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On Caputo-Type Cable Equation: Analysis and Computation
Zhen Wang1

Abstract: In this paper, a special case of nonlinear time fractional cable equation is studied.
For the equation defined on a bounded domain, the existence, uniqueness, and regularity
of the solution are firstly studied. Furthermore, it is numerically studied via the weighted
and shifted Grünwald difference (WSGD) methods/the local discontinuous Galerkin (LDG)
finite element methods. The derived numerical scheme has been proved to be stable and
convergent with order O(∆t2 + hk+1), where ∆t, h, k are the time stepsize, the spatial
stepsize, and the degree of piecewise polynomials, respectively. Finally, a numerical
experiment is presented to verify the theoretical analysis.

Keywords: Fractional cable equation, regularity, local discontinuous Galerkin method,
stability, convergence.

1 Introduction
In this paper, we consider a special case of nonlinear time fractional cable equation in the
following form,

∂u(x, t)

∂t
+ CDα

0,tu(x, t)− uxx(x, t) + f(u) = g(x, t), x ∈ Ω, t > 0, (1)

with the initial value condition,

u(x, t)|t=0 = u0(x), x ∈ Ω, (2)

and the boundary value condition,

u(x, t)|x∈∂Ω = 0, t > 0, (3)

where 0 < α < 1, Ω = (a, b) is a bounded domain, g, u0 are given smooth functions, CDα
0,t

is the α-th order Caputo derivative operator defined by Podlubny [Podlubny (1999)]

CDα
0,tu(x, t) =

1

Γ(1− α)

∫ t

0
(t− τ)−α

∂u

∂τ
dτ, 0 < α < 1, (4)
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in which Γ(·) denotes the Gamma function. We always suppose that the nonlinear source
term f(u) satisfies Lipschitz continuity condition with respect to u, that is, there exists a
positive constant L such that for all u1, u2,

|f(u1)− f(u2)| ≤ L|u1 − u2|.

Cable equations with fractional order temporal operators were introduced to model
electrotonic properties of spiny neuronal dendrites by Henry et al. [Henry, Langlands and
Wearne (2008)]. The time fractional cable equation (TFCE) is similar to the traditional
cable equation except that the order of derivative with respect to the time is fractional.
If there is a nonlinear source term, the equation reads as (with 0 < α, β < 1) [Henry,
Langlands and Wearne (2008)]

∂u(x, t)

∂t
+ CDα

0,tu(x, t)− CDβ
0,tuxx(x, t) + f(u) = g(x, t), (5)

which has been numerically treated by a number of authors. For example, Lin et al. [Lin, Li
and Xu (2011)] constructed a finite difference/Legendre spectral scheme for discretization
of TFCE. Hu et al. [Hu and Zhang (2012)] proposed two implicit compact difference
schemes for TFCE. A fourth-order compact finite difference scheme for 2D TFCE was
studied by Yu et al. [Yu and Jiang (2016)]. Zheng et al. [Zheng and Zhao (2017)]
developed and analyzed a time LDG method (LDG method is applied in time direction) for
solving TFCE. Al-Maskari et al. [Al-Maskari and Karaa (2018)] discussed the lumped mass
Galerkin finite element method for TFCE. Recently, a scheme combining a finite difference
approach in time direction and LDG finite element method in space direction for TFCE was
proposed by Li et al. [Li and Wang (2019)]. They proved that the derived scheme could
reach 2-nd order in time direction, which was higher than the classical L1 method. Liu
et al. [Liu, Du, Li et al. (2019)] considered some second-order θ schemes combined with
Galerkin finite element method for TFCE.

It is worth noting that

• If α = 0, 0 < β < 1, Eq. (5) reduces to a time fractional subdiffusion equation, which 
has been theoretically and numerically discussed by many authors, see e.g., [Karaa, 
Mustapha and Pani (2018); McLean and Thomée (2010)].
• If α = β = 0, Eq. (5) reduces to an integer order diffusion equation with nonlinear 

source term. Up to now, a great deal of work has also been done on this type of equation, 
see [Thomée (2006)].

• If 0 < α < 1, β = 0, Eq. (5) reduces to a time fractional parabolic equation (i.e., (1)). 
There seems no work on the mathematical analysis and LDG method for it. This 
motivates our interest in studying Eq. (1).

LDG method is a special class of discontinuous Galerkin method, proposed by Cockburn
et al. [Cockburn and Shu (1998)]. The main technique of LDG method is to rewrite
higher-order derivative equation into an equivalent system containing only the first
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derivative, and then discretize it by the standard discontinuous Galerkin method. For more
information about this method, see the review paper by Xu et al. [Xu and Shu (2010)].
Here we propose the LDG finite element methods to numerically study Eq. (1). The main
contributions of this paper are twofold: One is to provide a complete mathematical analysis
for Eq. (1), including existence, uniqueness, and regularity of the solution; The other is to
numerically studied Eq. (1) using WSGD method in time domain and using the LDG finite
element method in space domain. The derived numerical scheme is stable and convergent
with order O(∆t2 + hk+1).

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries,
which will be used in the following section. In Section 3, we discuss the existence,
uniqueness, and regularity for the solution to Eq. (1). In Section 4, a fully discrete LDG
scheme is proposed and the stability and convergence of the presented scheme is analyzed
too. A numerical experiment is given in Section 5 to illustrate the effectiveness of the
proposed numerical method. Finally, the last section concludes this paper.

2 Preliminaries
2.1 Notations

We first recall some notations and preliminary facts, which are used throughout this paper.
The L2-norm and inner product on Ω are given by

‖v‖2Ω = (v, v), (u, v) =

∫
Ω
uvdx.

Likewise, we define the L∞-norm on Ω by ‖u‖∞ = supx∈Ω |u|.
The Sobolev spaceH`(Ω) with 1 ≤ ` ≤ ∞ on Ω is defined by Cao et al. [Cao, Song, Wang
et al. (2019)]

H`(Ω) =

v ∈ L2(Ω) :
∑
|k|≤`

‖Dkv‖2Ω <∞

 ,

and endow this space with the following norm

‖v‖H`(Ω) =

∑
|k|≤`

‖Dkv‖2Ω

 1
2

,

where Ω ⊂ Rn,k = (k1, · · · , kn), |k| = k1 + · · ·+ kn ≤ `.
The Laplace transform of a given function v(t) is defined as Li et al. [Li and Zeng (2015)]

v̂(s) = L {v(t); s} =

∫ ∞
0

e−stv(t)dt, (6)

and the inverse Laplace transform is given by

v(t) = L −1{v̂(s); t} =
1

2πi

∫ c+i∞

c−i∞
estv̂(s)ds, c = Re(s) > c0, (7)
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where c0 lies in the right half plane of the absolute convergence of the Laplace transform
(6).

