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Fractional Analysis of Viscous Fluid Flow with Heat and Mass
Transfer Over a Flexible Rotating Disk
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Abstract: An unsteady viscous fluid flow with Dufour and Soret effect, which results
in heat and mass transfer due to upward and downward motion of flexible rotating disk,
has been studied. The upward or downward motion of non rotating disk results in
two dimensional flow, while the vertical action and rotation of the disk results in three
dimensional flow. By using an appropriate transformation the governing equations are
transformed into the system of ordinary differential equations. The system of ordinary
differential equations is further converted into first order differential equation by selecting
suitable variables. Then, we generalize the model by using the Caputo derivative. The
numerical result for the fractional model is presented and validated with Runge Kutta order
4 method for classical case. The compared results are presented in Table and Figures. It is
concluded that the fractional model is more realistic than that of classical one, because it
simulates the fluid behavior at each fractional value rather than the integral values.
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Nomenclature
Greek symbols
θ Azimuthal direction
η Scaled boundary layer coordinate
µ Dynamic viscosity
ρ Density
k thermal conductivity
τr Radial shear stress on the wall
τθ Azimuthal shear stress on the wall
Ω Angular speed of the disk
ν = µ

ρ Ambient fluid kinematic viscosity
Cp Specific heat at constant pressure
D Molecular diffusion coefficient
KT Thermal diffusion ratio
σ Fluid electric conductivity
µ0 Free surface permeability
κ∗ Mean absorption coefficient
Tm Mean fluid temperature
σ∗ Stefan-Boltzmann constant
qr = −4σ∗

3κ∗
∂T 4

∂z Radiation heat flux
S = α

Ω0
Unsteadiness parameter

Rd = K∗K
4σ∗T 3

∞
Radiation parameter

Pr Prandtl number
Sc = ν

D Schmidt number
So = D(T0−T∞)

