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Hybrid LES/URANS Simulation of Rayleigh-Bénard Convection
Using BEM

Primož Kocutar1, *, Jure Ravnik1 and Leopold Škerget1

Abstract: In this paper, we develop and test a unified hybrid LES/URANS turbulence
model with two different Large Eddy Simulation (LES) turbulence models. The numerical
algorithm is based on the Boundary Element Method. In the existing hybrid LES/URANS
turbulence model we implemented a new Smagorinsky LES turbulence model. The
hybrid LES/URANS turbulence model is unified, which means that the LES/URANS
interface is changed dynamically during simulation using a physical quantity. In order
to define the interface between LES and unsteady Reynolds Averaged Navier Stokes
(URANS) zones during the simulation, we use the Reynolds number based on turbulent
kinetic energy as a switching criterion. This means that the flow characteristics define
where the sub-grid scale or URANS effective viscosity and thermal conductivity are
used in the governing equations in the next time step. In unified hybrid turbulence
models, only one set of governing equations is used for LES and URANS regions.
The developed hybrid LES/URANS model was tested on non-isothermal, unsteady and
turbulent Rayleigh-Bénard Convection and compared with an existing model, where LES
is based on turbulent kinetic energy. The hybrid turbulence model was implemented within
a numerical algorithm based on the Boundary-Domain Integral Method, where a single
domain and sub-domain approaches were used. The numerical algorithm uses governing
equations written in a velocity-vorticity form. The false transient time scheme is used for
the kinematics equation.

Keywords: Boundary-domain integral method, hybrid LES-RANS, turbulent fluid flow,
heat transfer, Rayleigh-Bénard Convection.

1 Introduction
Heat transfer via natural convection is used widely in the area of HVAC, electronics’
cooling, convection in solar panels, process and power engineering. One of the typical
natural convection problems in engineering is the Rayleigh-Bénard Convection (RBC),

1Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor,
Slovenia.

∗Corresponding Author: Primož Kocutar. Email: primozkocutar@yahoo.com.
Received: 01 October 2019; Accepted: 19 December 2019.

CMES. doi:10.32604/cmes.2020.08728 www.techscience.com/journal/CMES



2 CMES, vol.123, no.1, pp.1-22, 2020

where the fluid develops a regular pattern of convection cells. These occur in a plane
horizontal layer of fluid heated from below. In industrial applications, RBC occurs in
parallel piped shaped mobile tanks, which are filled with hydraulic oil, air, or other liquid
[Ayed, Živković and Tomić (2017)]. Furthermore, RBC occurs in the rotating cavities
in the compressor rotor of a gas turbine [Owen (2010)]. RBC represents a heat transfer
mechanism, which is achieved by vortical turbulent flow developed by thermal buoyancy.

Numerical analysis are widely used in research and development in several industrial
branches.

Employing CFD numerical algorithm Wang et al. [Wang, Yang and Huang (2019)]
successfully establish diffusion model of chaff cloud under airflow. Aerodynamic
coefficients and factors calculated using different turbulence models (Shear Stress Transport
(SST), Reynolds Stress Model (RSM) and k − ε) were compared with wind tunnel results.

Tian et al. [Tian, Liu, Wang et al. (2019)] performed a study of underwater explosion bubble
using Boundary integral equation (BIE) based 2D Numerical model. He et al. [He and Ma
(2019)] developed eigenstrain BIE model for solids with fluid-filled pores analysis.

Fluid and heat transfer engineering problems are, nowadays, solely, or in combination
with experiments, solved using Computational Fluid Dynamics (CFD) programs employing
different turbulence models. Despite disadvantages in comparison with Direct Numerical
Simulation (DNS) and Large Eddy Simulation (LES), the most widely spread turbulence
models in the engineering industry are steady RANS and unsteady URANS respectively.
From the practical point of view, they are still the most robust and versatile, and provide
assessable computational times [Fröhlich and von Terzi (2008)]. In steady RANS or
unsteady URANS, the Reynolds Averaged Navier Stokes equations are used for the
simulation of the fluid flow. In comparison with other approaches of turbulence modelling
LES and DNS, the main advantage of (U)RANS modelling is the attached and fully
developed boundary layer. In the near wall region, where, due to small Kolmogorov length,
LES requires a very fine mesh, (U)RANS requires an affordable mesh density.

When solving near-wall flows by LES the smallest flow structures must be resolved. The
main restriction of the LES is the prediction of the near-wall flow due to the requirement
of a very fine grid resolution in the near-wall region. On the other hand, when dealing with
flows where large turbulent scales are dominant and the mesh resolution requirements are
not too restrictive, e.q. the bluff body flows, LES produces excellent results. URANS faces
difficulties when the bulk flow structure is strongly affected by the dynamic of large-scale
turbulent eddies. URANS simulations, based on statistical averaging, average the effect of
the unsteady large scales and thus lose the information of the flow.