We denote by Σζ the sector

Σζ = {s ∈ C : |args| < ζ, s 6= 0} , 0 < ζ < π.

To this end, let (X ,D) =
(
L2(Ω), H1

0 (Ω) ∩H2(Ω)
)
, and ‖ · ‖X→X be the operator norm

on the space X . Then the operator A =: ∆ satisfies [Atluri, Batty, Hieber et al. (2011)]

‖(s−A)−1‖X→X ≤ Cζ |s|−1, ∀s ∈ Σζ , ∀ζ ∈ (0, π), (8)

where Cζ is a positive constant depending on ζ.

2.2 Solution representation

Let w = u− u0, then (1) can be rewritten as the following equivalent system{
∂w(x,t)
∂t + CDα

0,tw −Aw = Au0 − f(u) + g(x, t), x ∈ Ω, t > 0, Ω = (a, b),

w(x, 0) = 0, x ∈ Ω.
(9)

Using Laplace transform, we obtain

(s+ sα −A) ŵ(s) = s−1Au0 + L {−f(u); s}+ ĝ(s),

which further implies

ŵ(s) = (s+ sα −A)−1
(
s−1Au0 + L {−f(u); s}+ ĝ(s)

)
.

Then by inverse Laplace transform and convolution rule, the solution of Eq. (9) can be
represented by

w = E (t)Au0 −
∫ t

0
F (t− τ)f

(
u(τ)

)
dτ +

∫ t

0
F (t− τ)g(τ)dτ,

where the operators E (t),F (t) : X → X are defined by

E (t) =
1

2πi

∫
Γθ,δ

ests−1(s+ sα −A)−1ds,

F (t) =
1

2πi

∫
Γθ,δ

est(s+ sα −A)−1ds.

For fixed δ > 0 and θ ∈ (π2 , π), the contour of integration Γθ,δ is defined by

Γθ,δ = {s ∈ C : |s| = δ, |args| ≤ θ} ∪
{
s ∈ C : s = ρe±iθ, ρ ≥ δ

}
,

and with Ims increasing.

Now we obtain a representation of the solution of Eq. (1),

u = u0 + E (t)Au0 −
∫ t

0
F (t− τ)f

(
u(τ)

)
dτ +

∫ t

0
F (t− τ)g(τ)dτ. (10)
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3 Regularity of the solution
Before we present the main theorem of this section, we would like to give two useful
lemmas here.

Lemma 3.1. For the operators E (t) and F (t), the following estimates hold for any t ∈
(0, T ], m ∈ N0, and ν = 0, 1:

(i) ‖AνF (m)(t)‖X→X ≤ Ct−m−ν ;

(ii) ‖AνE (m)(t)‖X→X ≤ Ct−m+1−ν ;

(iii) E (t) : X → D is continuous with respect to t ∈ [0, T ], and AE (0) = 0;

with E (m)(t) = dmE (t)
dtm and F (m)(t) = dmF (t)

dtm .

Proof. The proof line of (i) is similar to that of Theorem 2.1 in Al-Maskari et al.
[Al-Maskari and Karaa (2018)] (we refer to Theorem 2.1 for the case α2 = 1 ). Since
F (t) = E ′(t), (ii) immediately follows from (i).

Note that AE = EA : X → X is continuous with respect to t ∈ [0, T ]. Then taking t→ 0
in (10) implies (iii). This ends the proof.

Lemma 3.2 (Zeng, Cao and Li (2013), Gronwall’s inequality). Let q(t) be continuous and
nonnegative on [0, T ]. If

q(t) ≤ c(t) + h

∫ t

0

q(s)

(t− s)µ
ds, 0 ≤ t ≤ T,

where 0 ≤ µ < 1, c(t) is nonnegative monotonic increasing continuous function on [0, T ],
and h is a positive constant, then

q(t) ≤ c(t)E1−µ,1
(
hΓ(1− µ)t1−µ

)
, 0 ≤ t ≤ T.

Now we consider the existence, uniqueness, and regularity of the solution to Eq. (1).

Theorem 3.1. For a given T > 0, suppose that u0 ∈ D and g ∈ C
(
[0, T ];H2(Ω)

)
. f :

R→ R is Lipschitz continuous. Then Eq. (1) has a unique solution u such that

u ∈ Cα
(
[0, T ];X

)
∩ C

(
[0, T ];D

)
. (11)

CDα
0,tu ∈ C

(
[0, T ];X

)
. (12)

Moreover, if g′(t) ∈ C
(
[0, T ];X

)
, there holds

u′(t) ∈ C
(
[0, T ];X

)
. (13)

Proof. Step 1: Existence and uniqueness. Following the idea in Li et al. [Li and Wang
(2019)], we first define a map M : C

(
[0, T ];X

)
λ
→ C

(
[0, T ];X

)
λ

by

M v(t) = u0 + E (t)Au0 −
∫ t

0
F (t− τ)f

(
v(τ)

)
dτ +

∫ t

0
F (t− τ)g(τ)dτ, (14)
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where the space C
(
[0, T ];X

)
λ

is defined by

‖v‖λ = max
0≤t≤T

‖e−λtv(t)‖X , ∀v ∈ C
(
[0, T ];X

)
.

Then we only have to prove that for some λ > 0, the map M has a unique fixed point. For
any v1, v2 ∈ C

(
[0, T ];X

)
λ
, we have∥∥∥e−λt(M v1(t)−M v2(t)

)∥∥∥
Ω

=

∥∥∥∥e−λt ∫ t

0
F (t− τ)

(
f
(
v1(τ)

)
− f

(
v2(τ)

))
dτ

∥∥∥∥
Ω

≤ Ce−λt
∫ t

0

∥∥f(v1(τ)
)
− f

(
v2(τ)

)∥∥
Ω

dτ

≤ C

λ
‖v1 − v2‖λ, (15)

where we have used Lemma 3.1 with ν = m = 0 in the first inequality and f is Lipschitz
continuous in the second inequality.