νTm(C0−C∞) Soret number

Du = D(C0−C∞)
νCsCp(T0−T∞) Dufour number

B = −P0(1−αt)
ρνΩ0

Pressure constant

1 Introduction
In the fluid dynamics the problem which has a remarkable application in various field is
rotating disk phenomena. Keeping in view its application the research in this field got
much attention of researchers in the areas such as, the extraction of energy from hydro
power, solar collector and wind energy. The rotating disk phenomena was discussed
by many researchers, Von Kármán [Von Kármán (1921)] was the first who studied the
flow of fluid on the surface of rotating disk. Cochran [Cochran (1934)] presented more
accurate result than that of Von Karman by the help of two series expansion, Benton
[Benton (1966)] examined unsteady case and made some modification in Cochran’s work.
Early, the heat transfer was studied by Millsaps et al. [Millsaps (1951); Riley (1964)]
on rotating disk. Kuiken [Kuiken (1971)] clarified blowing effect induced due to rotating
porous disk. The influences of rotational deceleration was studied by Watson et al. [Watson
and Wang (1979)], they showed a rotating disk in viscous fluid can rotate faster than the
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disk. The unsteady, laminar flow with decleration over a stretchable rotating disk has
studied by Fang et al. [Fang and Tao (2012)]. Türkyılmazoglu et al. [Türkyılmazoglu
and Uygun (2004)] derived Karman solution considering compressible flow. Where as
surface of the disk partially slips in an infinite viscous fluid was studied by Miklavčič et al.
[Miklavčič and Wang (2004)]. Karman’s problem was further extended by Turkyilmazoglu
[Turkyilmazoglu (2010)]. To examine the magneto hydro dynamics effects, the stretching
disk effect is examined by Turkyilmazoglu [Turkyilmazoglu (2012)]. The numerical
investigation was presented by Turkyilmazoglu [Turkyilmazoglu (2014)] , by considering
the nanoparticle with the rotating disk. The fluid flow due to rotating disk was studied by
Hayat et al. [Hayat, Qayyum, Imtiaz et al. (2017)].
The radiation effect and the phenomena of heat transfer has a significant role in space
technology. In industries the radiation effect along with high temperature have great
applications. Chen et al. [Chen, Armaly and Ali (1984)] considered the thermal radiation
in the grey fluid. The study on the rotating disk problem is further extended to hydro
magnetic. By using magnetic field [El-Mistikawy (1990)] presented important result. The
momentum equation was solved by Rath et al. [Rath and Iyengar (1969)] on porous disk
with time dependent flow.
The importance and application of fractional calculus (FC) cannot be ignored by someone
in advanced technology and in the field of Science and engineering. Fractional calculus
characterized those points, at which classical calculus is limited. At the present time
fractional calculus is at a stage, where many real world application of science and
techologies are still to be introduced. In previous time, FC was considered as esoteric
mathematical theory of no applications, for the last decades, due to its wide applications
in the field of advanced calculus variation, fractional control of engineering systems,
fundamental explorations of the electrical, thermal, mechanical and other properties of
several engineering objects like foam, animal tissues, viscoelastic polymers and their
scientific importance, understanding of diffusion and wave phenomenas, their verifications
and measurments, their role in plasma physics and numerical and analytical tools and
techniques, FC has been bringing a tremendous change in research activates. Some
researchers have presented several valuable results in monographs and articles [Rath and
Iyengar (1969); Ortigueira (2011); Tarasov (2011)]. For special functions and integral
transforms FC can be considered as “Laboratory”. The applications of FC are mostly due to
transcendental functions of the Wright type and Mittag Leffler. The most extensive property
of FC in the field of viscoelasticity, in view of its role to model hereditary phenomenas
with long memory. Some valuable discussion has been studied about fractional derivative
by Benson et al. [Benson, Wheatcraft and Meerschaert (2000)]. Morales-Delgado et al.
[Morales-Delgado, Gómez-Aguilar, Saad et al. (2019)] found the solution, using fractional
approach, for external forces involving in oxygen diffusion from capillaries to tissue. Gul
et al. [Gul, Khan, Noman et al. (2019)] studied the nanofluid passing over a thin needle
with fraction order forced convection nanotube. The three dimensional flow of fractional
order over rotating disk was studied by Gul et al. [Gul, Khan, Khan et al. (2018)]. Ali et al.
[Ali, Jan, Khan et al. (2016)] discussed the solution for Brinkman type fluid with special
functions for time free convection flow. Caputo derivative with respect to a kernal function
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Figure 1: Geometry of the flow over a stretching rotating disk

and their application was examined by Almeida et al. [Almeida, Malinowska and Monteiro
(2018)]. Turkyilmazoglu [Turkyilmazoglu (2018)] studied fluid flow over single vertically
rotating disk with heat transfer. However, no work has been found so far in literature related
to single vertically rotating disk with transfer of heat, in which the unsteadiness effect of
temperature and concentration is taken.
This work is the extension of Turkyilmazoglu’s work, in which the unsteadiness effect
of concentration and temperature has been taken, which effect the fluid behavior. The
fractional behavior of unsteady viscous fluid over a rotating disk has been investigated and
presented. The governing equation of fluid flow are numerically investigated by Predictor
Corrector method (FDE12) and for comparison Runge Kutta order 4 method is used for
classical case. For comparison the result are graphically shown, upto a large extend which
give a good agreement with RK4. Next, we formulate the problem with brief discussion.

2 Mathematical formulation of the problem

Let us consider the impermeable, moving upward/downward rotating disk, which caused
the fluid flow as shown in Fig. 1. At t = 0, the location of disk is at a(0) = h, where at
some time t the vertical distance is Z = a(t) and the vertical velocity w = a∗(t), about
z-axis the rotating disk has the angular velocity Ω(t). The velocity components V (u, v, w)
are taken along the radial, azimuthal and axial direction respectively. The speed of rotating
disk must not be kept constant at any time, otherwise the phenomena will be same as the
wall blowing problem, which regarded to a classical rotating disk with a steady fluid flow.
The governing equation for the fluid flow motion is as follow [Turkyilmazoglu (2018);
Shah, Shuaib and Khan (2017)]:
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u

r
+ ur + wz = 0, (1)

ut + uur + wuz −
v2

r
= −1

ρ
pr + ν(urr +

1

r
ur + uzz −

u

r2
), (2)

vt + uvr + wvz +
uv

r
= ν(vrr +

1

r
vr + vzz −

v

r2
), (3)

wt + uwr + wwz = −1

ρ
pz + ν(wrr +

1

r
wr + wzz), (4)

