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Abstract: Security-sensitive functions are the basis for building a taint-style vulnerability 
model. Current approaches for extracting security-sensitive functions either don’t analyze 
data flow accurately, or not conducting pattern analyzing of conditions, resulting in 
higher false positive rate or false negative rate, which increased manual confirmation 
workload. In this paper, we propose a security sensitive function mining approach based 
on preconditon pattern analyzing. Firstly, we propose an enhanced system dependency 
graph analysis algorithm for precisely extracting the conditional statements which check 
the function parameters and conducting statistical analysis of the conditional statements 
for selecting candidate security sensitive functions of the target program. Then we adopt 
a precondition pattern mining method based on conditional statements nomalizing and 
clustering. Functions with fixed precondition patterns are regarded as security-sensitive 
functions. The experimental results on four popular open source codebases of different 
scales show that the approach proposed is effective in reducing the false positive rate and 
false negative rate for detecting security sensitive functions. 
 
Keywords: Code mining, security sensitive function, function preconditions, single-
linkage clustering. 

1 Introduction 
Security-sensitive functions are related to the common causes of vulnerability types with 
violations of data flow specifications, such as improper access controls, command 
injections [Jourdan (2009)], incorrect check of function return values, etc. Untrusted 
external input need to be checked before reaching parameters of security-sensitive 
functions to ensure security. For example, in a command injection vulnerability, if input 
data of the program participates in constructing command without being checked, the 
command line data manipulated by attackers could be executed. These types of 
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vulnerabilities are taint-style vulnerabilities [Yamaguchi, Golde, Arp et al. (2014)]. 
Security-sensitive functions are the most important part for modeling the taint-style 
vulnerability. Fig. 1 shows a state transition vulnerability model based on security-
sensitive functions. 
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Figure 1: Taint style state transition vulnerability model 

Originally, vulnerabilities detecting methods directly uses the inherent security-sensitive 
functions from system libraries. In 2017, Bhargava Shastry proposed a template based 
vulnerabilities detecting method [Shastry, Maggi, Yamaguchi et al. (2017)], which 
selected security sensitive functions from functions causing the vulnerabilities detected 
by fuzzing methods. Based on these functions, a vulnerability feature template was 
constructed to detecting similar vulnerabilities. Tab. 1 shows the security sensitive 
functions corresponding to some CVEs. 

Table 1: Security sensitive functions corresponding to some vulnerabilities 
Security Sensitive Functions The target project CVE ID 
ntohs,ntohl Open vSwitch CVE-2017-9264 
n2s OpenSSL  CVE-2014-0160 
memcpy,CopyMemory vlc  CVE-2015-1203 
atoi pidgin CVE-2013-6482 
printf,sprintf,fprintf xpdf CVE-2013-4473 
copy_from_user Linux kernel CVE-2013-6381 