By choosing a sufficiently large λ such that C̃ = C/λ < 1 and taking maximum of the left
hand side of (15) with respect to t ∈ [0, T ], there holds

‖M v1(t)−M v2(t)‖λ ≤ C̃‖v1 − v2‖λ.
Finally, applying the Banach fixed point theorem, we can obtain that Eq. (1) has a unique
solution u ∈ C

(
[0, T ];X

)
.

Step 2: Cα
(
[0, T ];X

)
regularity. Consider the following difference quotient for ∆t > 0

u(t+ ∆t)− u(t)

∆tα

=
E (t+ ∆t)− E (t)

∆tα
Au0 −

1

∆tα

∫ t+∆t

t
F (τ)f

(
u(t+ ∆t− τ)

)
dτ

− 1

∆tα

∫ t

0
F (τ)

(
f
(
u(t+ ∆t− τ)

)
− f

(
u(t− τ)

))
dτ

+
1

∆tα

∫ t

0

(
F (t+ ∆t− τ)−F (t− τ)

)
g(τ)dτ

+
1

∆tα

∫ t+∆t

t
F (t+ ∆t− τ)g(τ)dτ

=: I1 + I2 + I3 + I4 + I5, (16)

which will be estimated respectively as follows.

Applying Lemma 3.1, we arrive at

‖I1||Ω ≤
∫ t+∆t
t ‖E ′(t)‖X→Xdτ

∆tα
‖Au0‖Ω ≤ Cα,T ,
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where Cα,T is a positive constant depending on α and T .

By using Lemma 3.1 and the Lipschitz continuity of f again, we have

‖I2||Ω ≤
1

∆tα

∫ t+∆t

t

∥∥F (τ)f
(
u(t+ ∆t− τ)

)∥∥
Ω

dτ

≤ C

∆tα

∫ t+∆t

t
‖f
(
u(t+ ∆t− τ)

)
‖Ωdτ ≤ C,

and

‖I3||Ω =

∥∥∥∥∥
∫ t

0
F (t− τ)

f
(
u(τ + ∆t)

)
− f

(
u(τ)

)
∆tα

dτ

∥∥∥∥∥
Ω

≤ C
∫ t

0

∥∥∥∥u(τ + ∆t)− u(τ)

∆tα

∥∥∥∥
Ω

dτ.

Similarly, the two terms I4 and I5 are shown to be bounded, respectively, by

‖I4‖Ω ≤
1

∆tα

∫ t

0
‖F (t+ ∆t− τ)−F (t− τ)‖X→X ‖g(τ)‖Ωdτ

≤ C

∆tα

∫ t

0

∫ t+∆t−τ

t−τ
‖F ′(µ)‖X→Xdµdτ

≤
Cα,T
∆tα

∫ t

0

∫ t+∆t−τ

t−τ
µα−2dµdτ ≤ Cα,T ,

and

‖I5‖Ω ≤
1

∆tα

∫ t+∆t

t
‖F (t+ ∆t− τ)g(τ)‖Ω dτ ≤ Cα,T .

Denoting W (t) = ∆t−α‖u(t + ∆t) − u(t)‖Ω and substituting the estimates of Ii (i =
1, 2, . . . , 5) into (16), we obtain

W (t) ≤ Cα,T + C

∫ t

0
W (τ)dτ, (17)

which together with Lemma 3.2 yields u ∈ Cα
(
[0, T ];X

)
. The assertion CDα

0,tu ∈
C
(
[0, T ];X

)
is a direct result of the Cα

(
[0, T ];X

)
regularity and the mapping property

of Caputo derivative.

Step 3: C
(
[0, T ];D

)
regularity. By applying the operator A to both sides of (10), we arrive

at

Au(t)−Au0 =AE (t)Au0 −
∫ t

0
AF (t− τ)f

(
u(τ)

)
dτ +

∫ t

0
AF (t− τ)g(τ)dτ

=AE (t)
(
Au0 − f

(
u(t)

))
−
∫ t

0
AF (t− τ)

(
f
(
u(τ)

)
− f

(
u(t)

))
dτ

+

∫ t

0
AF (t− τ)g(τ)dτ.
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Then by Lemma 3.1 and the regularity assumption of g, we have

‖Au(t)−Au0‖Ω ≤‖AE (t)‖X→X ‖Au0 − f(u(t))‖Ω

+

∫ t

0
‖AF (t− τ)‖X→X

∥∥f(u(τ)
)
− f

(
u(t)

)∥∥
Ω

dτ

+

∫ t

0
‖F (t− τ)Ag(τ)‖Ωdτ

≤Cα,T ,

which further implies u ∈ C
(
[0, T ];H2(Ω)

)
.

Step 4: Estimate of u′(t). By differentiating (10) with respect to t, we have

u′(t) =E ′(t)Au0 −F (t)f(u0)−
∫ t

0
F (τ)f ′

(
u(t− τ)

)
u′(t− τ)dτ

+ F (t)g(x, 0) +

∫ t

0
F (τ)g′(t− τ)dτ

=F (t)
(
Au0 − f(u0)

)
−
∫ t

0
F (t− τ)f ′

(
u(τ)

)
u′(τ)dτ

+ F (t)g(x, 0) +

∫ t

0
F (t− τ)g′(τ)dτ.

It follows from Lemma 3.1 that

‖u′(t)‖Ω ≤ ‖F (t)
(
Au0 − f(u0)

)
‖Ω +

∫ t

0
‖F (t− τ)g′(τ)‖Ωdτ

+

∫ t

0
‖F (t− τ)f ′

(
u(τ)

)
u′(τ)‖Ωdτ + ‖F (t)g(x, 0)‖Ω

≤ Cα,T + C

∫ t

0
‖u′(τ)‖Ωdτ. (18)

Using Lemma 3.2 again yields the assertion of (13). The proof is thus complete.

4 The LDG method and its convergence
In this section, we first present the semidiscrete scheme and fully discrete scheme for
problem (1), where the time fractional derivative is discretized by WSGD method and the
spatial derivative by the LDG method. Then we prove that the fully discrete LDG scheme
is stable and convergent.