Tt + uTr + wTz =
k

ρCp
(Trr +

1

r
Tr + Tzz) +

16σ∗T 3
∞

3ρK∗Cp
Tzz +

DKT

CsCp
(Crr +

1

r
Cr + Czz),

(5)

ρ(uCr + wCz) = D(Crr +
1

r
Cr + Czz) +

DKT

Tm
(Trr +

1

r
Tr + Tzz), (6)

where u, v, w, T, P, and C represent the radial velocity, tangential velocity, axial velocity,
Temperature, pressure and concentration respectively. The time dependent temperature
is Tw(t), while the fluid had ambient temperature T∞ above the disk. The temperature
difference between the ambient and the wall is ∆T = Tw(t)− T∞.
The imposed boundary condition for infinite rotating disk are as follows:

u = 0, v = rΩ0(t), w = ω0(t), p = p0, T = T0, C = C0, at z = a(t)

and u −→ 0, v −→ 0, T −→ T∞, C −→ C∞ as z −→∞.
(7)

The thermal radiation term is defined as [Shah, Shuaib and Khan (2017)]

qr =
4σ∗

3K∗
∂T 4

∂z
. (8)

u =
rv

a2(t)
F (η), v =

rv

a2(t)
G(η), w =

v

a(t)
H(η), p =

ρv2

a2(t)
p(η),

T = T∞ + ∆Tθ, η =
Z

a(t)
− 1, ηz =

1

a(t)
and ηt =

−a(t)

a(t)
(η + 1).

(9)

The following system of ODE is formed by using Eq. (9) in Eqs. (1)-(7):

F ′′ −HF ′ − F 2 +G2 + S(
η + 1

2
F ′ + F ) = 0, (10)

G′′ −HG′ − 2FG+ S(
η + 1

2
G′ +G) = 0, (11)

H ′′ −HH ′ + S(
η + 1

2
H ′ +H) = 0, (12)

θ′′

Pr
(1 +

4

3Rd
) +

1

2
(S(η + 1)−H)θ′ +Duφ′′ = 0, (13)

1

Sc
φ′′ + (

1

2
S(η + 1)−H)φ′ + So θ′′ = 0. (14)
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The transformed boundary conditions are given by

F (0) = 0, G(0) = w, H(0) = B
S

2
, θ(0) = 1, φ(0) = 1, at η = 0, (15)

and F (∞) −→ 0, G(∞) −→ 0, H(∞) −→ 0, θ(∞) −→ 0, φ(∞) −→ 0 (16)
as η −→∞, (17)

The physical controlling parameters S of the upward/downward movement of the
disk is expressed as:

S = 2
a(t)a∗(t)

v
, (18)

The parameter ω, which represents the constant rotation of the disk is defined as

ω =
Ω(t)a2(t)

v
. (19)

3 Basics of Caputo derivative
Definition 3.1. The fractional integral of order α > 0 for a function g : R+ → R is defined
by

Iαt (g(t)) =
1

Γ(α)

∫ t

0
(t− χ)α−1g(χ)dχ.

Here and elsewhere Γ denotes the Gamma function.

Definition 3.2. The Caputo fractional order derivative for function g ∈ Cn of order α is
given below:

CDα
t (g(t)) = In−αDng(t) =

1

Γ(n− α)

∫ t

0

gn(χ)

(t− χ)α+n−1
dχ,

which is well defined for absolutely continuous functions and n − 1 < α < n ∈ N . Note
that the value of the Caputo fractional derivative of the function g at point t involves all the
values of gn(χ), for χ ∈ [0, t]. Clearly CDα

t (g(t)) tends to g′(t) as α→ 1.