Comparing both turbulence modelling approaches in the bulk flow, the main advantage of
the LES is that it solves large-scale eddies directly, while (U)RANS provides only statistical
information of the turbulent flow, and, thus, does not provide information of structures,
frequencies, etc. Thus, one of the main reasons for hybrid LES/URANS development was
to overcome those limitations of both turbulence models.
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The basic idea of a hybrid LES/URANS turbulence model is to combine the advantages
of both LES and URANS turbulence models. In the near wall region, where LES requires
dense meshes, the URANS model is used, and in the bulk flow, where the URANS model
lacks information about the flow, the LES model is used [Spalart and Shur (1997)]. That
means that one model considers the attached flow in the boundary layer using URANS, and
other resolves detached eddies in the bulk flow using LES.

We can divide LES/URANS hybrid turbulence models based on the fact of how they divide
both regions in the computational domain. One approach is represented by segregated
hybrid models, where the computational domain is divided prior to simulation [Xiao and
Jenny (2012)]. In segregated hybrid models, LES and URANS are solved separately. The
other approach is unified hybrid models, where the same set of governing equations is used
for fluid flow calculation by LES and URANS. Besides unified hybrid models with a hard
interface, where the LES/URANS interface is defined geometrically, we know models with
dynamical interfaces, where the switching criterion, based on physical quantity, defines
the LES/URANS interface dynamically during the simulation [Breuer, Aybay and Jaffrezic
(2010)]. Hybrid models with a dynamic interface depend on flow conditions. The advantage
of such hybrid models is that they are adapted to the flow structure in every time step and
vortex position. In this manner we achieve a smoother transition between the URANS and
LES regions. After the basic concept of hybrid models was known, there were still open
topics, like coupling techniques between regions, which quantity is the most suitable for the
switching criterion, and also which LES and URANS are the most suitable for particular
application of fluid flow.

Ravnik et al. [Ravnik, Škerget and Hriberšek (2006)] employed a numerical solver with
a combination of a BEM based solution of the kinematics equation and FEM-based
solution of the kinetics equation. The numerical algorithm with the LES model was
tested on non-isothermal turbulent simulation of natural convection. Thermal turbulent flow
employing BEM was also studied further by Ramšak et al. [Ramšak and Škerget (2008)].
A two-equation k − ε turbulence model was used in the numerical algorithm with the
multidomain Boundary Element Method using mixed boundary elements and a subdomain
technique. Lupše et al. [Lupše, Škerget and Ravnik (2014)] compared Spalart-Allmaras,
Chien and Abe-Kondoh-Nagano turbulence models employing a BEM based algorithm and
velocity-vorticity form of governing equation. Simulations were performed on a turbulent
channel flow and backward facing step.

The novelty of this work is a new Smagorinsky LES turbulence model implemented in a
verified hybrid LES/URANS turbulence model with dynamic LES/URANS interface. We
developed the hybrid LES/URANS turbulence model and used a numerical algorithm based
on BEM using a combination of single-domain and sub-domain approaches. We employed
a hybrid LES/URANS turbulence model using BEM and a combination of single-domain
and sub-domain approaches. The LES/URANS hybrid model was used for non-stationary
non-isothermal turbulent flow simulation. The main characteristic of a unified hybrid model
is that LES and URANS models are unified within the transport equation for turbulent
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kinetic energy k, and are being solved simultaneously. Using a LES/URANS hybrid
model means that the LES and URANS regions are not defined before simulation, but
they are defined dynamically during simulation itself. During the numerical simulation,
the algorithm switches automatically to URANS within the near wall region, and to the
LES in the bulk flow. Sub-grid viscosity is used in LES mode, while, URANS modelled
viscosity in URANS mode.

A 2D benchmark simulation of Rayleigh-Bénard Convection in a rectangular cavity with
length/height ratio 4/1 was used for testing the present BEM implementation of the hybrid
model. We chose the benchmark simulation of Rayleigh-Bénard Convection because it
requires a reasonable increase of computational resources in comparison with the previous
study of natural convection in a square cavity. The benchmark case has a simple geometry,
well defined boundary conditions, and the same time features complex turbulent flow with
more main big vortexes, small eddies, thin boundary layer and challenging high temperature
gradients.

In the past studies, various experimental and numerical approaches were used to examine
the Rayleigh-Bénard Convention for a wide range of Rayleigh numbers and enclosure
dimension ratios.

Kenjereš et al. [Kenjereš and Hanjalić (2000)] studied two-dimensional Rayleigh-Bénard
Convection employing an algebraic model for turbulent heat flux. They studied the
existence, creation, and behaviour of convective rolls. A wide range of Rayleigh numbers
was performed, from Ra = 105 up to Ra = 1012, and enclosure aspect ratios from 4 : 1
up to 32 : 1. A comparison was made for full three-dimensional direct numerical DNS
simulations, large eddy simulations, and three-dimensional transient Reynolds-averaged
Navier-Stokes approaches. They have shown that the 2D approach is an acceptable method
for average analysis of fully 3D flows with at least one homogeneous direction. A
numerical study of Rayleigh-Bénard Convection was recently performed by Dabbagh et al.
[Dabbagh, Trias, Gorobets et al. (2016a, 2017)]. Dabbagh et al. [Dabbagh, Trias, Gorobets
et al. (2016a)] employed Direct Numerical Simulation to study small scale motions of
Rayleigh-Bénard Convection. The fluid used in the simulation was air. Furthermore,
Dabbagh et al. [Dabbagh, Trias, Gorobets et al. (2016a)], used a new subgrid-scale model
S3PQR for simulation of Rayleigh-Bénard Convection. The developed SGS model was
tested on Rayleigh number Ra = 108, and came in good agreement with the prediction of
turbulent kinetics, although it showed higher heat flux within the boundary layer.

