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Modeling and Simulation of Valve Cycle in Vein Using an 
Immersed Finite Element Method 
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Abstract: A vein model was established to simulate the periodic characteristics of blood 
flow and valve deformation in blood-induced valve cycles. Using an immersed finite 
element method which was modified by a ghost fluid technique, the interaction between 
the vein and blood was simulated. With an independent solid solver, the contact force 
between vein tissues was calculated using an adhesive contact method. A benchmark 
simulation of the normal valve cycle validated the proposed model for a healthy vein. 
Both the opening orifice and blood flow rate agreed with those in the physiology. Low 
blood shear stress and maximum leaflet stress were also seen in the base region of the 
valve. On the basis of the healthy model, a diseased vein model was subsequently built to 
explore the sinus lesions, namely, fibrosis and atrophy which are assumed stiffening and 
softening of the sinus. Our results showed the opening orifice of the diseased vein was 
inversely proportional to the corresponding modulus of the sinus. A drop in the 
transvalvular pressure gradient resulted from the sinus lesion. Compared to the fibrosis, 
the atrophy of the sinus apparently improved the vein deformability but simultaneously 
accelerated the deterioration of venous disease and increased the risk of potential fracture. 
These results provide understandings of the normal/abnormal valve cycle in vein, and can 
be also helpful for the prosthesis design. 

Keywords: Numerical simulation, fluid-structure interaction, immersed finite element 
method, adhesive contact method, bio-mechanics, venous valve. 

1 Introduction 
Venous disorders have attracted considerable attention in recent times due to their high 
prevalence and economic burden [Meissner, Moneta, Burnand et al. (2007)]. An 
epidemiological survey in the United States showed that nearly 35% of the adults had 
varicose veins [Mclafferty, Passman, Caprini et al. (2008)], while the annual medical 

 
1 Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan, 430070, 

China. 
2 College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, 430048, China. 
3 China Special Vehicle Research Institute, Aviation Key Scientific and Technological Laboratory of High 

Speed Hydrodynamic, Jingmen, 448035, China. 
4 Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China. 
5 State Key Laboratory of Advanced Technology of Materials Synthesis and Processing, Wuhan University of 

Technology, Wuhan, 430070, China. 
* Corresponding Author: Lisheng Liu. Email: liulish@whut.edu.cn. 
Received: 07 October 2019; Accepted: 16 January 2020. 



 
 
 
154                                                                                CMES, vol.123, no.1, pp.153-183, 2020 

expenditure on chronic venous diseases (CVD) was more than 100 million euros per 
million inhabitants in Europe [Carpentier, Maricq, Biro et al. (2004)]. Diseased veins 
have been studied using both in vivo [Hertzberg, Kliewer, Delong et al. (1997); Yamaki, 
Sasaki and Nozaki (2002)] and in vitro [Buescher, Nachiappan, Brumbaugh et al. (2005); 
Lurie,  Kistner, Eklof et al. (2003)] models, as well as mathematical simulation. Although 
in vivo imaging could display pathological symptoms [Lurie, Kistner, Eklof et al. (2003)], 
such as vascular lesion [Hertzberg, Kliewer, Delong et al. (1997)], valve lesion [Yamaki, 
Sasaki and Nozaki (2002)] and sinus lesion [Korch, Cuvinciuc, Caetano (2014)], the 
analyses were only qualitative. With artificial venous flow systems, it was possible to 
calculate the kinetics of venous movement and blood flow, as well as quantify the effects 
of abnormal valve anatomy [Buescher, Nachiappan, Brumbaugh et al. (2005)]. 
Nevertheless, dynamic measurements were still challenging in in vivo and in vitro 
experiments [Qui, Quijano, Wang et al. (1995)].  
Finite element modeling allows the flexible, reproducible and quantitative analysis of 
multifactorial scenarios [Zervides and Giannoukas (2013)]. Mathematical studies of heart 
valve [Aluri and Chandran (2001); Li, Baird, Yao et al. (2019)] and aortic valve [Bavo, 
Rocatello, Iannaccone et al. (2016)] have successfully revealed both the kinetic and 
dynamic characteristics of the interaction between biological motions and blood. 
Therefore, modeling and simulation of the venous valve cycle are of interest in clinical 
diagnosis as well as in bio-engineering applications.  
So far, only a few reports were available on the finite element modeling of veins [Buxton 
and Clarke (2007); Chen, Berwick, Krieger et al. (2014)]. Buxton et al. [Buxton and 
Clarke (2007)] used a lattice spring model to illustrate the basic physics of vein valves. 
They investigated the dynamics of the valve opening area, and captured the unidirectional 
nature of the blood flow across the venous valve. Subsequently, Chen et al. [Chen, 
Berwick, Krieger et al. (2014)] reported a biomechanical comparison between mono-, bi- 
and tri-cuspid venous valve architectures. They provided the relevant implications on the 
structure and flow mechanics in the vein and found that the mechanical cost for the 
bicuspid valve was lowest. In these modellings, the employed dimensions were not based 
on physiological data, and the wall was assumed as a rigid tube without a sinus structure. 
Recently, researchers began to propose numerical models for the studies related to CVD. 
Simão et al. [Simão, Ferreira, Mora et al. (2016)] built an Arbitrary Lagrangian-Eulerian 
(ALE) model for the vein blockage induced by a deep venous thrombosis. They captured 
the abnormal venous valve operation and the clot formation, verified some results of the 
fluid mechanics and the valves dynamics using the in vivo measurements. Soifer et al. 
[Soifer, Weiss, Marom et al. (2016)] also established an ALE model of a diseased vein 
model, and studied the effect of the fibrotic valve on its neighboring valve. Ariane et al. 
[Ariane, Wen, Vigolo et al. (2017)] developed a discrete multi-physics model and 
captured the hemodynamics in flexible deep veins valves. Chen et al. [Chen, Diaz, Fedor 
et al. (2018)] investigated the helical flow owing to the relative orientation and spacing of 
the valves, using an ALE vein model. In those researches, the body-fitted technique was 
almost employed by all. The modeling results scarcely exhibited the realistically finite 
deformation. The pathological cases were mostly related to the stiffening of the leaflet, 
and the wall was also fixed. The lesion of the sinus has been rarely concerned in the 
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above studies even though it plays a significant role in the dynamics of blood [Tien, Chen, 
Berwick et al. (2014a)]. 
Based on these findings, we established a non-body-fitted two-dimensional (2-D) vein 
model by a modified immersed finite element method (IFEM) combined with adhesive 
contact method (ACM) [Fan, Ren and Li (2015)]. This modified IFEM is on the basis of 
the original IFEM [Zhang, Gerstenberger, Wang et al. (2004)]. Similarly to the previous 
IFEM studies of the smoothed solid solver in IS-FEM [Zhang, Liu and Khoo (2013)], the 
improved iteration in semi-implicit IFEM [Wang, Wang and Zhang (2012)], the balance 
of discrepancy in the FSI [Wang and Zhang (2013)] and the open-sourced 
implementation of mIFEM [Cheng, Yu and Zhang (2019)], there were some 
modifications in this method. An independent solid constitution and solver was employed 
so that the solid was driven by the hydrodynamic forces, which enabled the fluid-
structure interaction (FSI) [Li and Wang (2019); Wang, Yang and Wu (2019)] in the 
original IFEM to approximate to the real physics. We also introduced the concept of the 
Ghost Fluid [Fedkiw, Aslam, Merriman et al. (1999)] into the employed IFEM, so the 
influence of non-physical fluid on the N-S equations could be decreased. The 
interpolations were then imposed only on the solid boundary and the immersed interface. 
And the computations of the FSI was accelerated and improved. The finite element 
modeling of heart valves [Aluri and Chandran (2001)] has revealed that pressure and 
velocity fields of the three-dimensional (3-D) model and 2-D model are comparable. 
Thus, the 2-D finite element modeling was more computationally efficient for this 
numerical study.  
Following our previous study on the effect of the valve lesion [Liu and Liu (2019a)], a 
prospective study was then conducted to explore how the pathological stiffening and 
softening of the sinus changed the valve functioning. The vein was designed to be 
immersed in an independent of the background fluid domain. To mimic the periodic 
opening-closing behavior of the valves, the blood-vein interaction [Yao, Liu, Narmoneva 
et al. (2012)] was modeled via interpolation in the IFEM, the contact action between the 
leaflets [Zeng and Li (2012)] was achieved by the ACM. As one common etiology of 
tissues was abnormal elastic properties, the softening and stiffening were both used to 
determine the sinus lesion in this work.  
Based on the proposed FSI method, we simulated a blood-induced venous valve cycle 
using a computational model. In the present study, the results of valve orifice, fluid 
velocity, and pressure were gained, and then compared with the existing experimental 
and theoretical results to verify the proposed model. Additionally, the effects of venous 
sinus lesions [Dydek and Chaikof (2016); Simmons, Grant, Manduchi et al. (2005)] on 
the vein performance were further analyzed by comparing the healthy and diseased cases. 
To be clearly illustrated, this paper composed of the following sections. In Section 2, we 
introduce the employed numerical algorithms and computational techniques. In Section 3, 
we describe the finite element modeling, along with parameters of the healthy vein and 
pathological vein. In Section 4, the computational results of the veins will be summarized, 
and we give the discussion. In Section 5, we draw a relevant conclusion. 
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2 Numerical method 
2.1 Immersed finite element method 
2.1.1 Governing equations 
In the IFEM, a physical domain Ω usually includes a fluid in Ωf and an immersed solid in 
Ωs, as shown in Fig. 1. In the computation, a Eulerian fluid mesh is adopted in Ω; a 
Lagrangian solid mesh in Ωs is constructed on top of Ω. The fluid mesh spanning over Ω 
is continuous. There are two physical spaces in the coordinate system: 𝒙𝒙 ∈ Ω ⊂ ℛ𝑑𝑑 
denotes the Cartesian coordinate of the Eulerian fluid and 𝑿𝑿s ∈ Ωs ⊂ ℛ𝑑𝑑 the Lagrangian 
positions of the solid. For the fluid-solid coupling, the Cartesian coordinate of the solid 
position 𝑿𝑿s at time 𝑡𝑡 is mapped into 𝒙𝒙s(𝑿𝑿s, 𝑡𝑡). 