The usual notations of LDG method are introduced here. Assume that the mesh consisting
of cells Ij = (xj− 1

2
, xj+ 1

2
), for 1 ≤ j ≤ N , where a = x 1

2
< x 3

2
< · · · < xN+ 1

2
= b,

covers Ω =[a, b]. The cell center and cell length are denoted by xj = (xj− 1
2

+xj+ 1
2
)/2 and

hj = xj+ 1
2
− xj− 1

2
, respectively. Denote by h = maxj hj the maximum cell length.
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Denote by u−
j+ 1

2

and u+
j+ 1

2

, the values of u at the discontinuity point xj+ 1
2

from the left and

right cell, respectively. In what follows, we use [[u]] = u+ − u− and {{u}} = u++u−

2 to
represent the jump value of u and the mean value of u at each element boundary point. The
discontinuous finite element space is defined as

Vh =
{
v ∈ L2(Ω) : v|Ij ∈ Pk(Ij), j = 1, . . . , N

}
,

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k ≥ 0.

As the usual treatment, we would like to introduce the Gauss-Radau projections P±
h

[Castillo, Kanschat, Schotzau et al. (2002)]: for any scalar function q ∈ H1(Ω), the
projection is the unique element in Vh, satisfying∫
Ij

(
P+
h q(x)− q(x)

)
vhdx = 0, ∀vh ∈ Pk−1(Ij) (P+

h q)
+
j− 1

2

= q(x+
j− 1

2

), (19)

∫
Ij

(
P−
h q(x)− q(x)

)
vhdx = 0, ∀vh ∈ Pk−1(Ij), (P−

h q)
−
j+ 1

2

= q(x−
j+ 1

2

), (20)

for any j = 1, 2, . . . , N .

Suppose q ∈ Hk+1(Ω), then by a standard scaling argument [Ciarlet (1978)], there holds

‖P±
h q − q‖Ω ≤ C‖q‖Hk+1(Ω)h

k+1, (21)

where C is a positive constant independent of h.

4.1 Semidiscrete scheme

On the space Vh, the L2(Ω)-orthogonal projection Ph : L2(Ω) → Vh and the discrete
Laplacian ∆h : Vh → Vh are defined by

(Phϕ, vh) = (ϕ, vh), ∀vh ∈ Vh, (22)

and

−(∆hwh, vh) = (∇wh,∇vh), ∀wh, vh ∈ Vh, (23)

respectively.

Replacing the exact solutions by the numerical solutions, then we can define the
semidiscrete LDG scheme as follows: find uh(·, t) ∈ Vh such that{

∂uh
∂t + CDα

0,tuh −∆huh + f(uh) = gh(x, t), (x, t) ∈ Ω× (0, T ],

uh(0) = u0(x), x ∈ Ω,
(24)

where gh = Phg. By a similar argument as (10), the solution to (24) can be represented by

uh(t) = u0 + E (t)Au0 −
∫ t

0
F (t− τ)f

(
uh(τ)

)
dτ +

∫ t

0
F (t− τ)gh(τ)dτ.

As proved in Theorem 3.1, we have the following similar results.
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Theorem 4.1. Suppose that f , g and u0 satisfy the conditions in Theorem 3.1. Then Eq.
(24) has a unique solution uh such that

uh ∈ Cα
(
[0, T ];X

)
∩ C

(
[0, T ];D

)
.

CDα
0,tuh ∈ C

(
[0, T ];X

)
.

Moreover, if g′(t) ∈ C
(
[0, T ];X

)
, then there holds

u′h(t) ∈ C
(
[0, T ];X

)
.

4.2 Fully discrete LDG scheme

Let ∆t = T/M be the time mesh size, tn = n∆t, n = 0, 1, . . . ,M be the mesh point,
M ∈ Z+. For simplicity of notations, we denote un+1 = u(x, tn+1) and δn+1

t un+1 =
un+1−un

∆t . Suppose u(t) ∈ C2[0, tn+1], then the time fractional derivative (4) at time tn+1

can be approximated as Wang et al. [Wang and Vong (2014)]

CDα
0,tu
∣∣∣
t=tn+1

=

n+1∑
i=0

bα(i)

∆tα
un+1−i +O(∆t2), (25)

where bα(i) =

{
α+2

2 g
(α)
0 , i = 0,

α+2
2 g

(α)
i − α

2 g
(α)
i−1, i > 0,

g
(α)
i = Γ(i− α)/

(
Γ(−α)Γ(i+ 1)

)
.

In what follows, we would like to introduce several lemmas which are very important in
obtaining the error estimate.

given as above, the followingLemma 4.1 [Liu, Du, Li et al. (2016)]. For series {bα(i)}i∞=1 
inequality holds for any integer n
n+1∑
|bα(i)| ≤ 2α+ 2.

i=0

Lemma 4.2 [Wang and Vong (2014)]. Let {bα(i)}i∞=1 be defined as above. Then for any
positive integer k and real vector (v1, v2, . . . , vk) ∈ Rk, it holds that

k−1∑
n=0

(
n∑
i=0

bα(i)vn+1−i

)
vn+1 ≥ 0.

Lemma 4.3 [Li and Zeng (2015), Discrete Gronwall’s inequality]. Let xn be real positive 
numbers. Assume that H, C and ∆t are positive and also x0 ≤ H . Suppose the inequality

xn ≤ C∆t

n−1∑
k=0

xk +H

holds. Then one has

xn ≤ HeCn∆t.
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In order to get the LDG formulation, we firstly rewrite Eq. (1) into the following
lower-order system of two equations by introducing an auxiliary variable p = ∂u/∂x{

p = ux,
∂u
∂t + CDα

0,tu− px + f(u) = g(x, t).
(26)

Then we can get the weak form of Eq. (26) at tn+1 as

(pn+1, w) + (un+1, wx)−
N∑
j=1

(
un+1w−|j+ 1

2
− un+1w+|j− 1

2

)
= 0,

(3
2δ
n+1
t un+1 − 1

2δ
n
t u

n, v) +

n+1∑
i=0

bα(i)

∆tα
(un+1−i, v)− (pn+1

x , v)

=
(
− 2f(un) + f(un−1), v

)
+ (gn+1, v) + (E0 + E1 + E2, v),

(27)

where

E0 =
n+1∑
i=0

bα(i)

∆tα
un+1−i − CDα

0,tu
n+1 = O(∆t2),

E1 =
3

2
δn+1
t un+1 − 1

2
δnt u

n − un+1
t = O(∆t2),

E2 = 2f(un)− f(un−1)− f(un+1) = O(∆t2).