 
Research in the area of extraction of unknown security-sensitive functions with code 
mining [Dyer, Nguyen, Rajan et al. (2013)] has gained some achievements in past years. 
Typical examples include code characteristics based approaches and frequent itemset 
mining-based approaches. In code characteristics based approaches, security sensitive 
functions are extracted by mining of the pre- and post-conditions of these functions 
[Ramanathan, Grama and Jagannathan (2007); Nguyen, Dyer, Nguyen et al. (2015)]. 
AntMiner [Liang, Bian and Zhang (2016); Bian, Liang, Zhang et al. (2018)] preprocessed 
the source code with program slicing to reduce noise interference and filtered out 
security-sensitive functions through a heuristic method. Chen et al. proposed an improved 
approach [Chen, Yang, Liu et al. (2018, 2019)] based on implicit parameter checking to 
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improve the AntMiner approach, which reduced the false positive rate comparing to 
AntMiner. The APEX [Kang, Ray and Jana (2016)]  analyzed the post-conditions of each 
API function called by the program, found the fallible APIs that are sensitive to error 
handling as security sensitive function, and identified error paths and non-error paths 
according to the number of branching points of the path to find error return values 
processing functions.  
These approaches are based on analyzing of conditional statement, and the number of the 
check conditions of the function parameters or the return value are used to filter out the 
security sensitive function. As the analysis doesn’t consider the common pattern of 
checking conditions, the methods can cause much false positives. 
Some methods use cluster analysis to extract security-sensitive functions from the pattern 
of the clustering result. PR-Miner [Li and Zhou (2005)] uses frequent closed itemset 
mining techniques to mine association rules between APIs using FPclose algorithm 
[Grahne and Zhu (2003)], the APIs in the frequent itemset are considered as interesting 
APIs. The approach proposed by Chang et al. [Chang, Podgurski and Yang (2008); 
Chang and Podgurski (2012)] first chooses the set of APIs of interest as condidate 
security sensitive functions, then for every condidate API, it uses each of its call site 
instances to construct dependence spheres from a system dependency graph of the target 
program. It then performs frequent isomorphic graph minor mining from the dependence 
spheres. The frequent isomorphic graph minors are selected as the security-sensitive 
functions. Frequent graph minor mining problem for this approach is an NP-complete 
problem [Damaschke (1990)]. There is lack of precise analysis of the data flow in these 
approaches and there is a high rate of false negatives. 
In this paper we propose a security sensitive function extraction approach based on code 
structure characteristics analysis. By conducting an improved system dependency graph 
analysis of the target program, the shared data dependence relationship of statements are 
used in the checking of protected state of parameters for selecting condidate functions. 
Then we cluster the protecting conditions for the condidate function to get the common 
pattern of checking conditions and determine a condidate function as a security sensitive 
functions if the common pattern exists.  
The experimental results show that the proposed approach is effective in reducing the 
false positives and false negatives for detecting security sensitive functions. 

2 Proposed method 
2.1 Overview 
Fig. 2 shows the overview of our approach. We first build an enhanced system 
dependency graph for the target source code through program analyzing. On this basis, 
for the parameters of each function, the verification variables in the conditional 
statements are extracted, and the candidate security sensitive functions are extracted 
according to the checking situations for parameters from the verification variables. For 
the candidate security-sensitive functions, the preconditions are extracted, generalized 
and clustered. If there is a clearly precondition checking pattern as the clustering result, 
the correlation function is recognized as a security-sensitive function. 
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Figure 2: Overview of the proposed approach 

2.2 Code processing 
A precondition extraction method is used in the AntMiner method. Which performed 
dependency analysis on program dependency graphs (PDGs) to identify potentially error-
prone functions. A set of validated variables (VVS) is calculated for each conditional 
statement. VVS contains all the variables checked by a conditional statement. To 
calculate the VVS, the data dependent subgraph (DDS) of the PDG is traversed from the 
conditional statement and the variables of the statements accessed during the traversal are 
added to the VVS. Then each calling instance of security sensitive function is examined 
by traversing the PDG’s Control Dependent Subgraph (CDS) to see if it depends on the 
control condition. If such a conditional statement exists, it further check if the parameters 
are protected by the conditional statement. The assertion that a variable v is protected by 
a conditional statement is defined recursively. If the variable v belongs to the VVS of the 
conditional statement or another variable v’ is used in the definition statement of v and v’ 
is protected by the conditional statement, then v is considered as protected by the 
conditional statement. If a parameter p of a function is protected, that is, if there exists a 
direct check of p or a check of the variable defining p (indirect check), the protected 
counter of p (each parameter has a corresponding protected counter) is increased by 1. If 
the number of call instances that perform a check on a parameter is greater than a certain 
threshold, the function is recognized as a candidate of security-sensitive function. 
This method mainly collects VVS from the variables of the dependency graph. It does not 
take into account the variables coming from the same definition. As long as any item in 
the set of variables from the same definition is protected, it means that all variables from 
the set are protected. 

openssl-1.1.1a\crypto\sha\sha512.c 
267    unsigned char *p = c->u.p; 
281    size_t n = sizeof(c->u) - c->num; 
283    if (len < n)  
284        memcpy(p + c->num, data, len)  