Rayleigh-Bénard Convection was also studied experimentally. Chu et al. [Chu and
Goldstein (1973)] first found the existence of convection roll cells. They also found that the
thermal vortexes were released periodically from relatively fixed locations, which becomes
even more stable when the Ra number is increasing. Chu and Goldstein concluded their
investigation with a Nusselt and Rayleigh number correlation with power law: Nu =
0.123 ·Ra0.294.

Although vast numerical and experimental research has been done, there is still some
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discrepancy between heat transfer scaling. For full understanding of the details and an
overview of the whole physical phenomena of Rayleigh-Bénard Convection, DNS is still
the most widely used.

2 Governing equations
2.1 Velocity-vorticity formulation

In the present work, we used a unified hybrid turbulence model where only one set of
governing equation is solved. The velocity-vorticity formulation is used for governing
equations, and a false transient time scheme for the kinematics equation. The fluid
used in the simulation is considered as incompressible, with constant material properties:
Molecular viscosity νm and heat diffusivity am. The turbulent quantities are calculated
by URANS and SGS models and further, according to the switching criterion used in
the governing equations for kinetics and kinematics. The governing equations have to be
averaged for URANS and filtered for LES simulation. In time averaged/filtered governing
equations, we use effective kinematic viscosity νef and effective heat diffusivity aef . Both
quantities are the sum of the molecular and turbulent parts. Effective kinematic viscosity
is the sum of molecular and turbulent kinematic viscosity defined as νef = νm + νt, and
effective heat diffusivity is the sum of molecular and turbulent heat diffusivity defined as
aef = am + at.

The kinematics equation is the curl of the vorticity vector, written as a pseudo transient
problem that allows an under-relaxation approach. The kinetics equation is the vorticity
equation obtained using the curl of the momentum equation. Employing false diffusivity
α, the kinematic equation for two-dimensional incompressible flow in the velocity-vorticity
formulation is written as Škerget et al. [Škerget, Hriberšek and Kuhn (1999)]:

∂2vi
∂xj∂xj

− 1

α

∂vi
∂t

+ eijk
∂ωk
xj

= 0. (1)

The kinetics equation is the vorticity equation obtained using the curl of the momentum
equation. The only acting force on the fluid in natural convection driven flows is buoyancy
resulting from density differences due to the temperature. For simulating buoyancy in
incompressible fluid, we introduce Boussinesq’s approximation in the following kinetic
equation. For solving non-isothermal turbulent flow, we also have to introduce the
correlation between turbulent viscosity νt and turbulent thermal diffusivity at; we used
correlation using turbulent Prandtl number Prt defined as: at = νt

Prt
. With the curl of the

second extended form of the momentum conservation equation, the equation for kinetics
can be written as:
Dω

Dt
= νef

∂2ω

∂xj∂xj
+ eij

∂(βT g(T − T0))

∂xj
− eij

∂fmi
∂xj

. (2)

where the parameters of the equation are the reference temperature T0, thermal volumetric
expansion coefficient βT , gravity force g and the non-zero component of the vorticity vector
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ω. The term fmi in the Eq. (2) is defined as:

fmi = −eij
∂(νefω)

∂xj
+ 2

∂νef
∂xj

∂vi
∂xj

+ 2eij
∂νef
∂xj

ω. (3)

For the simulation of the non-isothermal turbulent flow we have to write the energy equation
for temperature T [Lupše, Škerget and Ravnik (2014)]:
∂T

∂t
+
∂vjT

∂xj
=

∂

∂xj

(
(am +

νt
Prt

)
∂T

∂xj

)
, (4)

and the transport equation for turbulent kinetic energy k, written as Breuer et al. [Breuer,
Jaffrezic and Arora (2008)]:

∂k

∂t
+ vj

∂k

∂xj
=

∂

∂xj

[
(νm + νt) ·

∂k

∂xj

]
+ νt

(
∂vi
∂xj

+
∂vj
∂xi

)
∂vi
∂xj︸ ︷︷ ︸

P

−D. (5)

In the Eq. (5), the P is the production part, D the dissipation part, its sum is the source term
I , νm is molecular and νt is turbulent viscosity.

For the fluid flow simulation in the present research, we used a hybrid turbulence model
based on the transport equation for turbulent kinetic energy (5). The main characteristic
is that, in the URANS region, turbulent viscosity νt and dissipation part D, calculated
using a URANS model, νt,URANS and DURANS are used, and in the LES region, turbulent
viscosity and the dissipation part, calculated using SGS model νt,SGS and DSGS .