 
Figure 1: Description of the solid and fluid domain in the IFEM [Wang and Zhang 
(2013)]. Here the artificial fluid is employed in the previous IFEM then 𝛀𝛀� = 𝛀𝛀𝐯𝐯 

When the fluid is incompressible and Newtonian, and the hydrodynamics are described 
by the N-S equations: 

�
𝑣𝑣𝑗𝑗,𝑗𝑗 = 0

𝜌𝜌�̇�𝑣𝑖𝑖 + ρ𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗 = 𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗 + 𝜌𝜌g𝑖𝑖
   , on Ω 

   
(1) 

with 
   𝜎𝜎𝑖𝑖𝑗𝑗 = 𝑝𝑝 + 𝜇𝜇(𝑣𝑣𝑖𝑖,𝑗𝑗 + 𝑣𝑣𝑗𝑗,i),  on Ω (2) 
where 𝜌𝜌 is the fluid density, and 𝜇𝜇 is the dynamic viscosity coefficient; 𝑣𝑣𝑗𝑗 is the velocity, 
g𝑖𝑖 is the acceleration, 𝜎𝜎𝑖𝑖𝑗𝑗 is the Cauchy stress, and p is the pressure.  
As the entire domain Ω in the previous IFEM is occupied by the artificial fluid in Ωv and 
the real fluid in Ωf, the density in Ω is determined by 
 𝜌𝜌 = ∫ 𝜌𝜌v𝜑𝜑(𝒙𝒙 − 𝒙𝒙s)𝑑𝑑Ω 

Ω , on Ω (3) 
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where 𝜌𝜌v is the density in Ωv, with 𝜌𝜌v = 𝜌𝜌f in the original IFEM [Zhang, Gerstenberger, 
Wang et al. (2004)] and 𝜌𝜌v = 𝜌𝜌s in the m-IFEM [Wang and Zhang (2013)]; 𝜑𝜑(𝒙𝒙 − 𝒙𝒙s) is 
the reproduced kernel particle function (RKPF). 
When the immersed solid is incompressible and elastic, the dynamic equation is written 
as below: 
𝜌𝜌s�̈�𝑑𝑖𝑖s = 𝜌𝜌s�̇�𝑣𝑖𝑖𝑠𝑠 = σ𝑖𝑖𝑗𝑗,𝑗𝑗

s , on Ωs (4) 

where 𝜌𝜌s  is the solid density, 𝑣𝑣𝑖𝑖𝑠𝑠  is the solid velocity �̇�𝑑𝑖𝑖s�𝒙𝒙s(𝑿𝑿s, 𝑡𝑡)� , �̈�𝑑𝑖𝑖s  is the solid 
acceleration  �̇�𝑣𝑖𝑖𝑠𝑠�𝒙𝒙s(𝑿𝑿s, 𝑡𝑡)�, and σ𝑖𝑖𝑗𝑗s  is the solid stress.  
Owing to the solid overlapping with the artificial fluid, an additional force is discretely 
interpolated as a coupling force for the coupling between the N-S equations and the 
dynamic equation. The FSI force is  
f𝑖𝑖
fsi,f = ∫ f𝑖𝑖

fsi,s𝜑𝜑(𝒙𝒙 − 𝒙𝒙s)𝑑𝑑Ω 
Ωs , on Ω/Ωf and Ωs (5) 

where f𝑖𝑖
fsi,f is a body force term added to Eq. (1). And f𝑖𝑖

fsi,s is a solid FSI force calculated as 

f𝑖𝑖
fsi,s = 𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

s − 𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗
f , on Ω/Ωf and Ωs (6) 

2.1.2 Modification with ghost fluid 
As the artificial fluid participates in the solution of the N-S equations and the 
interpolation in the previous IFEM, the velocity/pressure field of the real fluid is 
contaminated [Wang and Zhang (2013)]. Again, the introductions of and additional 
coupling force require a more computational cost. To improve the computation, the 
artificial fluid is replaced by the ghost fluid [Fedkiw, Aslam, Merriman et al. (1999)] in 
the proposed IFEM. Then, Ω� = Ωg could be used in Fig. 1 for illustration. The ghost fluid 
occupies the domain Ωg. The material properties in Ωg are assumed infinitely small. 

 
Figure 2: Velocity and traction interpolations of the FSI model 

The density 𝜌𝜌 in Ω is redefined and Eq. (3) is rewritten as 
𝜌𝜌 = ∫ 𝜌𝜌f𝛿𝛿(𝒙𝒙 − 𝒙𝒙s)𝑑𝑑Ω 

Ω , on Ω (7) 
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with  

∫ 𝛿𝛿(𝒙𝒙 − 𝒙𝒙𝑠𝑠)𝑑𝑑Ω 
Ω = � 1,      𝒙𝒙 ∈ Ωf

10−9,      𝒙𝒙 ∈ Ωg
, on Ω (8) 

where 𝛿𝛿(𝒙𝒙) is a Dirac Delta function. The infinitely small properties for the ghost fluid 
are achieved by multiplying a coefficient 10-9 in the numerical implementation. With 
substituting Eq. (8) into Eq. (1), the solution of the N-S equations is modified. The finite 
element formulations of the N-S equations are given in Appendix A. 
As shown in Fig. 2, the material in Ωf  can be distinguished from that in Ωg  by the 
immersed (Fluid-Ghost) interface Γfsi. The degrees of freedom of the ghost fluid nodes 
are neglected and not counted into the liquid solution. The discrete interpolation like Eq. 
(5) is also eliminated between Ωg and Ωs, without the establishment of the RKPF. The 
velocity and traction are interpolated directly between Γfsi  and Γ𝑠𝑠  in a neighbor-to-
neighbor way. The interpolation equations are written as 
𝑣𝑣𝑖𝑖�𝒙𝒙�Γfsi�, 𝑡𝑡� = 𝑣𝑣𝑖𝑖s(𝑿𝑿s(Γs, 𝑡𝑡), 𝑡𝑡), on Γfsi and Γs (9) 
ℎ𝑖𝑖s(𝑿𝑿s(Γs, 𝑡𝑡), 𝑡𝑡) = ℎ𝑖𝑖�𝒙𝒙�Γfsi�, 𝑡𝑡� = 𝜎𝜎𝑖𝑖𝑗𝑗(𝒙𝒙(Γfsi), 𝑡𝑡) ∙ 𝑛𝑛𝑗𝑗, on Γfsi, Γs (10) 
where ℎ𝑖𝑖 are the fluid traction on the (Fluid-Ghost) interface Γfsi.  
In the solid solver, an implicit formulation of the solid dynamics is employed for stable 
and convergent solution. Considering the damping effect of the immersed solid, and Eq. 
(4) is replaced with 
σ𝑖𝑖𝑗𝑗,𝑗𝑗
s − 𝜌𝜌s�̈�𝑑𝑖𝑖s − 𝑐𝑐�̇�𝑑𝑖𝑖s = f𝑖𝑖s, on Ωs (11) 

where 𝑐𝑐 is the damping coefficient. The external force f𝑖𝑖s is further expressed by f𝑖𝑖s =
f𝑖𝑖
s,b,fsi + f𝑖𝑖

s,cont, where f𝑖𝑖
s,b,fsi is the body force term of ℎ𝑖𝑖s on Γs and f𝑖𝑖

s,cont is the body 
force between solids in the adhesive contact model. The finite element formulation of Eq. 
(11) is given in Appendix B. 

2.2 Adhesive contact method 
The contact force between valves is mainly associated with the adhesive contact potential 
[Fan, Ren and Li (2015)], as illustrated in Fig. 3. 

 
Figure 3: Typical adhesive contact model 



 
 
 
Modeling and Simulation of Valve Cycle in Vein                                                                          159 

The representative adhesive contact model is composed of an ith infinitesimal surface Α𝑖𝑖1 
of the solid 𝛺𝛺1𝑠𝑠 and a jth infinitesimal surface B𝑗𝑗2 of the solid 𝛺𝛺2𝑠𝑠, F1

𝑖𝑖𝑗𝑗is the long-range 
force acting between them and it acts on both 𝛺𝛺1𝑠𝑠 and 𝛺𝛺2𝑠𝑠, 
F1
𝑖𝑖𝑗𝑗 = 𝛽𝛽1𝛽𝛽2𝑛𝑛2𝑑𝑑𝑎𝑎2𝑑𝑑𝛼𝛼𝑖𝑖(−1)𝑗𝑗+1 ∫ 𝜙𝜙(𝑟𝑟)𝑟𝑟2∞

𝑠𝑠𝑖𝑖𝑖𝑖
𝑑𝑑𝑟𝑟, on Α𝑖𝑖1 and Α𝑗𝑗2 (12) 

where 𝜙𝜙(𝑟𝑟) is the adhesion potential, for which a Lennard-Jones potential function is 
chosen as follows  
𝜙𝜙(𝑟𝑟) = 𝜖𝜖[(𝑟𝑟0/𝑟𝑟)12 − 2(𝑟𝑟0/𝑟𝑟)6], on Ω1s  and Ω2s  (13) 
In Eqs. (12) and (13), variables can be determined according to Fig. 3, where 𝛽𝛽1 and 𝛽𝛽2 
are the dimensionless particle densities, 𝒏𝒏1 and 𝒏𝒏2 are the normal vectors, 𝑑𝑑𝑎𝑎1 and 𝑑𝑑𝑎𝑎2 
are the surface areas, 𝑑𝑑𝛼𝛼𝑖𝑖 is the angle of the wedge formed by point B and the facet Α𝑖𝑖1, 𝜖𝜖 
is the potential well, 𝒓𝒓 = 𝒓𝒓1 − 𝒓𝒓2 is the distance vector from Point B to Point A, and 𝑟𝑟0 is 
the equilibrium distance. Detailed mathematical deductions were presented by Fan et al. 
[Fan, Ren and Li (2015)]. 