Figure 3: Code snippet 1:partial code for SHA512_Update function in OpenSSL 
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Fig. 3 shows the partial code associated with the memcpy call in the SHA512_Update 
function of OpenSSL. The first parameter of memcpy is not directly protected by the 
conditional statement. The parameter-related variable p and the statement c->u of line 
267 have data dependencies, as found from the dependency graph, but these two 
variables are not part of the VVS of conditional statement in line 283 in according to the 
definition in AntMiner. However, the value data of the VVS variable n of the conditional 
statement 283 depends on c->u. In this case, both n and p share the same data depending 
on the same variable. In this case, the check of the relative value of the parameter is the 
determining factor, not the parameter itself. Therefore, as long as a parameter and a 
variable used for checking directly have data dependency relationship or they depend on 
the same variable, the corresponding conditional statement should be considered as 
protecting over the parameters. 
The control conditions protecting the corresponding function parameters can be obtained 
from control dependent edges in the program dependency graph. The data dependence of 
the parameters to variables of control conditions can be obtained by the data dependence 
edges in the program dependence graph. To our best knowledge, there is no direct 
judging basis for the relationship of dependences on same variables for function 
parameters and variables of control conditions. Based on this observation, we use a 
representation of program that adds another shared data dependent edge to the program 
dependency graph, which is also used in Chang et al. [Chang and Podgurski (2012)]. 

267

283

284

281

284-1 284-3

284：   call site node for memcpy
284-1：the passing for the first parameter of memcpy
284-3：the passing for the third parameter of memcpy

Control dependence graph

Data dependence graph

Shared dependence graph  
Figure 4: Enhanced system dependency graph for code snippet 1 

For the two nodes a and b in the dependence graph, if both a and b use the same variable 
definition of c, we call a and b have shared data dependence. Program dependency graph 
is extended by adding a directed edge called shared data dependent edge between 
statements defined with the same variable in the program dependence graph. The 
resulting graph is called an enhanced system dependency graph (Enhanced PDG, EPDG).  
In our approach we first build an EPDG for each procedure of the target program. The 
nodes of EPDG are statements in the program. Three types of edges are used to construct 
the graph: data dependence edges represent data dependence between statements, control 
dependence edges represent control dependence between statements, and shared data 
dependence edges represent shared data dependence between statements. The program is 
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represented by the enhanced system dependency graph (ESDG), which is constructed by 
the set of EPDGs of the various procedures by adding data dependent edges from actual 
parameter nodes of caller PDG to the formal parameter nodes of callee PDG and adding 
control dependence edges between the procedure call statement node of the caller PDG 
and the entry statement node of the callee PDG. 
As an example, Fig. 4 shows an enhanced program dependence graph for the code 
example given in Fig. 3. If a parameter of a function and a variable of a conditional 
statement are connected by an SDDE edge, or a data dependent edge, it means that the 
parameter and the variable of the conditional statement has a data dependence or shared 
data dependence relationship. 

2.3 Candidate function selection 
The precondition of a function refers to a set of conditional statements whose related 
parameters must be satisfied before the function is called. The precondition is the judging 
conditions of the relevant parameters of a function. If there are multiple calling instances 
that checking the parameters of a function, we can judge that the function has 
preconditions, it can be used as a candidate for the security-sensitive function. We define 
the code characteristics representing the number of checks performed on a parameter as 
parameter checking feature. Since a function contains multiple call instances, the 
parameter checking feature of a function can be calculated by averaging the features of 
each objective function. The calculation formula is shown in Eq. (1), in which the 
PCFunc( )f represents the parameter checking feature of function f . 

1 1

1PCFunc( ) ( )
n m

ij
i j

f C P
n = =

= ∑ ∑
 

(1) 

where m is the number of arguments of the function. n represents the number of call 
instances of the function. ijP  represents the jth argument of the ith instance of the 
function. ( )ijC P Represented as the number of check statements for the jth argument of the 
ith instance of the function. 
According to this calculation method, in order to extract the parameter checking feature, 
it is necessary to extract the condition statements for checking parameters of the function. 
As the algorithm shown in Fig. 5, by traversing the enhanced data dependency graph, it is 
possible to determine whether a variable (function parameter or return value) is checked 
by the conditional statement. The input of the algorithm is the EPDG containing the 
SDDE edge, along with the node of the target function in the EPDG. The 
GetPreConditionOfFunc method starts with the the node of the target function and first 
traverses through the control dependent edges. Starting from the node of the 
corresponding parameter of the function, it collects the set of conditional statements 
protecting the corresponding parameters by traversing the data dependent edge and the 
shared data dependent edge in the graph. The protection counter corresponding to a 
parameter is incremented by one when encountering a checking statement of the 
parameter. When the protection counter exceeds the  threshold, we mark the function as a 
candidate security sensitive function. 
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Procedure JudgeFuc(fEDPG, Ft) 
Input: fEDPG: the enhanced SDG; Ft: node for call site of target function 
Output: ParamProtected: BOOL array for recode the protection of 