When n = 0, we take u−1 = 2u0 − u1 +O(∆t2) by Taylor expansion.

Let un+1
h , pn+1

h ∈ Vh be the approximation of un+1 and pn+1, respectively. We get the
fully discrete LDG scheme as follows: find un+1

h , pn+1
h ∈ Vh such that for all test functions

vh, wh ∈ Vh,

(pn+1
h , wh) + (un+1

h , (wh)x)−
N∑
j=1

(
ũn+1
h w−h |j+ 1

2
− ũn+1

h w+
h |j− 1

2

)
= 0,

(3
2δ
n+1
t un+1

h − 1
2δ
n
t u

n
h, vh) +

n+1∑
i=0

bα(i)

∆tα
(un+1−i
h , vh) +

(
pn+1
h , (vh)x

)
−

N∑
j=1

(
p̃n+1
h v−h |j+ 1

2
− p̃n+1

h v+
h |j− 1

2

)
=
(
− 2f(unh) + f(un−1

h ), vh
)

+ (gn+1
h , vh),

(28)

where u−1
h = 2u0

h − u1
h. The “tilde” terms are the so-called “numerical fluxes”, which are

taken as the “alternating” numerical flux

ũnh = (unh)−, p̃nh = (pnh)+. (29)
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Remark 4.1. The choice for the fluxes (29) is not unique. We can also take the numerical
fluxes as ũnh = (unh)+, p̃nh = (pnh)− on each cell interface.

4.2.1 Stability analysis

In this subsection, we consider the stability of the LDG scheme (28). Let (Unh , P
n
h ) be the

perturbed solution of (unh, p
n
h), i.e., (Unh , P

n
h ) and (unh, p

n
h) satisfy (27) with different initial

conditions.

Theorem 4.2. Suppose that f and u0 satisfy the conditions in Theorem 3.1, then the fully
discrete LDG scheme (28) with flux (29) is stable.

Proof. Denoting en+1
uh

= un+1
h −Un+1

h and en+1
ph

= pn+1
h −Pn+1

h , we obtain the following
perturbation equation

(en+1
ph

, wh) + (en+1
uh

, (wh)x)

=

N∑
j=1

(
(en+1
uh

)−w−h |j+ 1
2
− (en+1

uh
)−w+

h |j− 1
2

)
,

(
3
2δ
n+1
t en+1

uh
− 1

2δ
n
t e

n
uh
, vh
)

+
n+1∑
i=0

bα(i)

∆tα
(en+1−i
uh

, vh) +
(
en+1
ph

, (vh)x
)

−
N∑
j=1

(
(en+1
ph

)+v−h |j+ 1
2
− (en+1

ph
)+v+

h |j− 1
2

)
=
(
− 2f(unh) + f(un−1

h ) + 2f(Unh )− f(Un−1
h ), vh

)
.

(30)

Let vh = en+1
uh

and wh = en+1
ph

. Then (30) can be written as

(en+1
ph

, en+1
ph

) +
(
en+1
uh

, (en+1
ph

)x
)

=

N∑
j=1

(
(en+1
uh

)−(en+1
ph

)−|j+ 1
2
− (en+1

uh
)−(en+1

ph
)+|j− 1

2

)
,

(
3
2δ
n+1
t en+1

uh
− 1

2δ
n
t e

n
uh
, en+1
uh

)
+
n+1∑
i=0

bα(i)

∆tα
(en+1−i
uh

, en+1
uh

) +
(
en+1
ph

, (en+1
uh

)x
)

−
N∑
j=1

(
(en+1
ph

)+(en+1
uh

)−|j+ 1
2
− (en+1

ph
)+(en+1

uh
)+|j− 1

2

)
=
(
− 2f(unh) + f(un−1

h ) + 2f(Unh )− f(Un−1
h ), en+1

uh

)
.

(31)

Firstly, we prove that the theorem holds true for n = 0. Taking n = 0 in (31) and adding
the two equations together lead to

(
3
2δ

1
t e

1
uh
− 1

2δ
0
t e

0
uh
, e1
uh

)
+ ‖e1

ph
||2Ω +

1∑
i=0

bα(i)

∆tα
(e1−i
uh
, e1
uh

)

=
(
− 2f(u0

h) + f(u−1
h ) + 2f(U0

h)− f(U−1
h ), e1

uh

)
. (32)
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Multiplying (32) by 2∆t and using Cauchy-Schwarz inequality, we have

3‖e1
uh
‖2ω + 2∆t‖e1

ph
‖2Ω + 2∆t1−α

1∑
i=0

bα(i)(e1−i
uh
, e1
uh

)

= 2∆t
(
− 2f(u0

h) + f(u−1
h ) + 2f(U0

h)− f(U−1
h ), e1

uh

)
+4(e0

uh
, e1
uh

)− (e−1
uh
, e1
uh

)

≤ (4∆tL+ 4)‖e0
uh
‖Ω‖e1

uh
‖Ω + (2∆tL+ 1)‖e−1

uh
‖Ω‖e1

uh
‖Ω.

Noticing that bα(0) > 0 and bα(1) < 0, we get

3‖e1
uh
‖Ω ≤ (4∆tL+ 4)‖e0

uh
‖Ω + (2∆tL+ 1)‖2e0

uh
− e1

uh
‖Ω

−2∆t1−αbα(1)‖e0
uh
‖Ω

≤
(
8∆tL+ 6− 2∆t1−αbα(1)

)
‖e0
uh
‖Ω + (2∆tL+ 1)‖e1

uh
‖Ω.