Since F1
𝑖𝑖𝑗𝑗 is expressed in the integral form, f𝑖𝑖

s,cont in Eq. (11) is written as 

f𝑖𝑖
s,cont =

𝜕𝜕F1
𝑖𝑖𝑗𝑗

𝜕𝜕V
 (14) 

2.3 Implementation step 
The proposed method is implemented in a FORTRAN90 program, and the steps are listed 
as below: 
 The time loop is entered - At time 𝑖𝑖∆𝑡𝑡, the position of the known solid is 𝒙𝒙s(𝑿𝑿s, (𝑖𝑖 −

1)∆𝑡𝑡), the traction 𝒉𝒉s is transformed into the nodal force 𝐟𝐟s,b,fsi, and the contact force 
𝐟𝐟s,cont is calculated by Eq. (16). The physical quantities 𝒗𝒗s and 𝝈𝝈s, 𝜺𝜺s are then solved 
by Eq. (11). 

 On the current position 𝒙𝒙s(𝑿𝑿s, 𝑖𝑖∆𝑡𝑡), the material properties in Ω are determined by 
Eqs. (7) and (8). 

 The velocity 𝒗𝒗s on Γs is transmitted to the immersed interface Γisi by Eq. (11) and the 
velocity boundary condition of Γ𝑣𝑣,isi is calculated. 

 With the known velocity 𝒗𝒗 and pressure 𝑝𝑝 on Γf and Γisi, the N-S equations are then 
solved. With the obtained fluid stress 𝝈𝝈, the fluid traction ℎ𝑖𝑖 on Γisi is calculated by 
Eq. (12). 

 End the current time step and begin with step 2 in the next one; or, go on to iterate and 
remain in the current coupling cycle. 

3 Numerical model 
3.1 Geometry and grid 
A commonly symmetric bi-leaflet structure was employed for the vein model. In the 
existing studies of the bi-cuspid valve [Bavo, Rocatello, Iannaccone et al. (2016)], the 
velocity and pressure fields of 3-D and 2-D models were reported to be comparable. Thus, 
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we presented a 2-D model in this preliminary work to improve research efficiency. 
Similarly to the work of Soifer et al. [Soifer, Weiss, Marom et al. (2016)], the current 2-D 
model is a symmetric cross-section of 3-D geometry, and it is also equivalent to an 
ultrasound view during the evaluation of venous valve performance. Along the 
longitudinal cross-section of the vein, its central transverse plane is most representative 
and chosen in the modeling. As shown in Fig. 4, the geometry and scale of this vein 
model were partly given.  

 
Figure 4: Geometric and finite element models of the vein. Distances of five positions in 
the longitudinal axis from the inlet are as follows: xA=0.45 cm for point A, xB=0.75 cm 
for point B, xC=1.30 cm for point C, xD=1.80 cm for point D, xE=2.0 cm for point E 

Referring to the geometry of the saphenous vein specimen in Lu et al. [Lu and Huang 
(2018)], we define the total geometrical parameters which are almost the same as those in 
our previous vein model [Liu and Liu (2019a)]. The total length of the vein model is 2.5 
cm. The Luminal radius is 0.35 mm. In the bulged part of the vein, the distance between the 
sinus and the exterior is set as 0.12 to approximate the mean diameter 9-10 mm reported in 
Lu et al. [Lu and Huang (2018)]. The other specification of the anatomy of the vein model 
is listed in Tab. 1.  

Table 1: Detailed parameters of the vein model 

Dimension Size (cm) 

Total Length of the vein 2.50 

Luminal radius of the vein 0.35 

Thickness of the vein wall 0.04 
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Depth of the leaflet 0.60 

Leaflet height 
(distance between the valve and the wall) 

0.32 

Average thickness of the distance 0.02 

Depth of the sinus 0.80 

Sinus height 
(distance between the leaflet and the sinus) 

0.44 

Average thickness of the sinus 0.03 

According to the viewpoint of the IFEM, the vein was immersed in a channel with length 
L=2.4 cm and height H=1.1 cm. This length was carefully set based on the 
considerations of the anatomical data of the vein and the boundary effect from the inlet 
and outlet. There are three parts in the vein: (1) the venous wall with length L 2.4 cm, 
thickness w 0.05 cm, and an outer diameter D 0.7 cm, (2) the venous sinus 0.12 cm high 
and 0.8 cm deep, and (3) the bi-leaflet valve with height of each leaflet 0.32 cm, depth 
0.60 cm and thickness 0.025 cm. The valve base was initially set 1 cm away from the 
inlet, at the joint of the sinus and the wall. A gap of 0.028 cm was kept between the 
leaflets for the following adhesive contact calculation. The sinus region also covers the 
potential contact region similar to that in the real vein. It was noticeable that the distention 
of the sinus and wall could be included in this channel, which was wider than the vein.  
Following the previous research [Liu and Liu (2019a)], the vein was also discretized with 
a quadrilateral mesh of mean size 0.009 cm, and the channel Ω discretized with a uniform 
grid of size 0.007 cm. The recommended mesh ratio of (1, 2) [Zhang, Gerstenberger, 
Wang et al. (2004)] was used for the efficient and effective coupling between the fluid 
and solid. The employment of the non-body fitted mesh also enabled the finite 
deformation of the vein, particularly when the valve fluttered. In Fig. 4, five nodal 
positions of the fluid element along the longitudinal axis were also chosen for analyzing 
the flow characteristics. 

3.2 Materials and boundary conditions 
3.2.1 Healthy vein 
In biology, a healthy vein was considered elastic. According to the constitutive study of a 
bovine vein [Lu and Huang (2018)], the valve leaflet could be modeled as hyperelastic 
material, which was softer than the vessel. Following the biological knowledge of the 
vessel [Sokolis (2008)], the venous wall applied a linear-elastic constitution. Owing to 
the scanty information about the venous sinus, it was assumed as the same as that of the 
wall. Measurements of collagen fiber angle in the similar biological tissues [Humphrey, 
Strumpf and Yin (1990)] demonstrated that fiber orientation varied regionally and 
symmetrically about the central radial axis of each leaflet. It reasonably enabled that the 
material property of the vein model was assumed locally transversely-isotropic.  
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For the wall and sinus [Buxton and Clarke (2007)], Young’s modulus E was set as 2.0 
MPa along with Poisson’s ratio 0.475 so as to physiologically match their mechanics. 
Based on the hyperelastic model in Wesly et al. [Wesly, Vaishnav, Fuchs et al. (1975)], a 
three-parameter type of Mooney-Rivlin constitutive model was adopted, with parameters 
𝑐𝑐1=300.0 kPa, 𝑐𝑐2=40.0 kPa and 𝑐𝑐3=0. The constitutions of the vein (wall, sinus and valve) 
are all detailed in Appendix C. 
The blood in the vein is non-Newtonian in physics. When it was at high shear rates 
(>100/s), the blood behaved as close to Newtonian liquid. Following the existing models 
[Liu and Liu (2006); Zhang, Liu and Khoo (2013)], the material properties of the blood 
were defined, such as the density 𝜌𝜌f  1.06 g/cm3 and its dynamic viscosity 𝜇𝜇f  0.036 
g/(cm∙s) [Kenner (1989)].  
In the circulatory system, the venous blood flow exhibits the pulsed and periodical features 
[Smiseth, Thompson, Lohavanichbutr et al. (1999)]. A periodic velocity condition was then 
imposed at the distal end of the vein, along with a periodically-varied pressure gradient 
traversing the vein. A pulsed waveform function for the input condition was chosen to 
mimic a respiration-dependent flow [Vukicevic et al. (2014)] as shown in Fig. 5.  