parameters,elements of which are initialized to false 
1.  ParamProtect:Array of int init to zero 
2.  recursively traverse fEDPG from Ft, with CDE  
3.  For each reached statement tStatement 
4.    Put the statement into the 𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑆𝑆𝑒𝑒𝑡𝑡 
5.  End 
6.  For each call instance of Ft do 
7.    For each argument argi of Ft do  
8.      recursively traverse fEDPG from argi, with DDE and SDDE and 
9.      For each reached statement tStatement 
10.        if  tStatement∈conditionSet 
11.            then increment ParamProtect[argi] and break the traverse 
12.     Endif 
13.    End 
14.   End  
15. End 
16. For each argument argi of Ft do 
17.   if  ParamProtect[argi]>MINIPROTECTED 
18.      ParamProtected [argi]=TRUE 
19.   Endif 
20. End  

Figure 5: Security sensitivity measurement algorithm 
For example, through the traversing of the EPDG graph of the code snippet of Fig. 3. The 
statement in line 283 is collected as the conditional statement protecting the memcpy 
function in 284 line. Since there is a shared data dependence from the third parameter of 
memcpy to node 283, it judged that the third parameter is protected by the conditional 
statement. Since there is a direct data dependence edge from 267 to 284-1, and by 
traversing the node sequence “267->281->283” through share data dependence edges, it 
find that the 267 has share data dependence relationship with the conditional statement 
283, so it judges that the first parameter is still protected by the conditional statement. 

2.4 Precondition pattern construction 
For the candidate security-sensitive functions obtained in the previous section, we extract 
conditional statements for checking specific parameter of the function in each calling instance. 
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Procedure BackSlice(CallGraph, A) 
Input：CallGraph：call graph; A ：statement set starting for slicing 
Output： S：back sliced statement set 
1.  Init S=∅  and =ATemp         //Initialize target set and working set 
2.  while Temp ≠ ∅  do 
3.    Get and remove first stmt s  from Temp   

//Get and remove a node from working set 
4.    S :=S {s}∪  
5.    foreach edge t s→  in G :  //for each edge from SDG end with s 
3.       if t S∉   then      //if start node of the edge is not in slicing set 
4.        { }Temp:= Temp t∪   //add it to the working set 
7.       end if 
8     end                        
9.  end  

Figure 6: Backward slicing algorithm 
Firstly, starting from the candidate security-sensitive function, the backward slice is 
performed in the enhanced system dependency graph. The algorithm for getting 
backward slices is listed in Fig. 6, which defines a set of sliced nodes and a set of 
working nodes. It first initializes the working node set to a sensitive function call 
statement. Through the loop, it takes out the node elements in the working node set, adds 
them to the slicing set, and get other related nodes with backtracking through edges in the 
enhanced system dependency graph. If a node that is not in the slicing set is encountered, 
it is added to the working node set. The loop continues until the working node set is 
empty. In the sliced system dependency subgraph, the definition statement of the 
parameter variable and the relevant conditional check statements are collected. 
Then we attempt to get the check pattern over the parameter of the candidate security-
sensitive function as precondtion pattern through analyzing the extracted conditional 
statements and judge it as a security-sensitive function if there exist at least one 
precondtion pattern.   
The conditional statements extracted mainly include conditional expression statements 
and conditional statements with the keyword “if”, “for” or “while” as keywords. 
When analyzing the conditional check pattern, the conditional statements are first 
generalized to better highlight the common features. Eliminate the influence of individual 
naming styles of different variables and constant. It mainly includes the following aspects: 
(1) Replacing the variables relating to the corresponding parameter in the conditional 
statement with the serial number of the parameter, such as the name of nth parameter is 
replaced with the symbol “ARGn”; 
(2) Replacing the variables associated with the input data in the conditional statement 
with the symbol “SRC”; 
(3) Removing the not symbol in all statements; 
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(4) Uniformly processing of expressions including variables comparing to NULL. For 
determining whether a variable var is 0, there are three forms of judgment: “if (var!=0)”, 
“if (0!=var)”, “if (var))”, and they should be converted to a consistent form; 
(5) For the comparison expression, the order of the left and right subexpressions of the 
comparison is uniformly specified; 
(6) The names of variables are replaced by the types of the variables; 
(7) The relational operators are replaced by the symbol “CMP”, and the numeric and 
constant values are replaced by “NUM”; 
(8) Decomposing the compound conditional expression statement. For a compound statement 
separated by logical symbols, the expressions are extracted, and if there is a nesting of the 
logical symbol, the statement is continually splitted up to get the judgment units. 