3 Hybrid LES/URANS turbulence model
3.1 Turbulence model for LES

3.1.1 Smagorinsky LES model

For LES subgrid-scale viscosity νt,sgs and Dsgs we used Smagorinsky LES model [Pope
(2000)]. The filter width is calculated as:

∆ = (∆x ·∆y)1/2. (6)

Subgrid-scale viscosity νt,sgs is calculated as

νt,sgs = l2SS̄ = (CS∆)2S̄ (7)

where lS is the Smagorinsky length scale, CS the Smagorinsky coefficient and S̄ is defined
as:

S̄ = (2S̄ijS̄ij)
1/2, S̄ij =

1

2

(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
. (8)

The dissipation part of the Smagorinsky model is defined as:

Dsgs = l2S
〈
S̄3
〉

(9)
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3.1.2 Turbulence kinetic energy based turbulence model for LES

The LES subgrid-scale viscosity used in the turbulence model, based on the
transport-equation for turbulent kinetic energy k, is calculated as Pope [Pope (2000)]. Filter
width ∆, dissipation part Dsgs and turbulent viscosity νt,sgs for the sub-grid model can be
written as:

νt,sgs = Cµ · k1/2 ·∆, Dsgs = Cd · k3/2/∆,∆ = (∆x ·∆y)1/2. (10)

where Cd = 1.0, Cµ = 0.05 [Schumann (1975)] .

3.2 Turbulence model for URANS

For the URANS part of the hybrid model, we used the one-equation turbulence model based
on the transport equation for turbulent kinetic energy [Breuer, Jaffrezic and Arora (2008)].
Turbulent viscosity νt,URANS is defined as:

νt,URANS = (v′2)1/2 · lµ,v, (11)

where lµ,v is the characteristic length defined as lµ,v = Cl,µ · y, Cl,µ = 0.33 and v′2 normal
velocity fluctuations defined as:

v′2 = k · (4.65 · 10−5Re2
k + 4.00 · 10−4Rek). (12)

Dissipation part DURANS is defined empirically as: DURANS = (v′2)1/2·k
lD,v

, where lD,v

is dissipation length defined as: lD,v = 1.3 · y/
(

1 + 2.12 ν

y(v′2)1/2

)
. For the switching

criterion we calculate Reynolds number defined turbulent kinetic energy k:

Rek =
k1/2 · y
ν

. (13)

3.3 Switching criterion between LES/URANS region

For a dynamical definition of the LES and URANS area in the computational domain during
the calculation, we used the switching criterion based on the physical quantity Reynolds
number defined by turbulent kinetic energy k; Rek. Rek can be written as:

Rek =
k1/2 · y
ν

, (14)

where k is the turbulent kinetic energy, ν the viscosity of the fluid, and y the normal distance
from the wall.

Thus, the switching criterion between the LES and URANS areas can be defined as Breuer
et al. [Breuer, Jaffrezic and Arora (2008)]:

Rek ≤ Cswitch → RANS mode,

Rek > Cswitch → LES mode. (15)
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3.4 Summary

Characteristics and labels of each LES/URANS turbulence model are summarised in the
Tab. 1. In models 1 and 2, the same URANS model and switching criterion were used, but

Table 1: LES/URANS hybrid turbulence models used in fluid flow simulations.

Hybrid model 1 [Kocutar, Škerget and Ravnik (2015)] 2
LES model Based on k Smagorinsky

(Section 3.1.2) (Section 3.1.1)
URANS model Based on k Based on k

(Section 3.2)
Switching crit. Rek Rek (Section 3.3)

they differed in the LES model. In model 1 we used a LES model based on the transport
equation for turbulent kinetic energy k, and in model 2, the Smagorinsky model, where the
turbulent values are calculated from the current velocity field.

4 Numerical method
In the present study of fluid flow, we used the subdomain Boundary Element Method based
numerical algorithm. The Navier-Stokes equations were written in a velocity-vorticity
formulation [Kocutar, Škerget and Ravnik (2015)]. For the BEM formulation, the effective
viscosity is divided into constant and variable parts νm + νt = νef = ν0 + ν̃, in the same
manner, we divide thermal diffusivity am + at = aef = a0 + ã.

4.1 Integral formulation of parabolic-diffusive fundamental solution

Employing a parabolic-diffusion fundamental solution

u∗(ξ, s; tF , t) =
1

(4πν0τ)
e−r

2/ν0τ , (16)

where (ξ, tF ) is a source point, (s, t) a reference point within a domain, r a vector from
source point ξ to reference point s, and τ a time step, the kinetic Eq. (2) for two-dimensional
flow in integral form can be written as:

c(ξ)ω(ξ, tF ) +

∫
Γ
ω
∂U∗

∂n
dΓ =

1

ν0

∫
Γ

(
(ν0 + ν̃)

∂ω

∂n
− ωvn

)
U∗dΓ +

1

ν0

∫
Ω

(
ωvj − ν̃

∂ω

∂xj

)
∂U∗

∂xi
dΩ + eij

1

ν0

(∫
Γ
nigjFU

∗dΓ− gjF
∂U∗

∂xi
dΩ

)
−

eij
1

ν0

(∫
Γ
fmi njU

∗dΓ−
∫

Ω
fmi

∂U∗

∂xj
dΩ

)
+

∫
Ω
ωF−1u

∗
F−1dΩ. (17)
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In the same way, we can write the kinematics Eq. (1). For further simplification of the
numerical scheme, we select the under relaxation term of false transient time scheme α
equal to the viscosity term ν0 and write:

ν0
∂2vi

∂xj∂xj
− ∂vi

∂t
+ ν0eij

∂ω

∂xj
= 0. (18)