 
Figure 5: Waveform function of the input velocity and pressure at the inlet 

The mathematical formulation of the waveform function is  

Ψ = �𝜙𝜙𝜙𝜙𝑖𝑖𝑛𝑛 �
2π𝑡𝑡
𝑇𝑇
�      ,    𝑇𝑇𝑖𝑖 < 𝑡𝑡 < 𝑇𝑇(𝑖𝑖 + 0.5)

0        ,         𝑇𝑇(𝑖𝑖 + 0.5) < 𝑡𝑡 < 𝑇𝑇(𝑖𝑖 + 1)
 (15) 

where 𝜙𝜙 is the amplitude of velocity or pressure at the inlet, 𝑇𝑇 is the period of the wave 
function, and Ti is the ith period of the valve cycle with the integer i=0, 1, 2, ...   
Additionally, a weak gravitational acceleration was considered to be consistent with that 
reported in Lurie et al. [Lurie, Kistner and Eklof (2002)]. Assuming that the fluid is 
initially stationary. The period T was 2.0 s as the respiration was assumed 30 cycles per 
min in the healthy vein. The transvascular pressure gradient was Pmax=4.5 mmHg on the 
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basis of the physiological publications [Qui, Quijano, Wang et al. (1995); Smiseth, 
Thompson, Lohavanichbutr et al. (1999)]. Considering that the blood flow was fully 
developed from the distal end, a parabolic velocity was prescribed for the inflow 
condition as  
𝑢𝑢𝑥𝑥 = 𝑉𝑉max𝑦𝑦[(𝐷𝐷 − 2𝑤𝑤)− 𝑦𝑦]/(𝐷𝐷 − 2𝑤𝑤)2, 𝑢𝑢𝑦𝑦 = 0 (16) 
where 𝑢𝑢𝑥𝑥  is the velocity in the normal direction of the inlet, 𝑢𝑢𝑦𝑦  the velocity in the 
tangential direction, y is the coordinate at the inlet, and Vmax is the velocity amplitude 
equaling to 10.0 cm/s. The non-slip condition was prescribed on the top and bottom 
boundaries of the channel, as well as on the boundaries of the vein. Both ends of the vein 
were fixed with the x- and y-displacement constraints.  
As provided in Appendix B, parameters needed to be known for the solid solution include 
those in time integration scheme, damping setting and contact algorithm. Following the 
validated values of the parameters in the solid solver in Liu et al. [Liu and Liu (2019a, 
2019b)], the coefficient θ in was set to 0.5, and the damping coefficients fm=0.05 and 
fk=0.272 were used. For the calculation of the contact force, the potential well 𝜀𝜀 of -14.0 J 
was employed, and the equilibrium distance 𝑟𝑟0=0.056 cm was used. The time-step size in 
the total computational model was 0.0004 s so that the flow feature of blood crossing 
single element could be captured and the potential penetration in the contact model could 
be opposed. 

3.2.2 Diseased vein 
As reported previously [Eberhardt and Raffetto (2014)], one common etiology of 
diseased veins was abnormal elastic properties. It prompted us to consider the stiffening 
or softening of sinus material as the sinus lesions. Therefore, the diseased veins were 
defined by linearly scaling up or down the elastic modulus of the sinus material [Soifer, 
Weiss, Marom et al. (2016)]. As listed in Tab. 2, E is 10.0 MPa when the sinus is fibrotic 
and 400.0 kPa when the sinus is atrophic; for the severe situations, E is 20.0 MPa when 
the sinus is severely fibrotic and 200.0 kPa when the sinus is severely atrophic. 
Additionally, the respiration change was also considered and assumed as 60 cycles per 
min, with the pressure gradient 3.0 mmHg. Then, the other settings of the diseased vein 
model were the same as those in the assumed healthy vein. 

Table 2: Material properties parameters of the diseased vein cases 

Diseased sinus Density (g/cm3) Poisson ratio Yong modulus (MPa) 

Severely atrophic  1.10  0.475 0.20 

Atrophic 1.10  0.475 0.40 

Fibrotic 1.10  0.475 10.0 

Severely fibrotic 1.10 0.475 20.0 
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4 Results and discussion 
We simulated the venous valve cycle in 2.0 s in this study. It took 32 hours to complete 
one simulation in the Intel Core i7-4790HQ processor with the main frequency 3.60 GHz. 
The simulation was achieved by a single-core and non-parallelized computation was 
employed. The validity of the mathematical vein model was verified by the benchmark 
simulation of the healthy vein. The prospective study of the diseased vein was further 
explored, through the discussion of sinus lesions on the venous valve cycle. The effects 
of the lesion were then determined by comparing the healthy and the diseased veins. 

4.1 Validation of vein model 
4.1.1 Valve kinematics 

 
Figure 6: Blood flow (cm/s) and vein deformation during singe venous valve cycle. 
Opening phase: (a) at 0.10 s, (b) at 0.20 s; Equilibrium phase: (c) at 0.40 s; Closing phase: 
(d) at 0.60 s, (e) at 0.80 s, (f) at 1.00 s, (g) at 1.20 s; Closed phase: (h) at 1.40 s 

Figs. 6(a)-6(b) show the periodic behavior of the healthy vein in the opening, equilibrium, 
closing and closed phases [Zervides and Giannoukas (2013)]. During the initial 0.2 s, the 
inflowing blood rapidly flowed into the lumen and pushed the valve, the leaflets rotated 
immediately and the opening orifice between the leaflets increased. A core flow 
downstream became fully developed, as shown in Fig. 6(b). Subsequently, the opening 
orifice size reached the maximum level. The valve leaflets entered into an equilibrium 
state, and fluttered as the blood streamed past. At around 0.6 s, the pressure gradient of 
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the inflow was decreasing, the valve began to close while the reversed flow was formed 
at the outlet [Buescher, Nachiappan, Brumbaugh et al. (2005)], as shown in Figs. 6(d)-
6(g). After about 1.2 s, the semi-lunar leaflets were completely closed, and minor 
changes were seen in fluid velocity and solid deformation. In the closed phase, the 
adhesive contact force opposed the penetration between the leaflets, and the leaflets closed 
and had less fluctuation which could be neglected (see Fig. 7). The velocity of the venous 
flow upon the leaflet surface was 0 cm/s in Fig. 6(h) owing to the non-slip condition. And it 
was seen that the venous blood flowed reversely owing to the gravity, and the 
corresponding value was non-zero. In this single cycle, the non-slip boundary conditions 
were satisfied in the FSI computation, and the deformation of the sinus and blood vessels 
was less significant relative to the valve.  
Comparing to the results for the healthy vein case in previous research [Liu and Liu 
(2019a)], the leaflet deformation in this paper were different, which is owing to the 
different settings of the elastic model of the vein, the pulsed inflowing conditions and the 
period time. Similarly, the results in the following sections were also consequently different. 

 
Figure 7: Time variation of the orifice size 

Table 3: Maximum effective orifice size of the vein 

Case Orifice size (% of the diameter) 

Calculated result 74.2% 

Physiological range  
[Lurie and Kistner (2012)] 

60%-70% 

The time period of each phase in the valve cycle could be clearly distinguished by the 
variation of the opening orifice, as shown in Fig. 7. In the equilibrium phase, it was seen 
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that the variation of the effective orifice size was rough, which should be induced by the 
obvious change of the inflowing velocity. As such rough variation was small, it should be 
insignificant when there might be numerical artefacts. The maximum effective orifice 
size was 0.503 cm, which is 74.2% of the diameter.  Although this is an idealized 2-D 
venous model, its deformation agrees with the real situation and is close to the 
physiological range 60%-70% (in the human saphenous vein [Lurie and Kistner (2012)], 
as shown in Tab. 3. In other words, the calculated venous deformation had a good 
agreement with that in physiology, and the proposed FSI model was verified. It indicated 
that this model could be effectively used for further analysis of the valve cycle in the vein 
under other physiological situations. 

4.1.2 Blood kinematics 

 
Figure 8: Fluid dynamic characteristics of venous blood along the longitudinal axis. 
Time variations of (a) fluid velocity and (b) pressure 