Table 2: Conditional statements normalization rules 
Original conditional 
statement 

After normalization Description 

A==B,A!=B A EQUAL B The equivalent symbol is replaced by 

EQUAL, and the two sides are sorted in 

alphabetical order. 

A A EQUAL 0 Comparing to 0 

！A A EQUAL 0 Removing the ! symbol 

A<=B,A>=B,A<B,A>B A CMP B The compare symbol is replaced by “CMP” 

symbol, the two sides are sorted in 

alphabetical order. 

=,+,-,*,/.. (Assignment and 

Calculation symbols 

operators) 

=,+,-,*,/.. Keep the original form 

Parameter of sensitive 

function  

ARGn “n” represents the serial number of the 

parameter 

Function return value FUNCNAME Replace the return value with the function 

name 

Non-zero numeric constant NUM Non-zero numeric constants are replaced 

with “NUM” symbol 

variable type name of the 

variable 

Replace with type name of the variable 

According to these rules, the conditional statements are normalized. The processing 
method is shown in Tab. 2. 
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openslp-2.0.0\common\slp_compare.c 
669   if (unionlist == 0 || *unionlistlen == 0 || *unionlistlen < list1len) 
670   { 
671      *unionlistlen = list1len + list2len + 1; 
672      return  -1; 
673   } 
676   memcpy(unionlist, list1, list1len); 
 

unionlist == 0 *unionlistlen == 0 *unionlistlen < list1len 
char * EQUAL 0 char EQUAL 0 char CMP ARG3 

  
Figure 7: Conditional check statement normalization example 

As shown in the program in Fig. 7, the conditional statements in line 669 is a conditional 
statement that checks the parameters of the “memcpy” function of line 676. During the 
nomalization, the conditional statement in line 669 is splitted by logical symbol to get the 
logical subexpressions. The results of the extraction and normalization are shown in the 
lower part of Fig. 7. 
We scan the target program, to get all calling instances of the specified candidate 
security-sensitive function, represented as 1 2{ , ,..., }nS S S . For each calling instance, the 
enhanced system dependency graph is traversed to get all possible paths from entry node 
to the calling node, the path set is 1 2{ , ,..., }sP P P P= . Then we extract the set of conditional 
statements contained in all the paths, and collect the judgment expressions contained in 
all the conditional statements. The expressions are nomalized according to the above 
approach and aggregated to generate a conditional expression dictionary as 

1 2{ , ,..., }tC c c c= . 
The conditional expressions in all of the generalized conditional statements in a path are 
extracted and embedded into the vector space. Here we reference the natural language 
processing method, using the bag-of-words [Zhang, Jin and Zhou (2010)] model to 
vectorize the sequence. For natural language, sentence is composed of multiple words. 
For the conditional expression sequence, each conditional expression is referred to as 
“word”, and the conditional expressions in a path is referred to as “sentence”. 
According to the inclusion of the conditional expressions in the path P  of elements in 
C , the feature vector corresponding to the condition check mode of each path is 
generated. The mapping function that vectorizes P  can be expressed as: 

1  if conditions in p contains c( , )= 0  else{I p c
 

(2) 

For the target program, each path for each call instance of the security-sensitive function 
corresponds to a sequence of conditional statements which is mapped to a conditional 
feature vector. For the conditional feature vectors corresponding to all the conditional 
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expression sequences in all the calling instances, the single-linkage clustering method is 
used for cluster analysis. In single-linkage clustering, we need to define the distance 
calculation method between vectors. In this paper, the Manhattan distance is used to obtain 
the conditional clusters with similar conditions. 
The number of elements of a cluster represents the significance level of the feature of the 
cluster. Smaller clusters represents pattern only supported by a few call instances. The 
corresponding condition expressions contained in the path cluster whose number of 
supporting paths exceeds the specified threshold is taken as a typical precondition pattern 
of the corresponding function. If there in no cluster whose number of paths exceeds the 
threshold, the candidate function is not recognized as a security sensitive function. 