4 Solution procedure
The equations that describes the system given by (10-14) and their initial condition (15)
are transformed into a system of first-order differential equations by using the following
variables as

Let η = y1, F = y2, F
′

= y3, G = y4, G
′

= y5, H = y6, H
′

= y7,

θ = y8, θ
′

= y9, Φ = y10 and Φ
′

= y11. (20)
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y′1 = 1,
y′2 = y3,

y′3 = y6y3 + y2
2 − y2

4 − S(
(y1 + 1)y3

2
+ y2),

y′4 = y5,

y′5 = y6y5 + 2y2y4 − S(
(y1 + 1)y5

2
+ y4),

y′6 = y7,
y′7 = −2y6y3 + S((y1 + 1)y2 + y6),
y′8 = y9,

y′9 =
3PrRd(Duy11(2y6 − (1 + y1)S)Sc + (−y6 + S + y1S)y9

−8 + 6Rd(−1 +DuPrS0Sc)
,

y′10 = y11,

y′11 =
Sc((1 + y1)S(y11(4 + 3Rd)− 3PrRdS0y9) + y6(−2y11(4 + 3Rd) + 3PrRdS0y8)

−8 + 6Rd(−1 +DuPrS0Sc)
.


(21)

The transform equations given in (19) represents a non-linear system in classical derivative.
To generalize the model equations given by (19), we apply the Caputo derivative and re
write these equation as follows:

Dα
η y1 = 1,

Dα
η y2 = y3,

Dα
η y3 = y6y3 + y2

2 − y2
4 − S(

(y1 + 1)y3

2
+ y2),

Dα
η y4 = y5,

Dα
η y5 = y6y5 + 2y2y4 − S(

(y1 + 1)y5

2
+ y4),

Dα
η y6 = y7,

Dα
η y7 = −2y6y3 + S((y1 + 1)y2 + y6),

Dα
η y8 = y9,

Dα
η y9 =

3PrRd(Duy11(2y6 − (1 + y1)S)Sc + (−y6 + S + y1S)y9

−8 + 6Rd(−1 +DuPrS0Sc)
,

Dα
η y10 = y11,

Dα
η y11 =

Sc((1 + y1)S(y11(4 + 3Rd)− 3PrRdS0y9) + y6(−2y11(4 + 3Rd) + 3PrRdS0y8)

−8 + 6Rd(−1 +DuPrS0Sc)
.


(22)
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The transformed conditions for the first-order fractional differential equations are as

y2(0) = 0, y4(0) = 0, y6(0) = B
S

2
, y8(0) = 1, y10(0) = 1,

y2(∞) −→ 0, y4(∞) −→ 0, y6(∞) −→ 0 y8(∞) −→ 0 and y10(∞) −→ 0. (23)

5 Results and discussion
In this section, the non-linear system of differential Eqs. (19)-(20) for varies physical
parameter are discussed with two different method, Runge Kutta order 4 and the Predictor
Corrector method and their results are shown with brief discussion. Runge Kutta order 4
method is used for classical order and Predictor Corrector method for frictional order and
also compared both techniques and the results are depicted in Figs. 13(a)-13(b).
To show the behavior of function such as velocity, temperature and concentration with
variation in different physical parameter (see Tab. 1) and Figs. 2-13 are obtained. The
Figs. a2-a12 on the left side show RK4 result. Figs. b2-b12 show classical order result at
α=1.0, while in rest of each Figs. c and d represent frictional result with α= 0.9, 0.8.
Figs. 2(a)-2(d) represents the effect of parameter S on the axial velocity. It can be seen that
upto some extend axial velocity decreases, but then it start increasing with enhancement of
unsteadiness parameter S, because boundary layer thickness increases with S.
The decrease of radial velocity with increase in S is presented in Figs. 3(a)-3(d). Parameter
S increased the fluid velocity partially, that shows some velocity and gradually the velocity
get reduced. The variation in tangential velocity with parameter S have been examined in
Figs. 4(a)-4(d). The tangential velocity increase with enhancement in S.