Fig. 8 displays time-dependent variations in blood velocities and pressures at five points 
(which are shown in Fig. 4) along the longitudinal axis of the vein. The velocities and 
pressures at different positions were influenced by the inflow conditions and the reversed 
flow was induced by gravity. When the valve was closing at 0.6 s-1.0 s, there was a 
distinct transition of flow direction from x to -x-direction. The valve blocked the 
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inflowing blood and the ejection was formed for mass conservation. Fig. 8(a) also shows 
that the velocity value in the proximal lumen (Point D or Point E) was higher than that of 
the distal (Point A or Point B). Fig. 8(b) shows there is a pressure drop from the distal to 
the proximal in the opening and equilibrium periods. 
In this paper, the blood was assumed incompressible liquid. As is known that in the fluid 
mechanics, the Reynolds number Re  and the Womersley number α are expressed as  
𝑅𝑅𝑒𝑒 = 𝜌𝜌𝑣𝑣𝑑𝑑ℎ/𝜇𝜇 (17) 
𝛼𝛼 = 𝑅𝑅(𝜔𝜔𝜌𝜌/𝜇𝜇)1/2 (18) 
where dh is the hydraulic diameter in a tube, R is the radius, ω is the angular frequency of 
the oscillation (or 2π/T).  
Taking the velocities (see Fig. 8(a)) at the five positions of Points A-E (see Fig. 4), we 
calculated the Reynolds number at those positions, and the maximum pressure was 1137 
Pa at Point D while the value at the orifice was 700 Pa at Point C. Therefore, the 
transvalvular flow was still featured below the bound of the turbulent flow. Similarly, the 
Womersley numbers were calculated and the maximal value was 3.8 Pa at Point D. The 
maximum value at the orifice was  2.38 Pa at Point C. Thus, the waveform profile of  this 
flow was compatible to that (2.77-16.6) in the human vein (about 0.5-3.0 cm in diameter) 
[Whitmore (1968)].  
As the variation of the orifice size and the velocities in the equilibrium period was small, 
the flow could be regarded as approximately steady-state. Meantime, the five positions of 
Point A-E at the same streamline. According to the principle of energy conservation in 
the pipe flow, the velocities and pressures of Point A-E should satisfy the generalized 
Bernoulli’s equation 
𝑝𝑝𝐼𝐼 + 𝜌𝜌𝑣𝑣𝐼𝐼2/2 + 𝜌𝜌g𝑥𝑥𝑥𝑥𝐼𝐼 = 𝑝𝑝𝐽𝐽 + 𝜌𝜌𝑣𝑣𝐽𝐽2/2 + 𝜌𝜌g𝑥𝑥𝑥𝑥𝐽𝐽 + ℎ𝐼𝐼𝐽𝐽, (19) 
Where 𝑝𝑝𝐼𝐼 and 𝑝𝑝𝐽𝐽 are the hydrostatic pressures at Point I and Point J, respectively, while I, 
J=A-E; g𝑥𝑥 is the acceleration in x-direction and equaling to -0.1g, g is the gravitational 
acceleration; 𝑥𝑥𝐼𝐼 and 𝑥𝑥𝐽𝐽 are the distances from the inlet to Point I and Point J, respectively; 
ℎ𝐼𝐼𝐽𝐽 is the other energy loss (per volume) when flowing from Point I to Point J.  
With regards to Point A and Point B, taking their velocities and pressures at 0.4 s into Eq. 
(19), then 𝑝𝑝𝐴𝐴 − 𝑝𝑝𝐵𝐵 + 𝜌𝜌g𝑥𝑥(𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐵𝐵)=3.0 Pa and 𝜌𝜌𝑣𝑣𝐵𝐵2/2 − 𝜌𝜌𝑣𝑣𝐴𝐴2/2=0.5 Pa, thus ℎ𝐴𝐴𝐵𝐵=2.5 
Pa. As the diameters of their cross-sections were almost the same, this small energy loss 
could be attributed to the internal friction (or viscosity). However, when considering 
Point B and Point C, 𝑝𝑝𝐵𝐵 − 𝑝𝑝𝐶𝐶 + 𝜌𝜌g𝑥𝑥(𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐶𝐶)=126.9 Pa and 𝜌𝜌𝑣𝑣𝐵𝐵2/2 − 𝜌𝜌𝑣𝑣𝐶𝐶2/2=20.9 Pa, 
thus ℎ𝐴𝐴𝐵𝐵=106.0 Pa which was far beyond the order of the energy loss induced by the 
viscosity. Combining with the blockage from the valves, it could be deduced that the valves 
induced the blockage of the inflow and led to the strong fluid resistance, which made 
apparent work and consumed the kinetic energy of the blood flow from the proximal to the 
distal. Thus, the fluid resistance from the valve blockage should be also significant in 
leading to the pressure drop. 
Additionally, we chose the moment 0.42 s when the velocities at the five positions were 
at the peak. As shown in Tab. 4, the maximum value of 𝜌𝜌𝑣𝑣𝐼𝐼2/2− 𝜌𝜌𝑣𝑣𝐽𝐽2/2 was 12.3 Pa 
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between Point A and Point E, while the maximum value of the transvalvular pressure 
gradient was 189.5 Pa, and the maximum value of 𝜌𝜌g𝑥𝑥(𝑥𝑥𝐸𝐸 − 𝑥𝑥𝐴𝐴) was 16.0 Pa. Between 
Points B and D, the transvalvular pressure difference fluctuated and was 160-190 Pa at the 
stable state, which was 1.22-1.45 mmHg. The pressure gradient is close to the range of 1.0-
5.0 mmHg in the saphenous vein [Tien, Chen, Berwick et al. (2014b)] when the maximum 
orifice is detected. The consistency of the pressure values further indicates the validity of the 
flow model. 

Table 4: The peak velocities at the five positions along the longitudinal axis and the 
corresponding pressure at the same moment 

Point A B C D E 

Velocity (cm/s) 42.5 42.8 47.4 48.2 48.1 

Pressure (Pa) 208.7 196.8 61.2 29.5 19.2 

As shown in Fig. 9, we found that the 2-D flow pattern in the orifice was parabolic and 
could be fully-developed with the agreement of the Womersley number. Considering the 
special feature of velocity distribution in its arbitrary middle plane of the pipe flow, it is 
reasonably assumed that the velocities of the vein should be also elliptically distributed in 
the cross-section of its “3D model”. 

 
Figure 9: Parabolic flow pattern at the orifice at the different instants of times 

As is mentioned that the velocity results involve symmetrical expansion of the model 
outputs, the blood flow rate could be calculated with the orifice size. And the mean 
velocity �̅�𝑣 at Point C equals to 36.84 cm/s by solving 

�̅�𝑣 = 𝑄𝑄/𝐴𝐴 = [0.5𝜋𝜋𝑙𝑙𝜙𝜙𝑖𝑖𝑛𝑛𝑢𝑢𝜙𝜙 ∫ 𝑣𝑣𝑓𝑓𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺
0 d𝑦𝑦]/(0.25𝜋𝜋𝑙𝑙𝜙𝜙𝑖𝑖𝑛𝑛𝑢𝑢𝜙𝜙𝑙𝑙GOA), (20) 
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where Q is the venous volume flow rate [Qui, Quijano, Wang et al. (1995)], A is the 
geometric orifice area (GOA) [Konig, Mcallister, Dusserre et al. (2009)]. It should be 
noted the orifice was reported as an elliptically-shaped cross-section, the distension of the 
sinus lsinus is the short axis, and the orifice size lGOA is the long axis. Also, the result was 
within the range of experimental mean flow rate [Kenner (1989)] (Tab. 5), which 
validated the efficacy of the mathematical model. 
Compared to real venous flow, there were some differences in our model due to its 
simplicity. Particularly when the waveforms of velocity and pressure were assumed 
regular, which approximated to that of the positive semi-sine. The eddy characteristics in 
the 2-D flow were more straightforward than that in the 3-D flow, especially for the 
helical flow [Chen, Berwick, Krieger et al. (2014); Chen, Diaz, Fedor et al. (2018)] which 
would have a more evident discrepancy in details. Nevertheless, these simplifications 
also facilitate the implementations. The flow problem within the complex boundary was 
solved. Along with the periodic rotation of the valve, the venous blood flowed upstream 
and downstream repeatedly in the proposed cycles of the model. 

Table 5: The mean blood flow velocity of the vein 

Case Mean flow velocity (cm/s) 

Calculated result 36.84 

Experimental range 
[Moneta, Bedford, Beach 

et al. (1988)] 
15.0-40.0 

4.1.3 Valve and blood dynamics 
The fluid pressure and structural dynamic response of the venous root region were the most 
significant due to the material gradients at that site, as shown in Figs. 10(a)-10(b). At the 
leading edge of the valve root, the peak first principal stress (FPS) was 8.88 kPa and the 
corresponding transvalvular pressure gradient was 125 Pa, suggesting that the imposition of 
this hydrodynamic action was associated with the blockage from the valve. It indicated that 
the root of the valve was an environmentally sensitive region of the vein, and was in line with 
the knowledge in physiology [Meissner, Moneta, Burnand et al. (2007); Davies (2007)].  
Furthermore, the fluid wall shear stress (FWSS) was maximum (3.36 Pa) at the upper 
edge of the valve and minimum (approximately 0.70 Pa) at the base region of the sinus 
side of the leaflet, which was consistent with the experimental and mathematical results 
(0.4 Pa-4.0 Pa) published in Papaioannou et al. [Papaioannou, Karatzis, Vavuranakis et al. 
(2006); Ariane, Wen, Vigolo et al. (2017)]. The solid wall shear stress (SWSS) was 
maximum on the back of the valve root and reached 16.5 kPa, also consistent with that in 
the existing stress level (5 kPa-30 kPa) [Chen, Berwick, Krieger et al. (2014); Whitmore 
(1968)]. These results corroborated the previous finding that the vascular epithelial cells 
on the base region of the valve were sensitive to fluid shear stress [Simmons, Grant, 
Manduchi et al. (2005)]. With rather small fluid shear stress, there would be significant 
solid stress upon the valve. It could further explain that any disturbance in the 
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physiological balance of the environment would induce mechanotransduction and result 
in the release of white blood cells [Davies (2007)]. As was reported that these cells 
adhere to the surface and accumulate, leading to an inflammatory reaction that 
deteriorates the venous integrity. So, the analysis of the WSS was available when the 
presented model was employed to mimic the venous physiology. 

 
Figure 10: (a) The first principal stress and the corresponding blood pressure, (b) The 
maximum SWSS and the corresponding FWSS 

4.2 Comparisons between healthy and diseased cases 
4.2.1 Effects of sinus lesions on valve and blood kinematics 
For the kinematics of the vein, the opening-closing behavior of venous valves and their 
fluid dynamics are given, such as the orifice size, the transvalvular pressure gradient, and 
the transvalvular flow rate. 
As shown in Fig. 11, the valve deformation exhibited sensitivity to the assumed sinus 
lesion. The opening magnitude of the orifice between the leaflets was inversely 
proportional to the elastic modulus of the sinus. Instead, the duration of the equilibrium 
phase was proportional to the elastic modulus of the sinus. When the sinus was atrophic, 
the GOA of the vein increased by 20%, particularly when the situation was severe it 
increased by 31.6%. When the sinus was fibrotic, the decrease in the GOA was 9.8%-
11.4%, and it differed slightly regardless of the severe situation or not. It indicated that 
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the vein deformation was more sensitive to the atrophic lesion. The maximum orifice 
diameter was reduced by 3.3% in the fibrotic case and increased by 12.1% in the atrophic 
case relative to the healthy vein (Tab. 6). Therefore, it is important to consider the 
flexibility of the venous sinus structure when modeling the vein, especially when the 
latter is diseased. When the mechanical properties of the venous sinus are disrupted, sinus 
expansion and contraction would have a significant effect on the valve deformation.  