Thus, if ∆t < 1
2L , we have

‖e1
uh
‖Ω ≤ C‖e0

uh
‖Ω. (33)

Now we are going to prove the case of n ≥ 1. Adding the two equations of (31) together
results in

‖en+1
ph
‖2Ω +

n+1∑
i=0

bα(i)

∆tα
(en+1−i
uh

, en+1
uh

) +
1

4∆t

(
‖en+1
uh
‖2Ω + ‖2en+1

uh
− enuh‖

2
Ω

−
(
‖enuh‖

2
Ω + ‖2enuh − e

n−1
uh
‖2Ω
)

+ ‖en+1
uh
− 2enuh + en−1

uh
||2Ω
)

=
(
− 2f(unh) + f(un−1

h ) + 2f(Unh )− f(Un−1
h ), en+1

uh

)
. (34)

Multiplying (34) by 4∆t and using Cauchy-Schwarz inequality and Young’s inequality, we
arrive at

4∆t‖en+1
ph
‖2Ω +

n+1∑
i=0

4∆t1−αbα(i)(en+1−i
uh

, en+1
uh

) + ‖en+1
uh
‖2Ω + ‖2en+1

uh
− enuh‖

2
Ω

+‖en+1
uh
− 2enuh + en−1

uh
||2Ω

= ‖enuh‖
2
Ω + ‖2enuh − e

n−1
uh
‖2Ω

+4∆t
(
− 2f(unh) + f(un−1

h ) + 2f(Unh )− f(Un−1
h ), en+1

uh

)
≤ ‖enuh‖

2
Ω + ‖2enuh − e

n−1
uh
‖2Ω

+C∆t(‖enuh‖
2
Ω + ‖en−1

uh
‖2Ω) + ‖en+1

uh
− 2enuh + en−1

uh
||2Ω,
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which further implies

n+1∑
i=0

4∆t1−αbα(i)(en+1−i
uh

, en+1
uh

) + ‖en+1
uh
‖2Ω + ‖2en+1

uh
− enuh‖

2
Ω

≤ ‖enuh‖
2
Ω + ‖2enuh − e

n−1
uh
‖2Ω + C∆t(‖enuh‖

2
Ω + ‖en−1

uh
‖2Ω).

Summing n from 1 to k and using Lemma 4.2, we can get

‖ek+1
uh
‖2Ω + ‖2ek+1

uh
− ekuh‖

2
Ω

≤ ‖e1
uh
‖2Ω + ‖2e1

uh
− e0

uh
‖2Ω + C∆t

k∑
n=1

(‖enuh‖
2
Ω + ‖2enuh − e

n−1
uh
‖2Ω).

Then from discrete Gronwall’s lemma (i.e., Lemma 4.3) and (33), it yields that

‖ek+1
uh
‖2Ω + ‖2ek+1

uh
− ekuh‖

2
Ω ≤ C(‖e1

uh
‖2Ω + ‖2e1

uh
− e0

uh
‖2Ω). (35)

Combining (33) with (35), we complete the proof of this theorem.

4.2.2 Error estimate

In this subsection, we will give the error estimate for the fully discrete LDG scheme (28).

Theorem 4.3. Assume that f , g and u0 satisfy the conditions in Theorem 3.1. Let un+1

be the exact solution of (1) and un+1
h be the numerical solution of the fully discrete LDG

scheme (28) with fluxes (29). If we assume that u(x, t) ∈ C2
(
[0, T ];Hk+1(Ω)

)
, then there

holds

‖un+1 − un+1
h ‖Ω ≤ C(∆t2 + hk+1), (36)

where C is a positive constant independent of ∆t and h.

Proof. Denote

enu = un − unh = P−
h u

n − unh + un −P−
h u

n = ξnu + ηnu ,

enp = pn − pnh = P+
h p

n − pnh + pn −P+
h p

n = ξnp + ηnp .
(37)

According to (21), we have

‖ηnu‖Ω ≤ Chk+1. (38)

Thus in what follows, we will focus on the estimate for ξnu .
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In order to estimate ξnu , we would like to set up the corresponding error equation first.
Subtracting (28) with (27) and using the flux (29), we get



(en+1
p , wh) + (en+1

u , (wh)x)

=

N∑
j=1

(
(en+1
u )−(wh)−|j+ 1

2
− (en+1

u )−(wh)+|j− 1
2

)
,

(
3
2δ
n+1
t en+1

u − 1
2δ
n
t e

n
u, vh

)
+
n+1∑
i=0

bα(i)

∆tα
(en+1−i
u , vh) +

(
en+1
p , (vh)x

)
−

N∑
j=1

(
(en+1
p )+(vh)−|j+ 1

2
− (en+1

p )+(vh)+|j− 1
2

)
+
(
2f(un)− 2f(unh)− f(un−1) + f(un−1

h ), vh
)

= (E0 + E1 + E2, vh).

(39)

Substituting (37) into (39), we can get the following equations.

Case I: n = 0

(
3

2
δ1
t e

1
u −

1

2
δ0
t e

0
u, vh) +

1∑
i=0

bα(i)

∆tα
(ξ1−i
u , vh) +

(
ξ1
p , (vh)x

)
−

N∑
j=1

(
(ξ1
p)+v−h |j+ 1

2
− (ξ1

p)+v+
h |j− 1

2

)
+ (ξ1

p , wh) +
(
ξ1
u, (wh)x

)
−

N∑
j=1

(
(ξ1
u)−w−h |j+ 1

2
− (ξ1

u)−w+
h |j− 1

2

)
=

(
− 2f(u0) + 2f(u0

h) + f(u−1)− f(u−1
h ), vh

)
−

1∑
i=0

bα(i)

∆tα
(η1−i
u , vh)− (η1

p, wh)−
(
η1
u, (wh)x

)
+

N∑
j=1

(
(η1
u)−w−h |j+ 1

2
− (η1

u)−w+
h |j− 1

2

)
+ (E0 + E1 + E2, vh)

−
(
η1
p, (vh)x

)
+

N∑
j=1

(
(η1
p)

+v−h |j+ 1
2
− (η1

p)
+v+

h |j− 1
2

)
. (40)
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Case II: n ≥ 1

(
3

2
δn+1
t ξn+1

u − 1

2
δnt ξ

n
u , vh) +

(
ξn+1
p , (vh)x

)
+

n+1∑
i=0

bα(i)

∆tα
(ξn+1−i
u , vh)

+(ξn+1
p , wh)−

N∑
j=1

(
(ξn+1−i
p )+v−h |j+ 1

2
− (ξn+1−i

p )+v+
h |j− 1

2

)

+
(
ξn+1
u , (wh)x

)
−

N∑
j=1

(
(ξn+1
u )−w−h |j+ 1

2
− (ξn+1

u )−w+
h |j− 1

2

)
=

(
− 2f(un) + 2f(unh) + f(un−1)− f(un−1

h ), vh
)
− (

3

2
δn+1
t ηn+1

u − 1

2
δnt η

n
u , vh)

−
n+1∑
i=0

bα(i)