Considering the Eq. (18) and

U∗ = ν0

∫ tf

tf−1

u∗dt,
∂U∗

∂n
= ν0

∫ tf

tf−1

∂u∗

∂n
dt,

∂U∗

∂xj
= ν0

∫ tf

tf−1

∂u∗

∂xj
dt, (19)

the kinematic Eq. (1) can be written in integral form as:

c(ξ)vi(ξ, tF ) +

∫
Γ
vi
∂U∗

∂n
dΓ =

∫
Γ

(
∂vi
∂n

+ ν0eijωnj

)
U∗dΓ−∫

Ω
ν0eijω

∂U∗

∂xj
dΩ +

∫
Ω
vF−1u

∗
F−1dΩ. (20)

Employing the approached presented by Škerget et al. [Škerget, Hriberšek and Žunic
(2003)], the kinematics Eq. (1) is also used to determine boundary vorticity value.

Before implementing the governing transport equations (velocity, vorticity, temperature,
and turbulence kinetic energy) into the numerical algorithm, they were written in the
discrete form. A collocation strategy was employed to derive the final system of linear
equations.

4.2 Discrete form

Before implementing the governing transport equations (velocity, vorticity, temperature
and turbulence kinetic energy) into the numerical algorithm they have to be written in the
discrete form.

The computation domain consists of C internal cells and E boundary elements, thus we
can write: Γ =

∑E
e=1 Γe, Ω =

∑C
c=1 Ωc. For calculation of the sum of integrals

over boundary domain we interpolate field function over every boundary element E using
Φ and every computational cell using φ. In the numerical algorithm, we used quadratic
interpolation function for computational nodes and constant function for fluxes.

In the following Eqs. (21) to (23) the number of nodes in each internal cell or boundary
element is noted with index p and the degree of time polynomial ψ with index m.
Employing parabolic-diffusion fundamental solution u∗ and time step F the equation for
kinematics (20) for two-dimensional flow can be written as:
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c(ξ)vi(ξ) +
E∑
e=1

{h}T {vi} =
E∑
e=1

{g}T
{
ν0eijvj

∂U∗

∂t

}p
−

ν0eij

C∑
c=1

{dj}T {ω}p + β

C∑
c=1

{b}T {vi}pF−1 , (21)

where transposition is labeled with T and vectors of nodal values are labeled with {}.
In the same matter the equation for kinetics (17) can be written as:

c(ξ)ω(ξ) +
E∑
e=1

{h}T {ω} =
1

ν0

E∑
e=1

{g}T
{
νef

∂ω

∂n
− ωvn

}p
+

1

ν0

C∑
c=1

{di}T
{
ωvi − ν̃

∂ω

∂xj

}p
− eij

1

ν0

E∑
e=1

{g}T {fmi }+ eij
1

ν0

C∑
c=1

{di}T {fmi }

+eij
1

ν0

E∑
e=1

{g}T {nigjF}p − eij
1

ν0

C∑
c=1

{di}T {gjF}p + β
C∑
c=1

{b}T ωpF−1. (22)

For solving non-isothermal fluid flow the energy Eq. (4) has to be written as:

c(ξ)T (ξ, tF ) +

E∑
e=1

{h}T {T}pF =
1

a0

E∑
e=1

{g}T
{

(a0 + ν̃)
∂T

∂n

}p
F

− 1

a0

E∑
e=1

{g}T {Tvn}pF +
1

a0

C∑
c=1

{dj}T
{
Tvj − ν̃

∂T

∂xj

}p
F

+
C∑
c=1

{b}T {T}pF−1, (23)

and for the purpose of modeling the turbulent fluid flow the transport equation for turbulent
kinetic energy k (5) as:

c(ξ)k(ξ, tF ) +
E∑
e=1

{h}T {k}pF =
1

ν0

E∑
e=1

{g}T
{

(ν0 + ν̃)
∂k

∂n

}p
F

− 1

ν0

E∑
e=1

{g}T {kvn}pF

+
1

ν0

C∑
c=1

{dj}T
{
kvj − ν̃

∂u

∂xj

}p
F

+
1

ν0

C∑
c=1

{d}T {I}pF +
C∑
c=1

{b}T {k}pF−1. (24)

For solving the system of equations written in matrix notation we employed the Sleijpen et
al. [Sleijpen and Fokkema (1993)].
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4.3 Numerical algorithm

The dual reciprocity method is usually applied when dealing with non-linear problems
such as fluid flow, to remove the need for performing domain integration. In our work,
we use a domain decomposition approach instead. We mesh the entire domain using
a standard meshing tools steaming from computational fluid dynamics packages and
preformed domain decomposition in such a way that each domain element represents
a subbomain. Within each subdomain we apply BEM for produce linear equations for
each of the function and flux nodes within the subdomain. Next we use continuity of
function and compatibility of flux for join subdomain equations into a large system of
liner equations. The resulting system is sparse, and thus enables the use of dense meshes.
This domain-decomposition approach is used to discretizise transport equations (velocity,
vorticity, temperature, and turbulence kinetic energy). The determination of boundary
vorticity values (20) is done using standard BEM with calculation of the domain integrals.
Internal mesh used in simulation is refined in y-direction towards the upper and lower wall
using a geometrical series with the ratio between longest and shortest elements R = 16.