 
Figure 11: Geometric orifice areas of the vein for different cases 

Table 6: The maximum orifice sizes in different vein models 

Case Orifice area (cm2) Ratio of orifice to diameter (%) 

Healthy one 0.316 66.35% 

Sinus with fibrosis  0.285 61.50% 

Sinus with atrophy 0.379 75.24% 

Sinus with severe fibrosis 0.279 60.40% 

Sinus with severe atrophy 0.416 80.40% 

Corresponding to the abnormal deformation of the vein, the blood flow also became 
abnormal, as shown in Fig. 12. The maximum hydrodynamic pressure imposed on the 
leaflet occurred earlier when the sinus was softer. The pressure gradients near the valves 
increased by 13.5% and 15.9% in the fibrotic cases; it decreased by 8.7% and 12.7% in 
the atrophic case. It showed that the pressure gradient in the diseased vein with the severe 
lesion (fibrosis/atrophy) was close to the one in the mild situation. Taken together, the 
vascular motion was significantly affected by the orifice size and transvalvular pressure 
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gradient. Similarly to the valve lesion [Soifer, Weiss, Marom et al. (2016)], the normal 
valve functioning was also influenced by the sinus lesions. 

 
Figure 12: Transvalvular pressure gradient (between Point B and Point D) of the vein for 
different cases 

 
Figure 13: Transvalvular flow rate (between Point B and Point D) of the vein for 
different cases 

Using Eq. (18) in Section 4.1.2, the flow rate was calculated. Fig. 13 shows that the flow 
rate across the valves increased after the sinus became abnormal.  The flow rate increased 
by 28.1% for fibrotic lesions and severe fibrosis, and it increased by 61.1% for atrophic 
lesion and severe atrophy. It was mentioned that the flow rate Q is related to the GOA 
and the velocity pattern at the orifice. Combined with that the decrease in the GOA was 
induced by the fibrotic sinus lesion, it could be deduced the velocity of the ejection flow 
sharply increased and the shear rate was even much higher. It indicated that the atrophic 
lesion might increase the risk of suffering from stronger fluid action or even damage. For 
example, there would be a more significant increase in the flow rate and it might cause 
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vasospasm, if the atrophic sinus was found at a cerebral vein. In addition, a significant 
increase of the venous flow might negatively influence the flow rate of the neighboring 
veins [Soifer, Weiss, Marom et al. (2016)]. However, this described mechanism indicated 
that the assumed sinus lesion did not lead to the incompetence of the valve. And the 
transportation of blood could be improved properly when the sinus of a prosthetic valve 
was designed to be soft, such as the modulus was scaled down less than 5.0 times. 

4.2.2 Effects of sinus lesions on valve and blood dynamics 
Fig. 14 plotted the FPS, the pressure, the SWSS and FWSS in different vein models when 
the opening orifice was maximum. Under the different situations, almost all the peak FPS 
and SWSS of the vein occurred at the forward side of the root of the valve. Meantime, the 
pressure gradient imposed at the root of the valve was still maximum. It indicated that the 
sensitive position of the vein remained the same when it suffered from the sinus lesions.  

 

 
Figure 14: First principal stress and pressure in (a) the healthy vein, (c) the diseased vein 
with fibrotic sinus and (e) the diseased vein with atrophic sinus at the maximum opening 
orifice. The corresponding solid shear stress and fluid shear stress in (b) the healthy vein, 
(d) the diseased vein with fibrotic sinus and (f) the diseased vein with atrophic sinus 

Additionally, the fluid shear stresses at the base region of the sinus side of the leaflet 
were small (below 1.0 Pa), due to the lowest shear rate. The maximum FWSS appeared 
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on the upper edge of the leaflet. Those results were similar to those in the diseased veins 
with valve lesion [Soifer, Weiss, Marom et al. (2016)]. An evident discrepancy between 
them was the increase in the FPS/SWSS at the exterior wall of the sinus if the sinus was 
atrophic, as shown in Figs. 14(e) and 14(f). 
The variation of the leaflet shear stress exhibited a proportional relationship with that of 
the sinus modulus which further agreed with that for the diseased vein with valve lesion 
[Soifer, Weiss, Marom et al. (2016)]. To be clearer, we presented the time-variation of 
the SWSS on the valve root along with the neighboring FWSS, as shown in Figs. 15 and 16.  

 
Figure 15: Effects of sinus lesions on the solid wall shear stress (SWSS) on the valve root 

 
Figure 16: Effects of sinus lesions on the fluid wall shear stress (FWSS) near the valve root  
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The law of the SWSS for different vein models was the same in different cycles. The 
SWSS increased with the elastic modulus of the sinus increasing, although the difference 
of the SWSS between fibrosis and severe fibrosis or between atrophy and severe atrophy 
was unapparent. It indicated the effect of scaling up or down the sinus modulus was 
limited to a certain level (5.0 times), and the leaflet response could be less sensitive to 
such further variation. 
Owing to the rapid behavior of the opening, the increase of SWSS in the opening phase 
was more apparent than that in the closing or closed phase. Compared to the fibrosis of 
the sinus, the difference between the diseased vein and the healthy vein was more 
significant induced by the atrophy. Such increases for the fibrotic case were 4.0% and 
8.7%, while the decreases for the atrophic cases were 14.5% and 16.3%. Similarly, the 
increases of the FWSS for the fibrotic case were 7.6% and 14.5%, and more significant 
than the decreases of 9.6% and 18.1% for the atrophic cases. Such a law of the variation of 
shear stress owing to the venous lesion was similar to that in the previous reports [Soifer, 
Weiss, Marom et al. (2016)], we surmised that the atrophic lesion had an apparent effect on 
the mechanical response. 
The major mechanism of FWSS influencing on valve biology is that the low shear stress 
regions at the pockets behind the leaflets. For both healthy and diseased veins, this may 
cause flow stagnation and low FWSS. According to Fig. 16, the FWSS became lower 
with the decrease of the sinus. In pathology, it decreased the atheroprotective and anti-
inflammatory factors because endothelium and glycocalyx are known to sense the FWSS 
and initiate mechanotransduction. At the sinus region, the adhesion of inflammatory and 
thrombotic cells then increased, and the deposition or permeation of these cells onto the 
vessel wall was enhanced. Owing to the material gradient at the base of the valve, the 
SWSS act on the surfaces of leaflets and vessel walls was significant. For evaluation of 
the valve functioning, a following mechanical cost [Soifer, Weiss, Marom et al. (2016)] 
was usually defined to quantitatively analyze the effect, 
Cost function=Solid WSS/Fluid WSS, (19) 
Combined with the resulting FWSS with SWSS, the maximum mechanical cost of the 
vein occurred at 0.5 s or 1.5 s. At this time, the FWSS at the sinus side of the valve root 
was 0.10 Pa, agreed well with that in Chen et al. [Chen, Berwick, Krieger et al. (2014)]. 
Accordingly, the mechanical cost of the healthy vein was 5.5× 104 . The apparent 
difference of the cost was normalized as a ratio of 1: 0.87: 1.08: 0.64: 1.23 for the healthy 
vein, the diseased veins with sinus lesions of fibrosis and atrophy, and those with severe 
fibrosis and atrophy. The hypothesized mechanism suggested an upper limit, although 
softer sinus in prosthetic valve facilitated blood transportation. Due to the sensitivity to 
mechanical stimuli, white blood cell accumulation and adsorption on the vascular surface 
would damage the elasticity of venous material [Davies (2007)]. We deduced therefore 
that atrophic lesion of the sinus was supposed to improve the sensitivity of the diseased 
vein to fluid shear stress, and the risk of damage to the venous endothelial cells was 
increased when the sinus was subjected to the same magnitude of FWSS. 
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5 Conclusions 
An FSI model of the vein was established using the modified IFEM and the adhesive 
contact algorithm. Both the fluid-structure and solid-solid interactions were included in 
the model. The fibrosis and atrophy of sinus were studied as vein lesions. And the valve 
opening orifice size, blood flow rate and wall shear stress were quantitatively analyzed. 
The primary conclusions were given as below: 
 The proposed FSI method was available in capturing the interaction between the 

blood and the vein. The contact force opposed further penetration between leaflets 
when the valve was closed. The periodic fluttering of the leaflet, and the periodic 
forward and reversed flows were reproducible.  

 The validity of the presented mathematical model was verified by related 
experimental and theoretical findings of the healthy vein. The accuracies of the valve 
and blood dynamics in the 2-D model were sufficient for analysis of the vein under 
normal/abnormal physiological conditions along its central transverse plane. 

 Variation of the valve movement was inversely proportional to the elastic modulus of 
the sinus, AGOA(Severe atrophy)>AGOA(Atrophy)>AGOA(Healthy)>AGOA(Fibrosis)>A-

GOA(Severe fibrosis). Instead, the transvalvular pressure gradient increased with the 
elastic modulus of the sinus increasing. However, the effects of both were limited 
when the modulus was scaled to a certain level, and never caused the incompetence of 
the valve. 

 Either the stiffening or the softening of the sinus led to an increase in the blood flow rate. 
Such an increase was not always beneficial when a prosthesis was designed, as the 
overloading of the cardiovascular system may develop into cardiac failure. 

 The sinus region was the possible position of the tissue failure, since low blood WSS 
and the highest leaflet WSS were seen at that site. Relative to the fibrotic lesion, the 
atrophic lesion resulted in a greater increase in shear stress along with significant 
SWSS on the sinus surface. 

 Compared to the healthy vein, an increase of mechanical cost in the diseased vein with 
atrophic sinus showed increased sensitivity to mechanical stimuli.  