∆tα
(ηn+1−i
u , vh)− (ηn+1

p , wh)−
(
ηn+1
u , (wh)x

)
+

N∑
j=1

(
(ηn+1
u )−w−h |j+ 1

2
− (ηn+1

u )−w+
h |j− 1

2

)
+ (E0 + E1 + E2, vh)

−
(
ηn+1
p , (vh)x

)
+

N∑
j=1

(
(ηn+1
p )+v−h |j+ 1

2
−
(
ηn+1
p

)+
v+
h |j− 1

2

)
. (41)

We first prove Case I. Taking the test functions vh = ξ1
u and wh = ξ1

p in (40), and a simple
use of (19), (20), and (22), we get

(
3

2
δ1
t e

1
u −

1

2
δ0
t e

0
u, ξ

1
u) +

1∑
i=0

bα(i)

∆tα
(ξ1−i
u , ξ1

u) + ‖ξ1
p‖2Ω

=
(
− 2f(u0) + 2f(u0

h) + f(u−1)− f(u−1
h ), ξ1

u

)
−

1∑
i=0

bα(i)

∆tα
(η1−i
u , ξ1

u)

−(η1
p, ξ

1
p) + (E0 + E1 + E2, ξ

1
u). (42)

Since f is Lipschitz continuous, we have

‖ − 2f(un) + 2f(unh) + f(un−1)− f(un−1
h )‖Ω

≤ L(2‖enu‖Ω + ‖en−1
u ‖Ω), n = 0, 1, . . . ,M. (43)

Owing to the property (21), we get

|(e−1
u , ξ1

u)| ≤ 5

4
‖ξ1
u‖2Ω + C(h2k+2 + ∆t4). (44)
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Multiplying (42) by 2∆t, it is easy to see that

3‖ξ1
u‖2Ω + 2∆t1−α

1∑
i=0

bα(i)(ξ1−i
u , ξ1

u) + 2∆t‖ξ1
p‖2Ω

= −3(η1
u, ξ

1
u) + 4(η0

u, ξ
1
u)− (e−1

u , ξ1
u)

+2∆t
(
− 2f(u0) + 2f(u0

h) + f(u−1)− f(u−1
h ), ξ1

u

)
+2∆t(E0 + E1 + E2, ξ

1
u)− 2∆t

1∑
i=0

bα(i)

∆tα
(η1−i
u , ξ1

u)− 2∆t(η1
p, ξ

1
p).

Then applying the Cauchy-Schwarz inequality, Young’s inequality, (21), (43), as well as
(44), we have

3‖ξ1
u‖2Ω + 2∆t1−α‖ξ1

u‖2Ω + 2∆t‖ξ1
p‖2Ω

≤ 18‖η1
u‖2Ω + (

5

2
∆tL+

7

4
)‖ξ1

u‖2Ω + 2∆t1−α‖ξ1
u‖2Ω + 2∆t1+αL2‖η0

u‖2Ω

+C(∆t4 + h2k+2) + ∆t‖η1
p‖2Ω + ∆t‖ξ1

p‖2Ω

≤ (
5

2
∆tL+

7

4
)‖ξ1

u‖2Ω + 2∆t1−α‖ξ1
u‖2Ω + ∆t‖ξ1

p‖2Ω + C(∆t4 + h2k+2).

As a consequence, if we let ∆t < 1
2L , we can get

‖ξ1
u‖2Ω ≤ C(∆t4 + h2k+2). (45)

Next we are going to prove Case II. By taking (vh, wh) = (ξn+1
u , ξn+1

p ) in (41), we can
derive

(
3

2
δn+1
t ξn+1

u − 1

2
δnt ξ

n
u , ξ

n+1
u ) +

n+1∑
i=0

bα(i)

∆tα
(ξn+1−i
u , ξn+1

u ) + ‖ξn+1
p ‖2Ω

=
(
− 2f(un) + 2f(unh) + f(un−1)− f(un−1

h ), ξn+1
u

)
+(E0 + E1 + E2, ξ

n+1
u )− (

3

2
δn+1
t ηn+1

u − 1

2
δnt η

n
u , ξ

n+1
u )

−
n+1∑
i=0

bα(i)

∆tα
(ηn+1−i
u , ξn+1

u )− (ηn+1
p , ξn+1

p ). (46)

Multiplying (46) by 4∆t and employing the definitions of δn+1
t for ξn+1

u and δnt for ξnu , we
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have

‖ξn+1
u ‖2Ω + ‖2ξn+1

u − ξnu‖2Ω −
(
‖ξnu‖2Ω + ‖2ξnu − ξn−1

u ‖2Ω
)

+‖ξn+1
u − 2ξnu + ξn−1

u ‖2Ω + 4∆t1−α
n+1∑
i=0

bα(i)(ξn+1−i
u , ξn+1

u ) + 4∆t‖ξn+1
p ‖2Ω

= 4∆t

[(
− 2f(un) + 2f(unh) + f(un−1)− f(un−1

h ), ξn+1
u − 2ξnu + ξn−1

u

)
+(E0 + E1 + E2, ξ

n+1
u − 2ξnu + ξn−1

u )

−(
3

2
δn+1
t ηn+1

u − 1

2
δnt η

n
u , ξ

n+1
u − 2ξnu + ξn−1

u )

−
n+1∑
i=0

bα(i)

∆tα
(ηn+1−i
u , ξn+1

u − 2ξnu + ξn−1
u )− (ηn+1

p , ξn+1
p )

]
−4∆t

[(
− 2f(un) + 2f(unh) + f(un−1)− f(un−1

h ),−2ξnu + ξn−1
u

)
+(E0 + E1 + E2,−2ξnu + ξn−1

u )− (
3

2
δn+1
t ηn+1

u − 1

2
δnt η

n
u ,−2ξnu + ξn−1

u )

−
n+1∑
i=0

bα(i)

∆tα
(ηn+1−i
u ,−2ξnu + ξn−1

u )

]
≤ C∆t

(
‖ξnu‖2Ω + ‖ηnu‖2Ω + ‖ξn−1

u ‖2Ω + ‖ηn−1
u ‖2Ω + ∆t4

+‖3

2
δn+1
t ηn+1

u − 1

2
δnt η

n
u‖2Ω + ‖CDα

0,tη
n+1
u +O(∆t2)‖2Ω

)
+C∆t‖ − 2ξnu + ξn−1

u ‖2Ω + 4∆t‖ξn+1
p ‖2Ω + ∆t‖ηn+1

p ‖2Ω
+‖ξn+1

u − 2ξnu + ξn−1
u ‖2Ω,

where Cauchy-Schwarz inequality, Young’s inequality, and (43) are used in the last step.
With the help of (21), we can further obtain