The effect of Prandtl number Pr on the temperature profile is illustrated in Figs. 5(a)-
5(d). Pr = ρνCp/K, the thermal diffusion has inverse relation with Prandtl fluid, the
fluid show anomalous behavior at classical order αn=1.0, but when αis reduced to 0.9 and
0.8, the temperature start decline as the Prandtl number increase.
Rd =K∗K/4σ ∗ T 3

∞, with an increase in thermal radiation Rd the temperature of
fluid increases illustrated in Figs. 6(a)-6(d). Physically, the fluid which have greater
thermal diffusitivity have high temperature. Therefore when parameter Rd increases the
temperature of fluid also increases.
Figs. 7(a)-7(d) illustrate the effect of Dufour Du on temperature distribution profile. It

can be seen that the temperature decreases with increase of parameter Du, because as Du
increases the viscosity of fluid reduced and concentration of the fluid increased, as a result
the temperature of fluid also decreases.
Figs. 8(a)-8(d) presents the increase in temperature as we slightly increase the Schmidth

number Sc. Sc = ν/D, the enhancement of temperature is due to increase of viscosity of
fluid. The concentration of fluid reduced as the Prandtl Pr and thermal radiation term Rd
increase shown in Figs. 9(a)-9(d) and Figs. 10(a)-10(d) respectively. As we discussed in
Figs. 5(a)-5(d), that physically the higher thermal diffusitivity is possessed in less Prandtl
fluid, and less thermal diffusitivity is possessed in high Prandtl fluid. Therefore, when the
thermal radiation Rd and Prandtl Pr increases the concentration of fluid reduced.

Figs. 11(a)-11(d) depict the Dufour effect on concentration profile of a viscous fluid.
Du = D(C0 − C∞)/νCsCp(T0 − T∞), clearly the viscosity of fluid decrease as Dufour
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Figure 2: The effect of parameter S on the axial velocity profile (a) RK4 results (b)
Fractional order α = 1.0 (c) fractional order α = 0.9 (d) fractional order α = 0.8. Where Pr
= 6.7, Sc = 0.13, Rd = 13, Du = 0.4, So = 0.1, B = 1
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Figure 3: The effect of unsteadiness parameter S on the radial velocity profile (a) RK4
results (b) Fractional order α =1.0 (c) fractional order α = 0.9 (d) fractional order α =0.8.
Where Pr =6.7, Sc = .10, Rd =13, Du =0.5, So =0.1, B = 1
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Figure 4: The effect of unsteadiness parameter S on the tangential velocity profile (a) RK4
results (b) Fractional order α =1.0 (c) fractional order α = 0.9 (d) fractional order α =0.8.
Where Pr =5.7, Sc = .12, Rd =11, Du =0.5, So =0.2, B = 1
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Figure 5: The effect of parameter Pr on the Temperature profile (a) RK4 results (b)
Fractional order α =1.0 (c) fractional order α = 0.9 (d) fractional order α =0.8. Where
Sc = 0.6, Rd =13, Du =0.3, S =2.2, So =0.5, B = 1
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Figure 6: The effect of thermal radiation parameter Rd on the Temperature profile (a) RK4
results (b) Fractional order α =1.0 (c) fractional order α = 0.9 (d) fractional order α =0.8.
Where Pr =2.7, S = 2.05, So = 0.2, Sc = 0.1, Du =0.3, B = 1
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Figure 7: The parameter Dufour Du effect on the Temperature profile (a) RK4 results (b)
Fractional order α =1.0 (c) fractional order α = 0.9 (d) fractional order α =0.8. Where S
=2.2, Pr =2.7, So =0.2, Sc = 0.1, Rd =3.0, B = 1
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Figure 8: The effect of parameter Sc on the Temperature distribution profile (a) RK4 results
(b) Fractional order α =1.0 (c) fractional order α = 0.9 (d) fractional order α =0.8. Where
S =2.2, Pr =2.7, So = 0.3, Rd =0.8, Du =0.2, B = 1
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Figure 9: The effect of Prandtl number Pr on the concentration distribution profile (a)
RK4 results (b) Fractional order α =1.0 (c) fractional order α = 0.9 (d) fractional order α
=0.8. Where S =2.0, Rd =0.8, So = 0.2, Sc = 0.05, Du =0.5, B = 1.2
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Figure 10: The effect of thermal radiation parameter Rd on the concentration distribution
profile (a) RK4 results (b) Fractional order α =1.0 result (c) fractional order α = 0.9 (d)
fractional order α =0.8. Where S =2.0, Pr =4.7, Sc = 0.05, So =0.2, B = 1.2
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Figure 11: The parameter Dufour Du effect on the concentration distribution profile (a)
RK4 results (b) Fractional order α =1.0 result (c) fractional order α = 0.9 (d) fractional
order α =0.8. Where S =0.2, Pr =6.7,Sc =0.1, Rd =0.2, Du =0.3, B = 1