The presented results were still partly understood although the FSI model was valid. And 
the understandings could be complete only if the related biological knowledge was 
clearly known. Additionally, there was still room in this research, such as the 3-D model, 
the helical flow, and more realistic structure. And this code was also under private 
development to improve its current shortcomings. We will devote ourselves to those 
improvements so that the employment of the present study could be more useful in the 
prosthesis design of vein, as well as the code could be open-sourced in the future work.  
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Appendix A 
The N-S equations are discretized in the Petrov-Galerkin forms. With the velocity 
variation 𝛿𝛿𝑣𝑣 and the pressure variation 𝛿𝛿𝑝𝑝, the weak form is written as  
� ��𝛿𝛿𝑝𝑝 + 𝜏𝜏𝑙𝑙𝜌𝜌 𝛿𝛿𝑣𝑣𝑖𝑖,𝑖𝑖�𝑣𝑣𝑗𝑗,𝑗𝑗 + �𝛿𝛿𝑣𝑣𝑖𝑖 + 𝜏𝜏𝑐𝑐𝑣𝑣𝑘𝑘𝛿𝛿𝑣𝑣𝑖𝑖,𝑘𝑘 + 𝜏𝜏𝑚𝑚𝛿𝛿𝑝𝑝,𝑖𝑖�[𝜌𝜌�𝑣𝑣𝑖𝑖,𝑡𝑡 + 𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗� −

 

Ωf

𝜌𝜌g𝑖𝑖]� 𝑑𝑑Ω + � 𝛿𝛿𝑣𝑣𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗𝑑𝑑Ω
 

Ωf
− ∫ 𝛿𝛿𝑣𝑣𝑖𝑖ℎ𝑖𝑖𝑑𝑑Γ

 
 Γf,h − ∑ � �𝜏𝜏𝑐𝑐𝑣𝑣𝑘𝑘𝛿𝛿𝑣𝑣𝑖𝑖,𝑘𝑘 +

 

Ωnef
ne
ie

𝜏𝜏𝑚𝑚𝛿𝛿𝑝𝑝,𝑖𝑖� 𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗𝑑𝑑Ω = 0, 

(A1) 

where 𝜏𝜏𝑐𝑐 , 𝜏𝜏𝑚𝑚  and 𝜏𝜏𝑙𝑙  denote the three stabilized parameters in the Streamline-Upwind 
Petrov-Galerkin (SUPG) and Pressure-Stabilizing Petrov-Galerkin (PSPG) formulations.  
In the standard Galerkin formulation, the unknowns 𝑣𝑣 and 𝑝𝑝 are discretized as 
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𝑣𝑣𝑖𝑖 = 𝑁𝑁𝐼𝐼𝑣𝑣𝐼𝐼𝑖𝑖,    𝑝𝑝 = 𝑁𝑁𝐼𝐼𝑝𝑝𝐼𝐼 , 𝛿𝛿𝑣𝑣𝑖𝑖 = 𝑁𝑁𝐼𝐼𝛿𝛿𝑣𝑣𝐼𝐼𝑖𝑖 , 𝛿𝛿𝑝𝑝 = 𝑁𝑁𝐼𝐼𝛿𝛿𝑝𝑝𝐼𝐼, (A2) 
where 𝑁𝑁𝐼𝐼 is the shape function at arbitrary node I.  
By substituting Eq. (A1) into Eq. (A2), we could obtain the discretized equilibrium 
equation at any node I, 
� ��𝑁𝑁𝐼𝐼𝛿𝛿𝑝𝑝𝐼𝐼 + 𝜏𝜏𝑙𝑙𝜌𝜌 𝑁𝑁𝐼𝐼𝛿𝛿𝑣𝑣𝐼𝐼𝑖𝑖�𝑣𝑣𝑗𝑗,𝑗𝑗 + �𝑁𝑁𝐼𝐼𝛿𝛿𝑣𝑣𝐼𝐼𝑖𝑖 + 𝜏𝜏𝑐𝑐𝑣𝑣𝑘𝑘𝑁𝑁𝐼𝐼,𝑘𝑘𝛿𝛿𝑣𝑣𝐼𝐼𝑖𝑖 + 𝜏𝜏𝑚𝑚𝑁𝑁𝐼𝐼,𝑖𝑖𝛿𝛿𝑝𝑝𝐼𝐼�[𝜌𝜌�𝑣𝑣𝑖𝑖,𝑡𝑡 +
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(A3) 

After extracting the common factors of 𝛿𝛿𝑣𝑣𝐼𝐼𝑖𝑖 and 𝛿𝛿𝑝𝑝𝐼𝐼, Eq. (A1) could be rewritten as  
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Ωnef
𝑑𝑑Ωne

ie � + 𝛿𝛿𝑝𝑝𝐼𝐼 �� [𝑁𝑁𝐼𝐼𝑣𝑣𝑗𝑗,𝑗𝑗 + 𝜏𝜏𝑚𝑚𝑁𝑁𝐼𝐼,𝑖𝑖𝜌𝜌�𝑣𝑣𝑖𝑖,𝑡𝑡 +
 

Ωf

𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗� − 𝜌𝜌g𝑖𝑖]𝑑𝑑Ω +∑ � 𝜏𝜏𝑚𝑚𝑁𝑁𝐼𝐼,𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗
 

Ωnef
𝑑𝑑Ωne

ie � = 0, 

(A4) 

Owing to the arbitrary variations of 𝛿𝛿𝑣𝑣𝐼𝐼𝑖𝑖  and 𝛿𝛿𝑝𝑝𝐼𝐼 , the equilibrium of the equivalent 
integral could deduce the following two equations: 
� [𝜏𝜏𝑙𝑙𝜌𝜌 𝑁𝑁𝐼𝐼𝑣𝑣𝑗𝑗,𝑗𝑗 + 𝑁𝑁𝐼𝐼,𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗 + 𝜌𝜌(𝑁𝑁𝐼𝐼 + 𝜏𝜏𝑐𝑐𝑣𝑣𝑘𝑘𝑁𝑁𝐼𝐼,𝑘𝑘)�𝑣𝑣𝑖𝑖,𝑡𝑡 + 𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗 − g𝑖𝑖�]

 

Ωf
𝑑𝑑Ω −

∫ 𝑁𝑁𝐼𝐼ℎ𝑖𝑖𝑑𝑑Γ
 

 Γf,h − ∑ � 𝜏𝜏𝑐𝑐𝑣𝑣𝑘𝑘𝑁𝑁𝐼𝐼,𝑘𝑘𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗
 

Ωnef
𝑑𝑑Ωne

ie = 0, 
(A5) 

∫ [𝑁𝑁𝐼𝐼𝑣𝑣𝑗𝑗,𝑗𝑗 + 𝜏𝜏𝑚𝑚𝑁𝑁𝐼𝐼,𝑖𝑖𝜌𝜌�𝑣𝑣𝑖𝑖,𝑡𝑡 + 𝑣𝑣𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗� − 𝜌𝜌g𝑖𝑖]
 
Ωf 𝑑𝑑Ω + ∑ � 𝜏𝜏𝑚𝑚𝑁𝑁𝐼𝐼,𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗

 

Ωnef
𝑑𝑑Ωne

ie = 0, (A6) 

To solve the non-linear equations system, the Matrix-Free Krylov-Subspace method is 
employed with Newton iterations to approximate the true solution. And the generalized 
minimum residual (GMRES) method [Zhang, Gerstenberger, Wang et al. (2004)] was 
chosen as a Krylov subspace solver to solve the linear equations generated by the Newton 
iteration step. Then, the discretized residual equations of velocity 𝑟𝑟𝐼𝐼𝑖𝑖𝑣𝑣  and pressure 𝑟𝑟𝐼𝐼

𝑝𝑝 at 
node I are written as below: 

�
𝑟𝑟𝐼𝐼𝑖𝑖𝑣𝑣 = ∫ �𝜏𝜏𝑙𝑙𝜌𝜌𝑁𝑁𝐼𝐼,𝑖𝑖𝑣𝑣𝑗𝑗,𝑗𝑗 + �𝑁𝑁𝐼𝐼,𝑖𝑖 + 𝜏𝜏𝑐𝑐𝑣𝑣𝑘𝑘𝑁𝑁𝐼𝐼,𝑘𝑘�[𝜌𝜌�𝑣𝑣𝑖𝑖,𝑡𝑡 + 𝑣𝑣𝑖𝑖,𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗� − 𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗 − 𝑓𝑓𝑖𝑖]�𝑑𝑑Ω

 
𝛺𝛺

𝑟𝑟𝐼𝐼
𝑝𝑝 = ∫ �𝜏𝜏𝑚𝑚𝑁𝑁𝐼𝐼,𝑖𝑖�𝜌𝜌�𝑣𝑣𝑖𝑖,𝑡𝑡 + 𝑣𝑣𝑖𝑖,𝑗𝑗𝑣𝑣𝑖𝑖,𝑗𝑗� − 𝜎𝜎𝑖𝑖𝑗𝑗,𝑗𝑗 − 𝑓𝑓𝑖𝑖�+ 𝑁𝑁𝐼𝐼𝑣𝑣𝑗𝑗,𝑗𝑗�

 
𝛺𝛺 𝑑𝑑Ω                           

, (A7) 

where 𝑟𝑟𝐼𝐼𝑖𝑖𝑣𝑣 was the approximate residual on the left side of Eq. (A5) and 𝑟𝑟𝐼𝐼
𝑝𝑝 was that in Eq. 

(A6). And they could be also expressed as an implicit function 𝐹𝐹(𝑟𝑟𝐼𝐼𝑖𝑖𝑣𝑣 , 𝑟𝑟𝐼𝐼
𝑝𝑝) = 0. In the 

numerical computation, the increments of the unknowns are iterated by the Newton-
Raphson method till the true solution was finally approximated when it is convergent. 
Further derivation from can refer to Zhang et al. [Zhang, Gerstenberger, Wang et al. 
(2004)]. 