‖ξn+1
u ‖2Ω + ‖2ξn+1

u − ξnu‖2Ω + 4∆t1−α
n+1∑
i=0

bα(i)(ξn+1−i
u , ξn+1

u )

≤ ‖ξnu‖2Ω + ‖2ξnu − ξn−1
u ‖2Ω + C∆t(‖ξnu‖2Ω + ‖ξn−1

u ‖2Ω)

+C∆t‖3

2
δn+1
t ηn+1

u − 1

2
δnt η

n
u‖2Ω + C(∆t4 + h2k+2). (47)

By virtue of Lemma 4.2, we have

K−1∑
n=1

n+1∑
i=0

bα(i)(ξn+1−i
u , ξn+1

u ) ≥ 0.
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Then summing (47) for n from 1 to K − 1 leads to

‖ξKu ‖2Ω ≤ C‖ξ1
u‖2Ω + C∆t

K−1∑
n=0

‖ξnu‖2Ω + C

∫ tK

t0

‖∂ηu
∂s
‖2Ωds+ C(∆t4 + h2k+2)

≤ C∆t

K−1∑
n=0

‖ξnu‖2Ω + C(∆t4 + h2k+2),

where the property (21) and the result of (45) are used for the second inequality. Finally, it
follows straightforwardly by using Lemma 4.3 that

‖ξKu ‖Ω ≤ C(∆t2 + hk+1), (48)

which combine the triangle inequality to complete the proof of this theorem.

Remark 4.2. (1) We must remark here that the above error estimate is optimal both in
time and space.

(2) Compared with the classical L1 method with time convergence rate of (2 − α), our
scheme can arrive at second order in time.

(3) Our discussions focus on Caputo-type partial differential equation, it may be interesting
to extend the analysis to Riesz-type fractional differential equation [Cai and Li (2019)].

5 Numerical example
In this section, we present a numerical example to verify the theoretical results.

Example 5.1. Consider the following Caputo-type cable equation with compactly
supported boundary condition,

ut +C Dα
0,tu− uxx + u2 = g(x, t), (49)

on Ω = (0, 2π), t ∈ (0, 1]. The initial value condition is

u(x, 0) = 0, x ∈ (0, 1),

and the source term is

g(x, t) =

(
2t+

2t2−α

Γ(3− α)
+ t2

)
sin(x) + t4 sin2(x).

The exact solution of (49) is given by u(x, t) = t2 sin(x).

In Tab. 1, by taking α = 0.01, 0.5, 0.99 and fixed temporal step length ∆t = 1/100, we
show the L2-norm errors and convergence orders of space at t = 1 for Example 5.1. The
L2-norm errors and convergence orders of time with different α are listed in Tab. 2. Clearly,
the first-order convergence in space and second-order convergence in time are observed,
which is in agreement with the theoretical analysis.

Fig. 1 demonstrates the comparison of the exact solution and the numerical solution at
t = 1, when α = 0.5, h = 2π/40, ∆t = 1/100. We can see that the numerical solutions
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fit well with the exact solutions. The L2-norm errors versus h (∆t) between the numerical
solution and the exact solution at t = 1 for Example 5.1 with different α are displayed in
Figs. 2 and 3. From Figs. 2 and 3, we can observe that the errors decay rapidly as h and ∆t
decrease.

Table 1: The L2 errors at t = 1 and convergence orders in space for Example 5.1, ∆t =
1/100, k = 0

α = 0.01 α = 0.5 α = 0.99

2π/h Error Order Error Order Error Order
5 6.3111e-1 - 6.3054e-1 - 6.2995e-1 -
10 3.2002e-1 0.9797 3.1994e-1 0.9788 3.1987e-1 0.9778
20 1.6056e-1 0.9950 1.6055e-1 0.9948 1.6054e-1 0.9946
40 8.0350e-2 0.9987 8.0349e-2 0.9987 8.0348e-2 0.9986
80 4.0185e-2 0.9996 4.0185e-2 0.9996 4.0184e-2 0.9996
160 2.0097e-2 0.9997 2.0095e-2 0.9998 2.0094e-2 0.9999

Table 2: The L2 errors at t = 1 and convergence orders in time for Example 5.1, h =
2π∆t2, k = 0

α = 0.01 α = 0.5 α = 0.99

1/∆t Error Order Error Order Error Order
5 1.5542e-1 - 1.4927e-1 - 1.4475e-1 -
10 4.3922e-2 1.8232 4.0466e-2 1.8831 3.7797e-2 1.9372
20 1.1966e-2 1.8760 1.0758e-2 1.9113 9.8140e-3 1.9454
40 3.1359e-3 1.9320 2.7868e-3 1.9487 2.5132e-3 1.9653
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Figure 1: Comparison of the exact solution and the numerical solution at t = 1 when
α = 0.5, h = 2π/40, ∆t = 1/100
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Figure 2: L2-norm errors versus log(h) at t = 1 for Example 5.1 with different α
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Figure 3: L2-norm errors versus log(∆t) at t = 1 for Example 5.1 with different α

6 Concluding remarks

In this paper, we have studied the existence, uniqueness, and regularity of the solutions
of a special case of Caputo-type cable equation. Based on these theoretical results, we
apply the WSGD method to approximating the temporal fractional derivative, and apply the
LDG method to approximating the space derivative. The resulting fully discrete scheme is
proved to be stable and convergent. Finally, a numerical example is presented to verify the
theoretical analysis.

The results presented in this paper indicate that the proposed LDG scheme enjoys the same
accuracy as the spectral schemes in Liu et al. [Liu and Lü (2019); Yang, Jiang and Zhang
(2018)]. However, if the geometry and boundary conditions are complicated, LDG method
may be more suitable and can achieve the uniformly high-order accuracy, which is what I
will do next [Xu and Shu (2010)]. Besides, it is of much interest to investigate the blow-up
phenomenon of the solution, see for example [Cao, Song, Wang et al. (2019)]. In the future
work, I will consider using LDG method to deal with variable order fractional differential
equations.
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