3 Results and disscussion 
3.1 Implementation 
We implement our approach based on Joern [Yamaguchi, Wressnegger, Gascon et al. 
(2013)]. Joern is an open source project for extracting and analyzing code property 
graphs of C/C++ code. We use it to extract data dependent edges and control dependent 
edges in code property graphs across procedures, and obtain system dependency graphs. 
We improved it by adding the shared data dependence edge of the system dependency 
graph to obtain an enhanced system dependency graph. On this basis, the security 
sensitive function recognition based on parameter checking measurement and conditional 
expression extraction and clustering operations are implemented. 
In the experiment, we first select the relevant CWE (Common Weakness Enumeration) 
sample code in the static analysis benchmark analysis tool published by the NIST 
SAMATE for the evaluation for parameter setting of the clustering algorithm. The 
samples contain a number of synthetic programs, each of which has one good and bad 
program and covers various type of CWEs. Further more, among the samples 
corresponding to these types of vulnerabilities, the characteristics of the conditional 
checking statements are obvious and can be easily extracted for manually verifying the 
correctness of the recognization of security sensittive functions in our approach. 
Then four open source projects, Openslp-2.0.0, LibTIFF-4.0.10, httpd-2.4.39 and 
OpenSSL-1.1.1 were used to extract the security-sensitive functions, and the 
effectiveness of the method was evaluated. 

3.2 Conditional expression clustering algorithm and parameter selection  
Using the program static analysis benchmark analysis tool Juliet C/C++ test suite 
(Version 1.2) released by the NIST SAMATE project, the parameter selection analysis 
for conditional expression clustering in our approach is carried out. The test set contains a 
variety of CWE vulnerability types, each of which contains a collection of test cases. In 
this paper, the positive sample data of the four types of CWE models in the test data set 
are selected, as displayed by Tab. 3. 
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Table 3: CWE data of NIST SAMATE project used for testing 

CWE ID The target project Instances Security sensitive 
function 

CWE252 Unchecked Return Value 630 printLine 
CWE253 Incorrect Check of Function 

Return Value 
684 printLine 

CWE78 OS_Command_Injection 8200 EXECV 
EXECL 

CWE15 External Control of System 
or Configuration Setting 

36 SetComputerNameA 

The conditional expressions of the candidate security sensitive function related paths are 
extracted and normalized. After the vectorizing of the expressions based on the bag-of-
words model, the results of clustering by single-linkage clustering and complete-linkage 
clustering algorithm are compared. When the Manhattan distance parameter for the 
clustering algorithm is set to a different value from 0 to 4, the respective false alarm rate 
and false negative rate are calculated, and the performance receiver operating 
characteristic curve (ROC) is obtained under two different algorithms, as shown in Fig. 8. 
It can be seen that, overall, the single-linkage algorithm performs better, and when the 
selected maximum distance is 2 or 3, the positive rate is already close to 100%. In 
practical applications, according to different software complexity, we select the distance 
for clustering with 2 or 3 for single-linkage algorithm. 

 
Figure 8: ROC curve for different clustering algorithms for conditional statements 

When comparing the different result for the two clustering algorithm, we found that in 
complete linkage clustering, the checking pattern in the clustering result tend to have 
more conditional expressions while the clustering set is smaller than that of single-
linkage clustering, although the latter tend to result in less conditional expressions in the 
checking pattern. That is because in single-linkage clustering, the similarity of two 
clusters is the similarity of their most similar members. The algorithm paid attention 
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solely to the area where the two clusters come closest to each other. While in complete-
linkage clustering [Hubert (1974)], the similarity of two clusters is the similarity of their 
most dissimilar members.  
As the goal of our approach is to judge precisely whether the parameters of a function has 
a fixed checking pattern, not to find the checking pattern itself. While finding the 
checking pattern is the goal of the approach in Yamaguchi et al. [Yamaguchi, Maier, 
Gascon et al. (2015)], which uses complete-linkage clustering to find checking pattern 
with as much conditional expressions as possible. 