Appendix B 
The finite element formulation of the solid dynamic equation is based on the Galerkin 
method. Following Eq. (11), the corresponding weak form is written as below: 
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∫ 𝛿𝛿𝑑𝑑𝑖𝑖s�σ𝑖𝑖𝑗𝑗,𝑗𝑗
s − 𝜌𝜌s�̈�𝑑𝑖𝑖s − 𝑐𝑐�̇�𝑑𝑖𝑖s − f𝑖𝑖s�𝑑𝑑𝛺𝛺

 
𝛺𝛺𝑆𝑆 = 0, on   𝛺𝛺𝑆𝑆 × [0,𝑇𝑇] (B1) 

where 𝛿𝛿𝑑𝑑𝑖𝑖s is the displacement variation or test function.  
Assuming that the discretized formulations of the variable and variation are written as 
bellow: 
𝑑𝑑𝑖𝑖s = 𝑁𝑁𝐼𝐼𝑑𝑑𝐼𝐼𝑖𝑖s , 𝛿𝛿𝑑𝑑𝑖𝑖s = 𝑁𝑁𝐼𝐼𝛿𝛿𝑑𝑑𝐼𝐼𝑖𝑖s ,  (B2) 
In the standard Galerkin method, Eq. (B2) can be substituted into Eq. (B3). Because the 
variation 𝛿𝛿𝑑𝑑𝐼𝐼𝑖𝑖s  that is arbitrary, it could be eliminated. The semi-discrete form of the 
dynamic equation is then reformed as below: 

� (𝑁𝑁𝐼𝐼𝑇𝑇𝜌𝜌s𝑁𝑁𝐽𝐽�̈�𝑑𝐼𝐼𝑖𝑖s + 𝐶𝐶𝐼𝐼𝐽𝐽�̇�𝑑𝐼𝐼𝑖𝑖s + ∇𝑁𝑁𝐼𝐼𝑇𝑇𝐷𝐷∇𝑁𝑁𝐽𝐽𝑑𝑑𝐼𝐼𝑖𝑖s − 𝑁𝑁𝐼𝐼f𝐽𝐽𝑖𝑖s )𝑑𝑑𝛺𝛺
 

𝛺𝛺𝑆𝑆
= 0 (B3) 

where 𝐶𝐶𝐼𝐼𝐽𝐽 is the damping matrix. It is used to consider the Rayleigh damping effect. The 
mass and stiffness matrices via the coefficients 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑘𝑘, 𝐶𝐶𝐼𝐼𝐽𝐽 = 𝑓𝑓𝑚𝑚𝑀𝑀𝐼𝐼𝐽𝐽 + 𝑓𝑓𝑘𝑘𝐾𝐾𝐼𝐼𝐽𝐽. 
Using the Newmark-𝛽𝛽 time integration formulation [Smith and Griffiths (2013)], then the 
acceleration and velocity should be expressed in the terms of the displacement. At 
arbitrary time 𝑡𝑡, Eq. (B3) is transformed into 

��𝑓𝑓𝑚𝑚 +
1
𝜃𝜃∆𝑡𝑡

�𝑀𝑀𝐼𝐼𝐽𝐽 + �𝑓𝑓𝑘𝑘 + 𝜃𝜃∆𝑡𝑡�𝐾𝐾𝐼𝐼𝐽𝐽� 𝑑𝑑𝐼𝐼𝑖𝑖s = 𝐹𝐹𝐽𝐽𝑖𝑖𝜙𝜙  (B4) 

with 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑀𝑀𝐼𝐼𝐽𝐽 = � 𝑁𝑁𝐼𝐼𝑇𝑇𝜌𝜌s𝑁𝑁𝐼𝐼

 

𝛺𝛺𝑆𝑆
𝑑𝑑𝛺𝛺,              𝑀𝑀′𝐼𝐼𝐽𝐽 = �𝑓𝑓𝑚𝑚 +

1
𝜃𝜃∆𝑡𝑡

�� 𝑁𝑁𝐼𝐼𝑇𝑇𝜌𝜌s𝑁𝑁𝐼𝐼𝑑𝑑𝛺𝛺
 

𝛺𝛺𝑆𝑆

𝐾𝐾𝐼𝐼𝐽𝐽 = � ∇𝑁𝑁𝐼𝐼𝑇𝑇𝐷𝐷∇𝑁𝑁𝐼𝐼
 

𝛺𝛺𝑆𝑆
𝑑𝑑𝛺𝛺,           𝐾𝐾′𝐼𝐼𝐽𝐽 = (𝑓𝑓𝑘𝑘 + 𝜃𝜃∆𝑡𝑡)� ∇𝑁𝑁𝐼𝐼𝑇𝑇𝐷𝐷∇𝑁𝑁𝐼𝐼𝑑𝑑𝛺𝛺

 

𝛺𝛺𝑆𝑆

𝐹𝐹𝐼𝐼𝑖𝑖𝑠𝑠 = 𝜃𝜃∆𝑡𝑡𝐹𝐹𝐼𝐼𝑖𝑖𝑡𝑡 + ∆𝐹𝐹1 + ∆𝐹𝐹2

∆𝐹𝐹1 = (1 − 𝜃𝜃)∆𝑡𝑡𝐹𝐹𝐼𝐼𝑖𝑖𝑡𝑡−∆𝑡𝑡 +
1
𝜃𝜃
𝑀𝑀𝐼𝐼𝐽𝐽�̇�𝑑𝐼𝐼𝑖𝑖

s,𝑡𝑡−∆𝑡𝑡

∆𝐹𝐹2 = + �𝑓𝑓𝑚𝑚 +
1
𝜃𝜃∆𝑡𝑡

�𝑀𝑀𝐼𝐼𝐽𝐽𝑑𝑑𝐼𝐼𝑖𝑖
s,𝑡𝑡−∆𝑡𝑡 + [𝑓𝑓𝑘𝑘 − (1 − 𝜃𝜃)∆𝑡𝑡]𝐾𝐾𝐼𝐼𝐽𝐽𝑑𝑑𝐼𝐼𝑖𝑖

s,𝑡𝑡−∆𝑡𝑡

 (B5) 

where θ is a constant, ∆𝑡𝑡 is the time step size, 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑘𝑘 are the damping coefficients, 𝑀𝑀𝐼𝐼𝐽𝐽 
is the mass matrix, and 𝐾𝐾𝐼𝐼𝐽𝐽 is the stiffness matrix, 𝑀𝑀′𝐼𝐼𝐽𝐽 and 𝐾𝐾′𝐼𝐼𝐽𝐽 are the corresponding 
modified matrices. 
In the solid solver, the mentioned matrices are formed by Cholesky factorization and are 
assembled in “skyline” form Smith et al. [Smith and Griffiths (2013)]. Subsequently, the 
Cholesky forward and back-substitution [Smith and Griffiths (2013)] are employed to solve 
the equation systems. 

Appendix C 
The venous wall and sinus are assumed as the linear elastic materials, and the 
corresponding stress is calculated as 

σ𝑖𝑖𝑖𝑖
s,wall = Eε𝑖𝑖𝑖𝑖

s,wall, on Ωs,wall (C1) 



 
 
 
Modeling and Simulation of Valve Cycle in Vein                                                                          183 

where ε𝑖𝑖𝑖𝑖
s,wall is the Cauchy strain and E is Young’s modulus.  

The venous valve is assumed as a hyperelastic material and calculated as 
σ𝑖𝑖𝑗𝑗
s,valve = J−1F𝑖𝑖𝐼𝐼 S𝐼𝐼𝐽𝐽F𝑗𝑗𝐽𝐽𝑇𝑇 , on Ωs,valve (C2) 

where S𝐼𝐼𝐽𝐽  is the second Piola-Kirchhoff stress and F𝑖𝑖𝐼𝐼 (∂𝒙𝒙𝑖𝑖𝑠𝑠 = ∂𝑿𝑿𝐼𝐼𝑠𝑠 ) is the deformation 
gradient. 
The hyperelastic material adopts a Mooney-Rivlin constitutive model, and the strain 
energy function 𝒲𝒲(𝐼𝐼𝑐𝑐 , 𝐼𝐼𝐼𝐼𝑐𝑐, 𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐) is as follows 
𝒲𝒲 = 𝑐𝑐1(𝐼𝐼𝑐𝑐 − 3) + 𝑐𝑐2(𝐼𝐼𝐼𝐼𝑐𝑐 − 3) + 𝑐𝑐3(𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐 − 1)2 (C3) 
where 𝑐𝑐1, 𝑐𝑐2 and 𝑐𝑐3 are the three coefficients of the hyperelastic material, and 𝐼𝐼𝑐𝑐, 𝐼𝐼𝐼𝐼𝑐𝑐 and 
𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐 are three invariants of right hand Cauchy-Green strain tensor 𝑪𝑪 as shown below 
𝐼𝐼𝑐𝑐 = tr𝑪𝑪, 𝐼𝐼𝐼𝐼𝑐𝑐 = tr𝑪𝑪𝑪𝑪/2, 𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐 = det𝑪𝑪 = J2 (C4) 
𝐶𝐶𝐼𝐼𝐽𝐽 = F𝑖𝑖𝐼𝐼F𝑖𝑖𝐽𝐽𝑇𝑇 , (C5) 
where J = 1  is satisfied for in the impressible constitutive model and 𝑐𝑐3  need not be 
considered. 
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