Du increase, as a result the concentration of fluid also show inclination. The effect of
Soret number So on the concentration of fluid is illustrated in Figs. 12(a)-12(d). It can
be observed from Figs. 12(a)-12(d) that by increasing So the concentration of fluid is
increased and viscosity of fluid is reduced.

Fig. 13(a) shows the comparison between Runge Kutta order 4 and frictional method
FDE12 at α=1.0, both show increasing in temperature θ with enhancement of parameter
Pr. The frictional solution shows fast convergence than Runge Kutta of order 4, because
it can characterize the function at each frictional value of α. Therefore the frictional model
show best results.
In Fig. 13(b) the comparison of Runge Kutta order 4 method and FDE12 on concentration
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Figure 12: The parameter So effect on the concentration distribution profile (a) RK4 results
(b)Fractional order α result =1.0 (c) fractional order α = 0.9 (d) fractional order α =0.8.
Where S =2.1 Sc = .05,Pr = 6.7, Rd =0.2, Du =1.0, B = 1
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Figure 13: Comparison of RK-4 and fractional method taking α = 1 on temperature and
concentration profile respectively

profile with the variation of thermal radiation parameterRd has been shown. It is clear from
Fig. 13(b) that at initial value of Rd the RK4 show fast convergence. But as we increasing
the value greater or equal to 4 the FDE12 change the behavior of fluid concentration and
reduces the viscosity of fluid. As a result the concentration increases.

Table 1: Numerical comparison of RK4 method with Caputo frictional model for the
physical parameters = 2.1, Pr = 6.7, Rd = 0.2, Du = 1.0, Sc = 0.05, So = 4.0,
and B = 0.02

RK4 Caputo
η F (η) G(η) θ(η) φ(η) F (η) G(η) θ(η) φ(η)

0 0 0 1.0000 1.0000 0 0 1.0000 1.0000
0.5 0.0002 0.0020 0.8908 0.0588 0.0003 0.0021 0.8906 0.0575
1.0 0.343 0.1635 1.2825 1.3886 0.341 0.1654 1.2830 1.3884
1.5 0.2676 2.3909 6.0259 2.5887 0.2653 2.3901 6.0284 2.5870
2.0 -3.0836 7.1733 28.1336 8.0863 -3.0825 7.1728 28.1339 8.0823

Figs. 14(a)-14(e) are plotted for the purpose to reduce error possibilities and get as less
error as possible by Caputo derivatives. From observation of Figs. 14(a)-14(e), we can
examine that its maximum error is 10−10 and its minimum error can be reduced up to 10−4.
That is why error versus different physical parameter’s graphs such as S, Pr, Rd, Du and
Scare plotted. if the findings of this results and figures are used for practical phenomena
like engineering purposes, the desired result would be drawn. Tab. 1 shows the behavior
of functions such as concentration, temperature and velocities for different values of η and
their comparison.
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Figure 14: This Figure shows the range of different parameters for different functions
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6 Conclusion
We analyzed, the unsteady viscous fluid on combined with heat and mass transfer with
Soret and Dufour effect over a impermeable rotating disk, the following results are
concluded:

• The fractional solution are more fast convergence than that of classical method.

• The increase of axial and tangential velocity and decrease of radial velocity with
enhancement of S.

• By the increasing of prandtl number the fluid show anomalous behavior at integer case,
but then gradually increase the temperature.

• The enhancement of Dufour parameter the fluid temperature decrease and with Soret So
the temperature of fluid increase.
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