels is defined as follows:

et=e0 ¼ b1 þ b2t þ b3 1� expð�b4tÞ½ � (5)

where ε̄0 is the initial elastic strain at a certain load level; t is the load lasting time (hours); β1 = A/ ε̄0;β2 = B/ ε̄0;
β3 = C/ ε̄0; and β4 = Eev/ηev.

The Burgers model parameters of every group of specimens can be calculated, and parameters β1, β2, β3
and β4 can be obtained by dividing the corresponding model parameters by ε̄0 for a specific load level.
Defining parameter γ as the stress ratio, coefficients β1, β2, β3 and β4 are related to parameter γ, and the
creep model taking into account the load level can accordingly be determined based on the test results.

4.1 Predictive Model of Compressive Creep
The average creep deformation curves of the specimens at the different compressive load levels are

shown in Fig. 13(a), and the Burgers model fitting curves can be obtained based on these average creep
deformation curves for the different load levels. The creep deformation expression at the different
compressive load levels can be given as:

10% load level:

e10%ðtÞ ¼ 0:586� 10�3 þ 7:56� 10�6t þ 3:128� 10�5 1� expð�1:741tÞ½ � (6)

20% load level:

e20%ðtÞ ¼ 1:263� 10�3 þ 1:871� 10�5t þ 9:261� 10�5 1� expð�1:597tÞ½ � (7)

40% load level:

e40%ðtÞ ¼ 3:043� 10�3 þ 1:4947� 10�4t þ 7:6163� 10�4 1� expð�1:603tÞ½ � (8)

where t is the load lasting time (hours).

The parameters for the relative creep coefficient (ε(t)/ε̄0) expression can be obtained by dividing the
corresponding parameters in Eqs. (6), (7), and (8) by the initial elastic strain ε̄0, as listed in Tab. 6.

Because β1 is very close to 1.0 at the different load levels, the value of β1 is assumed to be 1.0. The
relationship between the model parameters of compressive creep and the load levels are shown in Fig. 15,
and β2, β3, and β4 are approximately linear with load level γ. The linear expression between model
parameter β (representing β2, β3, and β4) and load level γ can be assumed to be:

b ¼ aþ mc (9)

where β is the model parameter; γ is the load level; and a and m are constants.
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It can be seen from Fig. 15 that the model parameters β2 and β3 of compressive creep increase linearly
with the increase in load level γ and that the model parameter β4 decreases linearly with the increase in load
level γ. The expressions of these model parameters can be given as:

b1¼1:0

b2¼ �0:0069þ 0:14c

b3¼ �0:048þ 0:79c

b4¼ 1:738� 0:39c

(10)

The expressions of the model parameters (Eq. (10)) were substituted into Eq. (5) to obtain the predictive
model of compressive creep for the recombinant bamboo. The expression is as follows:

fc¼1þ �0:0069þ 0:14cð Þt þ �0:048þ 0:79cð Þ 1� exp � 1:738� 0:39cð Þt½ �f g (11)

where γ is the load level (%); ζγ is the relative creep coefficient at a certain load level; and t is the load lasting
time during creep (hours).

4.2 Predictive Model of Tensile Creep
The average creep deformation curves of the specimens at the different tensile load levels are shown in

Fig. 13(b), following a fitting process similar to that performed for the compressive creep deformation. The
Burgers model fitting curves can also be obtained for the tensile creep. The creep deformation expression at
the different tensile load levels can be given as:

10% load level:

e10%ðtÞ ¼ 0:995� 10�3 þ 1:246� 10�6t þ 1:098� 10�4 1� expð�8:415tÞ½ � (12)

Table 6: Model parameters of compressive creep at the different load levels

Load levels Initial elastic strain average Parameters

¯ε0 β1 β2 β3 β4
10% 0.000579 1.012 0.013 0.054 1.741

20% 0.001234 1.023 0.015 0.075 1.597

40% 0.002706 1.124 0.055 0.281 1.603
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20% load level:

e20%ðtÞ ¼ 1:9� 10�3 þ 1:181� 10�5t þ 1:456� 10�4 1� expð�3:633tÞ½ � (13)

40% load level:

e40%ðtÞ ¼ 3:480� 10�3 þ 3:274� 10�5t þ 2:620� 10�4 1� expð�2:297tÞ½ � (14)

where t is the load lasting time (hours).

Similar to the compressive creep model parameters, the parameters for the relative creep coefficient (ε(t)/
ε̄0) expression for tensile creep can also be obtained by dividing the corresponding parameters in Eqs. (12),
(13), and (14) by the initial elastic strain ε̄0, as listed in Tab. 7.