Since our method is based on domain decomposition, we can use standard CFD meshing
tools to produce a domain mesh, which is capable of capturing the small flow structures
required by the LES. We are proposing a hybrid RANS-LES approach, since the LES
demands a very fine grid close to the walls, which is currently too costly of our BEM
based algorithm. Thus, using the switching criterion we are able to use RANS in parts of
the domain, where the grid is fine enough for LES.

For the transient simulation, the numerical algorithm starts with a time loop, and continues
with a global iteration loop. Then, the algorithm starts a kinematics loop, where the
boundary vorticity ω and then internal velocity v are calculated. When the convergence
for ω and v is fulfilled, the algorithm continues on to the next step. In the next step, the
energy equation for kinetics is solved, and, finally, the vorticity ω for kinetics. Handling
turbulence starts with the outer-loop for effective viscosity. In the LES/URANS hybrid
turbulence model, the turbulence viscosity and dissipation part are calculated for sub-grid
νsgs, Dsgs, Sections 3.1.1 and 3.1.2, and for URANS model νURANS , DURANS , Sections
3.2. Calculating the Rek 3.3 the interface is defined between the LES and URANS regions.
By defining the interface, we choose which D and ηef are used for the turbulent kinetic
energy k equation, and, in the following time step, for solving the governing equations
for the fluid flow. After that, the transport equation for turbulent kinetic energy k is solved.
After the convergence for νef is fulfilled, the algorithm checks the convergence for vorticity
ω and temperature T .
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5 Simulation of natural Rayleigh-Bénard Convection within a square cavity
The developed turbulence model was tested on an unsteady turbulent Rayleigh-Bénard
Convection with the ratio of height and length of H : L = 1 : 4. The Rayleigh-Bénard
Convection is a buoyancy-driven flow, where the temperature difference between the heated
lower plate and cooled upper plate acts as a major generator for heat and fluid momentum
transfer. When the Rayleigh number is increased the flow becomes more turbulent, and
the arrays of roll cells are becoming more unsteady and chaotic. Due to buoyancy, the
flow is rising from the lower hot plate and penetrating the bulk flow up to the upper cold
plate, where flow mixing leads to intensive vortexes and an almost uni-thermal middle area.
Rayleigh-Bénard Convection within the cavity is steady up to a Rayleigh number around
Ra = 107.

The boundary conditions for Rayleigh-Bénard Convection are defined in Fig. 1 in a
non-dimensional setting: Temperature Th = 1 on the uniformly heated lower wall,
temperature Tc = 0 on the uniformly cooled upper wall, adiabatic boundary condition
q = 0 on the left and right walls, no-slip velocity ∂~v

∂n = 0 boundary conditions on all four
walls, and gravity ~g in the opposite direction of coordinate y. The problem is defined by
the Rayleigh number. The Rayleigh number and the Prandtl number, which we choose to
be the Prandtl number of air Pr = 0.71, are defined as

Ra =
g · β ·∆T ·H3

ν · α
, Pr =

ν

α
. (25)

The cavity of Rayleigh-Bénard Convection is assumed to be L = 0.8m wide and H =
0.2m high. The fluid in the cavity is air with kinematic viscosity ν = 17.6 · 10−6m2/s,
thermal volumetric expansion coefficients β = 1/313.15K−1, and thermal conductivity
λ = 0.0265W/mK. That means that the difference between heated and cooled walls is
∆T = 174.08K at Ra = 108.

For numerical simulations, we used a computational mesh with 160× 80 domain elements
and 321× 161 nodes, respectively. The mesh was compressed in the normal wall direction
in the y coordinate, with the geometrical series having the ratio between the longest and
shortest elements R = 16. The results of Rayleigh-Bénard Convection simulation are
evaluated using the averaged Nusselt number. The Nusselt number measures the heat flux
through a solid wall, and can be defined as:

Nu =
1

H

∫ H

0

∂T

∂x
dy. (26)

6 Results
6.1 Direct Numerical Simulation of Rayleigh-Bénard Convection at Ra = 104 − 107

Prior to using the LES/URANS hybrid model for turbulent flow, the domain mesh and
numerical algorithm were validated using a steady-state direct numerical simulation of
Rayleigh-Bénard Convection for Rayleigh numbers from Ra = 104 to Ra = 107. We
tested our numerical algorithm on three different meshes, 140× 70R16, 160× 80R16, and
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Figure 1: Boundary conditions for test case simulation of Rayleigh-Bénard Convection
within cavity. The vorticity ω is calculated as a part of a numerical algorithm.

180 × 90R16, which means 281 × 141, 321 × 161 and 361 × 181 nodes. The results
for Rayleigh numbers from Ra = 104 to Ra = 107 were compared with the results
of other authors, and are shown in the Tab. 2: Kenjereš et al. [Kenjereš and Hanjalić
(2000)] and Peng et al. [Peng, Hanjalić and Davidson (2006)]. The results with all meshes
140×70R16, 160×80R16 and 180×90R16 show good agreement with benchmark results.
The computational mesh 140 × 70R16 was too coarse for turbulent flow at Ra = 108 due
to a thin boundary layer and high temperature gradient. Since the values of Nusselt number
Nu/L compare well with published values and since only small differences were observed
between different meshes, we concluded that the numerical algorithm is appropriate for
further simulations using the Hybrid LES/URANS turbulence model using the 321 × 161
nodes mesh.

