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Abstract: Micro-CT provides a high-resolution 3D imaging of micro-architecture 
in a non-invasive way, which becomes a significant tool in biomedical research 
and preclinical applications. Due to the limited power of micro-focus X-ray tube, 
photon starving occurs and noise is inevitable for the projection images, resulting 
in the degradation of spatial resolution, contrast and image details. In this paper, we 
propose a C-GAN (Conditional Generative Adversarial Nets) denoising algorithm 
in projection domain for Micro-CT imaging. The noise statistic property is utilized 
directly and a novel variance loss is developed to suppress the blurry effects during 
denoising procedure. Conditional Generative Adversarial Networks (C-GAN) is 
employed as a framework to implement the denoising task. To guarantee the pixel-
wised accuracy, fully convolutional network is served as the generator structure. 
During the alternative training of the generator and the discriminator, the network 
is able to learn noise distribution automatically. Moreover, residual learning and 
skip connection architecture are applied for faster network training and further 
feature fusion. To evaluate the denoising performance, mouse lung, milkvetch root 
and bamboo stick are imaged by micro-CT in the experiments. Compared with 
BM3D, CNN-MSE and CNN-VGG, the proposed method can suppress noise 
effectively and recover image details without introducing any artifacts or blurry 
effect. The result proves that our method is feasible, efficient and practical. 
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1 Introduction 
In X-ray CT, image noise has a great impact on image quality. For traditional clinic CT, the noise 

mainly consists of two parts: Poisson noise brought by random X-ray photons and Gaussian noise 
generated during the detector acquisition. In terms of high-resolution micro-CT imaging, the photon noise 
is more severe as the power of micro-focus X-ray source is small and the X-ray flux is insufficient, 
making the noise distribution different from those of clinical CT images. Many researches have been 
carried out to reduce the micro-CT image noise and improve its quality. Some traditional state-of-art 
denoising methods like BM3D [1], K-SVD [2] have been applied to CT-image domain and achieved 
some effects. These approaches are in an iterative way that are quite time-consuming, thus cannot yet 
fulfill the needs for practical application. Recently, deep learning methods are emerging as a high-
efficient alternative to solve such problems and obtain very impressive results [3-5]. However, the 
performance of above methods is strong dependent on the precise estimation of noise property. When 
transformed into image domain, the projection noise statistics is no longer distinct, resulting in the limited 
improvement and blurry effects on the reconstructed CT images. In views of the above problems, we use 
deep neural network to model the characteristics of the projection domain noise. With the merits of 
extracting image features and identifying the high-level semantics, the neural network can model the 
noise characteristics more precisely. By optimizing the loss function, neural networks can learn an end to 
end noise mapping automatically. Moreover, this method has the potential of real-time application. Once 
the network is trained successfully, the contaminated images can be denoised in a quite short time. The 
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specific procedures including methods, network architecture, experiment and results will be elucidated in 
the following chapters. 

2 Method 
In the previous researches, the deep learning based methods show advantages in the field of image 

processing [6,7]. Recently, conditional GAN(C-GAN) [8] is used in Pixel2Pixel network and achieves 
great performance in image translation. Inspired by the success of Pixel2Pixel network an improved C-
GAN is applied as the framework for solving micro-CT denoising. C-GAN consists of two networks, the 
generator G and discriminator D. In the generator, the residual learning architecture [9] is used to learn a 
model mapping the noisy image 𝑥𝑥 to the corresponding noise image 𝑛𝑛, where 𝑥𝑥 is also the condition input. 
Consequently, the denoised image 𝑦𝑦� can be expressed as 𝑦𝑦� = 𝑥𝑥 − 𝑛𝑛; The role of the discriminator D is to 
distinguish the generated image pair (𝑥𝑥; 𝑦𝑦�) from the real one (𝑥𝑥; 𝑦𝑦). Note that the input to D not only 
contains the denoised image (𝑦𝑦�) and real high-quality image (𝑦𝑦), but also contains the condition image (𝑥𝑥). 
In this way, the output of D is constrained to specific condition to make accurate discrimination. The 
training procedure is illustrated in Fig. 1. 

 

 
Figure 1: Overview architecture of proposed network 

The purpose of G is trying to confuse D, making the generated image (𝑦𝑦�) close to real image (𝑦𝑦), 
while D is aiming to figure out the difference between real and fake one. The opposite purpose of G and 
D forms the adversarial loss, which can be formulated as: 
𝓛𝓛𝒂𝒂𝒂𝒂𝒂𝒂(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝒙𝒙,𝒚𝒚~𝒑𝒑𝒂𝒂𝒂𝒂𝒅𝒅𝒂𝒂(𝒙𝒙,𝒚𝒚)[log𝐷𝐷(𝑥𝑥,𝑦𝑦)] + 𝔼𝔼𝒙𝒙~𝒑𝒑𝒂𝒂𝒂𝒂𝒅𝒅𝒂𝒂(𝒙𝒙)[log (1 − 𝐷𝐷(𝑥𝑥, 𝑥𝑥 − 𝐺𝐺(𝑥𝑥)))] (1) 