The value of β1 is also assumed to be 1.0. The relationship between the model parameters of tensile creep
and the load levels are shown in Fig. 16. Model parameters β2, β3, and β4 decrease linearly with the increase
in load level γ, and the linear expression between model parameters β2, β3, and β4 and load level γ can be
given as:

b1¼1:0

b2¼ 0:0125� 0:00013c

b3¼ 0:1271� 0:002c

b4¼ 10:1235� 0:2128c

(15)

Substituting Eq. (15) into Eq. (5), the predictive model of tensile creep for the recombinant bamboo can
be proposed as follows:

fc¼1þ 0:0125� 0:00013cð Þt þ 0:1271� 0:002cð Þ 1� exp � 10:1235� 0:2128cð Þt½ �f g (16)

where γ is the load level (%); ζγ is the relative creep coefficient at a certain load level; and t is the load lasting
time during creep (hours).

4.3 Validation of the Predictive Model
To demonstrate the validity of the proposed model for the recombinant bamboo, the strain-time curves of

the recombinant bamboo as predicted by the proposed model at the different compressive load levels and
different tensile load levels are shown in Figs. 17 and 18, respectively. The comparisons show that the
proposed model can describe the creep behavior of the recombinant bamboo with increasing time,
including the rapid development in the early stage and the stable development in the middle and late
stages. At the same time, the proposed model may illustrate the significant effects of the load level. The
proposed model is able to accurately evaluate the strain-time behavior of the recombinant bamboo while
considering the load level.

Table 7: Model parameters of tensile creep at different load levels

Load levels Initial strain average Parameters

¯ε0 β1 β2 β3 β4
10% 0.000957 1.039 0.013 0.115 8.793

20% 0.001813 1.048 0.007 0.080 3.633

40% 0.003816 0.87867 0.01035901 0.0686635663566352 2.247
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Figure 16: Relationship between the model parameters of tensile creep and load levels. (a) γ – β2. (b) γ – β3.
(c) γ – β4
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Figure 17: Predicted curves of compressive creep for the recombinant bamboo by the proposed model. (a)
10% load level. (b) 20% load level. (c) 40% load level
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5 Conclusions and Discussion

In this study, based on viscoelastic mechanics theories, aiming at the short-term compressive creep and
tensile creep of recombinant bamboo, creep tests of recombinant bamboo at different load levels were carried
out. The compressive and tensile creep behaviors of recombinant bamboo under constant-temperature and
constant-humidity conditions were examined, and creep prediction models based on the Burgers model
were proposed. The conclusions were as follows:

1. The typical failure mode of the recombinant bamboo specimens under a lasting load at a high load level
(60% strength level) was buckling failure and brittle fracturing due to compressive creep and tensile creep
development, respectively. When the load is lower than the 40% strength level, no clear failure signs can
be observed on the surfaces of the specimens.

2. Under certain temperature and humidity conditions, for the bamboo specimens at high load levels (60%
strength level), creep deformation initially develops unsteadily and rapidly increases until failure; for the
bamboo specimens at low load levels (lower than the 40% strength level), creep deformation develops
rapidly in the early stage (within 1.5 hours) and develops stably in the middle and late stages (after
1.5 hours).
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Figure 18: Predicted curves of tensile creep for the recombinant bamboo by the proposed model. (a) 10%
load level. (b) 20% load level. (c) 40% load level
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3. The total compressive and tensile deformations of the recombinant bamboo increase with the increase in
load level. Through analysis of the changes in elastic, viscoelastic and viscous deformation as percentages
of the total deformation, it can be seen that the load level has a notable effect on the overall creep
deformation and the proportions of creep deformation components. Under the condition of a higher
load level, the creep rate is higher, and the development of creep is more notable. The residual
deformation of creep will generally increase and the recovery of creep will decrease with increasing
load level.

4. Based on the Burgers model, predictive models that can take into account load levels were proposed to
evaluate the compressive and tensile creep behaviors of the recombinant bamboo. The comparisons show
that the proposed model is able to evaluate the strain-time behavior of recombinant bamboo with good
accuracy.

This study mainly considers the effects of load levels on the compressive and tensile creep properties of
recombinant bamboo and long-term predictive models under certain conditions of temperature and humidity.
However, many factors, such as temperature and humidity, affect the creep of recombinant bamboo;
additionally, the coupling of multiple factors has not been discussed. Their effects on the creep behavior
of recombinant bamboo will be the focus of the next phase of research.
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