Fig. 2 shows the temperature field of laminar Rayleigh-Bénard Convection for Rayleigh
numbers from Ra = 104 up to Ra = 107. We found that, with the increasing of the
Rayleigh number, the temperature gradient near the upper and lower wall was increasing,
and the area of unithermal bulk flow (green color) was getting nearer to the horizontal walls.
In the Ra = 107 case, we can see perturbations in the temperature peaks, which indicate
the transition to unsteady turbulent flow.

Fig. 3 shows the temperature profiles of Rayleigh-Bénard Convection using computational
mesh 160x80R16 for the laminar steady-state simulations for Rayleigh numbers from
Ra = 104 to Ra = 107 at height y = L/2 and length x = L/2 respectively.

6.2 Turbulent Rayleigh-Bénard Convection at Ra = 108

Simulation of turbulent Rayleigh-Bénard Convection atRa = 108 was performed using the
computational mesh 160x80R16 and by using the hybrid LES/URANS turbulence model.
For the switching criterion between LES and URANS area we defined Cswitch = 20.

Figs. 6 and 7 show that Rayleigh-Bénard Convection is already turbulent, thus unsteady
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Table 2: Nusselt number for Rayleigh-Bénard Convection simulation using DNS and
comparison with other researchers. Simulations are performed for steady-state laminar flow
for Rayleigh numbers from Ra = 104 to Ra = 107.

Ra [S. Kenjereš and [Peng, Hanjalić, present present present
K. Hanjalić (2000)] and Davidson (2006)] 140× 70 160× 80 180× 90

105 4.33 5.00 4.99 4.99
106 8.66 8.42 8.82 8.82 8.84
107 17.47 16.27 15.48 15.47 15.475

and chaotic. From the streamlines on the temperature field, Figs. 6 and 7 above, we noticed
that the vortexes occur in the corners and near connection lines (0.25, 0.5 and 0.75 · L).
As mentioned before, the driving force of Rayleigh-Bénard Convection is the difference in
temperature between the upper and lower walls, which, due too gravity and different density
of the fluid, generates buoyancy. The fluid is accelerating in two areas, partly along the
heated and cooler walls in the x-direction, and mainly in the y-direction near the walls and
connection lines (0.25, 0.5 and 0.75·L), where the vortexes collide in the vertical walls and
each other respectively. Also, the majority of turbulent eddies occur in areas where flows
collide in the wall or in each other. From the temperature and vorticity fields, Figs. 6 and 7
above and middle, it can be seen that the boundary layer near the horizontal is very thin and
temperature gradients are high. The bulk flow between the plates is almost unithermal. Due
to a thin boundary layer and high temperature gradients the mesh should be compressed
near the walls. When comparing the Hybrid LES/URANS region with the temperature and
vorticity fields, we noticed that the URANS is being used near the fix-wall regions where
attached flow occurs, and LES in the bulk where eddies detach.

From temperature-vorticity phase portraits for Ra = 108 for point A (0.05, 0.0498), Fig. 4,
we see that the flow is unsteady and chaotic, thus turbulent. At Rayleigh-Bénard Convection
the transition from laminar to turbulent flow occurs betweenRa = 107−108. The unsteady
and turbulent characteristics of Rayleigh-Bénard Convection can be seen in Figs. 6 and 7,
where the temperature and the vorticity fields for Ra = 108 are shown. Fig. 5 shows the
temperature time series power spectra at a point 0.050, 0.4983 for both hybrid turbulence
models. Power spectra show the presence of eddies of the different sizes and frequencies
of its forming oscillations. The power spectra were calculated using the Fast Fourier
Transform. Fig. 8 shows the Nusselt numberNu/L atRa = 108 for both hybrid turbulence
models 1 and 2 are shown. The ratio of the area where the LES turbulence model is used is
shown on the Fig. 9.

According to the Kolmogorov hypothesis, both turbulence models were compared for a
one-dimensional longitudinal energy spectrum of turbulence. Fig. 10 shows that both
turbulence models start with increasing of E(k) in the energy containing range of eddies
and continue with inertial subrange, where bigger eddies forward the energy to smaller
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Figure 2: Temperature field of laminar simulation of Rayleigh-Bénard Convection on 
computational mesh 160 × 80R16. Results are shown from above to below for Rayleigh 
Numbers Ra = 104 (above), Ra = 105 (upper middle), Ra = 106 (lower middle) and 
Ra = 107 (below).

scale eddies, and end up with a dissipation subrange. It can be seen that the spectrum for 
both models in the inertial subrange is parallel to the −5/3 slope used in the Kolmogorov 
hypothesis.