Previous researches have explored that it is beneficial to introduce a more traditional loss to GAN 
loss function [6]. L1 and L2 distance are the most commonly used loss function in regression problems. 
However, it is reported that L2 loss tends to result in blurring [6]. As a result, in this paper we select L1 
distance as the traditional loss rather than L2 distance to encourage less blurring.  
𝓛𝓛𝑳𝑳𝑳𝑳(𝐺𝐺) = 𝔼𝔼𝒙𝒙,𝒏𝒏[‖𝑛𝑛 −𝐺𝐺(𝑥𝑥)‖𝑳𝑳𝑳𝑳] (2) 

As we know, random noise can be modeled by mean and variance. Mean determines the overall 
property while variance controls the high-frequency information. To make most use of noise statistics, we 
firstly propose variance loss as follows: 
𝓛𝓛𝒂𝒂𝒂𝒂𝒗𝒗(𝐺𝐺) = 𝔼𝔼𝒙𝒙,𝒏𝒏[‖𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛)−𝑉𝑉𝑉𝑉𝑉𝑉(𝐺𝐺(𝑥𝑥))‖𝑳𝑳𝑳𝑳] (3) 

The motivation of introducing variance term is that L1 loss is calculated pixel by pixel while noise is 
in an overall statistical distribution. During the decreasing of L1 loss, the noise distribution may not be 
optimized at the same time. As a result, it is natural using a statistical indicator to describe the noise. The 
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purpose of adding variance term is to constrain the solution space and generate a more reasonable noise 
distribution. Combining these three losses together, the final loss function is as follows: 
𝓛𝓛𝒇𝒇𝒇𝒇𝒏𝒏𝒂𝒂𝒇𝒇(𝐺𝐺,𝐷𝐷) = 𝒂𝒂𝒗𝒗𝒂𝒂min

𝐺𝐺
max
𝐷𝐷

(𝓛𝓛𝒂𝒂𝒂𝒂𝒂𝒂(𝐺𝐺,𝐷𝐷) + 𝜆𝜆1𝓛𝓛𝑳𝑳𝑳𝑳(𝐺𝐺) + 𝜆𝜆2𝓛𝓛𝒂𝒂𝒂𝒂𝒗𝒗(𝐺𝐺)) (4) 

where 𝜆𝜆1 and 𝜆𝜆2 are the coefficient of L1-distance loss and variance loss respectively. Followed by the 
suggestion in Pixel2Pixel network [6], the 𝜆𝜆1 is set 1e2. In order to make the variance loss work, it is at 
least the same magnitude as L1 loss. Empirically, 𝜆𝜆2 is set 1e5 in our experiment. 

3 Network Architecture 
In GAN, traditional generator is derived from Encoder-Decoder structure, which is proved with 

outstanding performance in image-image translation. For our task, pixel-wised accuracy is strictly 
demanded since little mismatch may introduce severe artifacts in reconstructed CT image. To obtain the 
pixel-pixel precision, we use fully convolutional network [10] as the basis of generator. Dilation 
convolution [11] is introduced to enlarge the perception field and capture multi-scale features. For sake of 
promoting the integration of different feature levels, skip connection [12] is used to boost the feature 
expression. In addition, rather than transforming noisy to clean image, residual learning is applied to learn 
a mapping from noisy image to noise map which can significantly accelerate training. The generator 
structure is depicted as follow: 

 
Figure 2: Proposed generator of the C-GAN 

The purpose of discriminator is to distinguish the fake from the real. PatchGAN [8] is adopted as the 
discriminator network structure. Instead of classifying the whole image as real or fake, it penalizes 
structure at the scale of patches and all the responses are averaged to generate an ultimate result of 
discrimination. Since it focuses attention to local high-frequency patches, it is reasonable in pixel-wised 
application. The architecture of PatchGAN is drawn in Fig. 3. 

 
Figure 3: Structure of Patch-GAN discriminator 
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4 Results 
To evaluate the effectiveness of our denoising method, experiments are carried out in both 

simulation and real data. All data used is acquired by Hiscan VM Micro CT system. 
In simulation, mouse and milkvetch root are scanned for the high-quality projection images. The 

scanning parameters in our experiment are set as follows: tube voltage: 60 kV, tube current: 120 uA, 
exposure time: 100 ms. After acquiring the high-quality projection data, the Poisson noise N~Poisson{αyi} is 
added to simulate photon starving situation, where yi represents the projection value from ith detector channel 
and α is a scaling factor. Then the projection images are cropped into overlapped 96 * 96 patches and a 
dataset containing over 500,000 image pairs is made for network training. After completing these processes, 
FDK algorithm is used to reconstruct CT images. We have compared our results with different approaches: 
BM3D, CNN-MSE [13] and CNN-VGG [14]. Figs. 4- 5 display the simulation results of CT images. 

 
Figure 4: Mouse lung CT image: (a1) high-quality CT image; (b1) noisy CT image; (c1) BM3D; (d1) 
CNN-MSE; (e1) CNN-VGG; (f1) C-GAN. (a2)-(f2): Zoomed image inside the yellow box corresponding 
to (a1)-(f1) 
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Figure 5: Milkvetch Root images: (a1) high-quality CT image; (b1) noisy CT image; (c1) BM3D; (d1) 
CNN-MSE; (e1) CNN-VGG; (f1) C-GAN. (a2)-(f2): Zoomed image inside the yellow box corresponding 
to (a1)-(f1) 

Fig. 4 presents the CT images of mouse lung and Fig. 5 presents those of milkvetch root. In each figure, 
(a) is the high-quality CT image and (b) is the corresponding noisy CT image. (c)-(f) show the results by 
different denoising methods. The images in yellow box are zoomed view for more structure details, as 
shown in (a2)-(f2). Note that BM3D indeed reduces the noise level, though it introduces the streak artifacts 
around the bone areas. CNN-MSE tends to be over-smoothed, accompanied with blurry effects at the 
boundaries of the tissue. On the other hand, the perceptual loss is used in CNN-VGG to capture image 
features, which shows good performance in image-domain denoising. However, when applied to the 
projection domain, it cannot restore enough texture. In contrast, our proposed method generates clearer 
edges and reconstructs low-contrast structures, which is more likely to high-quality image. Due to the 
introducing of variance loss, less blurring occurs and more image details are recovered simultaneously. 

Table 1: PSNR and SSIM of the denoised images 

Object indicator Noisy BM3D CNN-MSE CNN-VGG C-GAN 
Mouse 
lung 

PSNR 27.4164 30.2533 37.6158 36.7754 37.8667 
SSIM 0.4918 0.9100 0.9301 0.8891 0.9153 

Milkvetch 
Root 

PSNR 17.6985 26.1765 30.1228 26.9995 28.2400 
SSIM 0.4614 0.7695 0.8967 0.8107 0.8635 
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Figure 6: Residuals of the denoised CT images: (a) BM3D; (b) CNN-MSE; (c) CNN-VGG; (d) C-GAN; 
(a1)-(f1): Residuals of Mouse lung; (a2)-(f2): Residuals of Milkvetch Root 

In views of the traditional PSNR and SSIM in Tab. 1, our method overrides other approaches except 
CNN-MSE. It is not surprising since the MSE loss function has the same pixel-wised formulation with 
PSNR. To evaluate the denoising performance intuitively, the differences between denoised images and the 
high-quality images are shown in Fig. 6. The upper row is the residual images of mouse lung and the second 
row is that of milkvetch root. It is apparent that the residuals of BM3D and CNN-VGG contain much image 
information, even some artifacts, which manifests these two methods are not suitable for projection domain 
CT image denoising. In terms of CNN-MSE and C-GAN, both methods show greater performance. While 
the structure information of C-GAN in residual image is less than CNN-MSE. The results prove that our 
proposed method can preserve more image details and display a more appealing performance. 

 
Figure 7: Bamboo stick CT images: (a) High-quality CT image; (b) Noisy CT image; (c) BM3D; (d) 
CNN-MSE; (e) CNN-VGG; (f) C-GAN. (a2)-(f2): Zoomed image inside the yellow box corresponding to 
(a1)-(f1) 
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For further verification in actual practice, a piece of bamboo stick was taken as the sample and the 
noisy projections were obtained by reducing the exposure time. After processing by different pre-trained 
models, the denoised CT images are finally displayed in Fig. 7. 

Table 2: PSNR and SSIM of the Bamboo CT images. 

Object Indicator Noisy BM3D CNN-MSE CNN-VGG C-GAN 
Bamboo 

Stick 
PSNR 20.8385 23.1004 24.4382 22.8693 23.7669 
SSIM 0.6601 0.7235 0.8010 0.6693 0.7835 

Figs. 7(a1)-7(f1) show the result of the denoised bamboo stick CT images and Figs. 7(a2)-7(f2) are 
the corresponding enlarged images of yellow box region. From the reconstructed images, it is apparent 
that the results of the real data are similar with those of simulation. PSNR and SSIM shown in Tab. 2 
illustrate that though the real noise is somewhat different from simulated noise, the effect of variance loss 
still works. Compared with CNN-MSE and CNN-VGG, our method can reduce the noise level, as well as 
preserve sharper structure boundary. The results demonstrate that our approach has the same effect with 
the more complicated imaging of real Micro-CT.  

5 Conclusion 
In this paper, we propose a projection denoising method for micro-CT based on deep neural network. 

Conditional GAN is used as our framework. Residual learning and skip connection are applied in 
generator to accelerate training. To better exploit noise statistics, a novel variance loss is developed and 
fused into loss function which indeed upgrades the denoising performance. Through the comparison with 
other outstanding approaches, our method can effectively suppress noise level and improve CT image 
quality at the same time, especially outperforms in preserving detail structures. Although we have 
achieved some preliminary results, there is still room for improvement. In future work, we will further 
refine the proposed network for better adapting to practical application. 
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