Tab. 3 shows the averaged Nusselt number Nu/L of the present LES/URANS hybrid 
turbulence models 1 and 2 and compared the results of other researchers. Kenjereš et 
al. [Kenjereš and Hanjalić (2000)] performed numerical simulation based on URANS, 
while Dabbagh et al. performed simulations using DNS [Dabbagh, Trias, Gorobets et al.
(2016b)] and LES [Dabbagh, Trias, Gorobets et al. (2016a)], Peng et al. used LES [Peng, 
Hanjalić and Davidson (2006)] and Choi et al. elliptic blending second-moment closure 
[Choi and Kim (2008)]. Grossmann et al. [Grossmann and Lohse (2000)] derived a scaling 
theory based on experimental data, and proposed correlation between Rayleigh and Nusselt 
numbers for Rayleigh-Bénard Convection defined as Nu = 0 .27Ra1/4 + 0.038Ra1/3.
For the further evaluation of both turbulence hybrid models and the influence of 
implemented Smagorinsky LES model into Hybrid model 2, the results of Hybrid models
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Figure 3: Temperature profiles of Rayleigh-Bénard Convection using computational mesh
160x80R16 for the laminar steady-state simulations for Rayleigh numbers from Ra = 104

to Ra = 107 at height y = H/2 and length x = L/2 respectively.

1 and 2 for Ra = 108 were compared with average Nusselt value Nu/L of all considered
numerical simulations Nuavg = 33.32 [Kenjereš and Hanjalić (2000), Dabbagh, Trias,
Gorobets et al. (2016b), Dabbagh, Trias, Gorobets et al. (2016a), Peng, Hanjalić and
Davidson (2006), Choi and Kim (2008)] and the average value of both LES simulation
Nuavg = 33.22 [Dabbagh, Trias, Gorobets et al. (2016a), Peng, Hanjalić and Davidson
(2006)]. Hybrid model 1 overpredicts the Nusselt number for about 4.9% in comparison
with the average value of all numerical simulations and 5.2% in comparison with the
average value of both LES simulations. The values of new developed Hybrid model 2 are
almost identical, 0.9% in comparison with the average value of all numerical simulations
and 1.2% in comparison with the average value of both LES simulations.

Comparing the results for both Hybrid models we noticed that the new Hybrid model 2
comes in better agreement with the average value of Numerical simulations and also with
the average value of LES simulations.

We can conclude that the results obtained with the LES/URANS Hybrid model 1 and Hybrid
model 2 for Ra = 108 came in good agreement with the numerical [Kenjereš and Hanjalić
(2000); Dabbagh, Trias, Gorobets et al. (2016b,a), Peng, Hanjalić and Davidson (2006),
Choi and Kim (2008)] and experimental results [Grossmann and Lohse (2000)].

Table 3: Nusselt Nu/L for Rayleigh number Ra = 108 using Hybrid models 1 and 2 on
computational mesh 160x80R16 and comparison with other authors.

Hybrid Hybrid Grossmann Kenjereš Peng Choi Dabbagh Dabbagh
model model et al. et al. et al. et al. et al. DNS et al. LES

1 2 (2000) (2000) (2006) (2008) (2016) (2016)
34.96 33.62 44.6 35.5 31.44 33.74 30.9 35.0
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Figure 4: Temperature T and vorticity ω in point (0.05, 0.04983) at Ra = 108 using
computational mesh 160x80R16 and hybrid model 1 (figure left) and hybrid model 2 (figure
right).
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Figure 5: Power spectra of temperature time series at point A (0.050, 0.4983) using
computational mesh 160x80R16 and hybrid model 1 (figure left) and hybrid model 2 (figure
right).
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Figure 6: Temperature (top), vorticity (middle) and LES/URANS hybrid model area
(bottom) field at Ra = 108 using hybrid model 1 and computational mesh 160x80R16
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Figure 7: Temperature (top), vorticity (middle) and LES/URANS hybrid model area
(bottom) field at Ra = 108 using hybrid model 2 and computational mesh 160x80R16
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7 Conclusions

In the present work, we used the developed hybrid LES/URANS turbulence models
successfully using two different approaches for LES for solving unsteady non-isothermal
turbulent Rayleigh-Bénard Convection. We employed a BEM based numerical algorithm
in combination with the velocity-vorticity formulation of governing equations.

In the LES/URANS models we used two different approaches for the LES model, a
one-equation LES model based on the transport equation for turbulent kinetic energy k and
basic Smagorinsky LES model, calculated from the current velocity field. The numerical
algorithm was tested using air Rayleigh-Bénard Convection with the ratio length/height
4 : 1. For the steady flow up to Rayleigh numbers Ra = 107, we used direct numerical
simulation. The transition from laminar to turbulent flow occurs at Rayleigh numbers
Ra = 107 − 108, where flow becomes unsteady and turbulent. For developed turbulent
flow above Ra = 108, we used a unified one-equation LES/URANS hybrid turbulence
model. In the LES/URANS hybrid models we employed two different LES models, a
one-equation LES model based on the transport equation for turbulent kinetic energy k and
a Smagorinsky LES model. Both turbulence models use the same one-equation k RANS
model and same switching criterion, and Reynolds number based on turbulent kinetic
energy Retot. Results from the hybrid models using both LES approaches came in with
good agreement with results from Kenjereš at al. [Kenjereš and Hanjalić (2000)], Peng et
al. [Peng, Hanjalić and Davidson (2006)], Choi et al. [Choi and Kim (2008)], Dabbagh
et al. [Dabbagh, Trias, Gorobets et al. (2016b,a)] and Grossmann et al. [Grossmann and
Lohse (2000)].

Funding Statement: The authors acknowledge the financial support from the Slovenian
Research Agency (research core funding No. P2-0196).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
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