3.3 Validation of the approach 
In this section, two experiments are designed to verify the validation of the proposed 
method: firstly we test the verification of candidate security sensitive function selecting 
approach, then we test the effect of the conditional expression clustering for the 
confirmation of candidate security sensitive functions. 

3.3.1 Candidate security sensitive function extraction 
For each of the four open source projects, Openslp-2.0.0, httpd-2.4.39, LibTIFF-4.0.10, 
and OpenSSL-1.1.1, extract the parameter checking feature of the relevant functions. 
Then sort the sensitive functions according to the value of the feature, and select the 
functions with PCFunc value exceeding a specific threshold as the candidate sensitive 
function. Tab. 4 shows partial of the candidate security-sensitive function and their 
PCFunc values. We set the threshold as 0.5 especially. 

Table 4: Partial candidate security-sensitive functions extracted from four target projects 

The target project The candidate security sensitive 
functions 

Instances PCFunc value 

Openslp memcpy 267 1.45 
 SLPUnionStringList 6 0.5 
 ReadFileProperties 3 1 

httpd strcasecmp 786 0.98 
 dav_lookup_uri 4 0.75 

LibTIFF _TIFFmemcpy 120 0.85 
 _TIFFmemcmp 4 0.5 

OpenSSL EVP_PKEY_copy_parameters 15  0.8 
 OPENSSL_strlcpy 32 0.87 

We can find that the PCFunc value of memcpy in Openslp is more than 1.45. The reason is 
that more than one parameter is protected by conditional expressions in most calling instances. 
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3.3.2 Validation analysis 
In order to verify the validation of the approach, from each of the four target programs, 
we select one target module for analyzing. As shown in Tab. 5. In total 28 security-
sensitive functions are manually selected as the positive samples, while 28 ordinary 
functions are selected as negative samples. 

Table 5: Modules of target project used for validation analysis of the proposed approach 

Project name Module Relative path of the module 
Httpd-2.4.39 moddav httpd-2.4.39\modules\dav 
openslp-2.0.0 libslp openslp-2.0.0\libslp 
LibTIFF-4.0.10 tiff2pdf tiff-4.0.10\tools 
OpenSSL-1.1.1 timestamp openssl-1.1.1\crypto\ts 

The indicators for evaluating the approaches is as shown in Tab. 6. True Positive (TP) and 
True Negative (TN) belong to the correct classification of samples, and False Positive (FP) 
and False Negative (FN) belong to the case where the samples are misclassified. 

Table 6: Evaluation indicators of the proposed approach 

            Test results 
 
Actual results 

Positive Negative Total 

Positive TP FN TP+FN 
Negative FP TN FP+TN 
Total TP+FP FN+TN TP+TN+FP+FN 

The true positive rate (TPR) is the ratio of the number of positive samples found to the 
total number of positive samples, also called the recall rate. The negative positive rate 
(FPR) is the ratio of the number of negative samples that are falsely reported as positive 
samples to the number of negative samples. The calculation formula is: 

TP FPTPR FPR
TP FN FP TN

= =
+ +

，               (3) 

The analysis results are as shown by Fig. 9. It can be seen that, overall, the approach 
proposed is superior to the AntMiner approach in terms of TPR and FPR indicators. We 
can see that in our approach, the testing result for LibTIFF both have lower TPR and 
higer FPR. In deeply analysis of the reasons we found that too much error processing 
functions are recognized as security sensitive functions in LibTIFF, which leads to higer 
FPR. We also found that several positive samples were even not selected as candidate 
security sensitive functions. As the parameters were security checked not by simply 
conditional expressions but by specified functions in LibTIFF, and in our approach we 
didn’t considered the specific functions for checking conditions. This is closely related to 
the characteristics of the target project. 
By comparing the extracting result of our approach and the AntMiner approach, we 
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analyzed the reason for the lower FPR and higher TPR. The lower FPR comes from that 
our approach has filtered the randomly judging operations by clustering the nomalized 
conditional expressions and relys on the existing of fixed checking pattern to recognize 
the function as a security sensitive function. The higher TPR comes from that the 
proposed approach used the shared data dependency relationship for extracting the VVS, 
and extracted the conditional expressions including variables having shared data 
dependency relationship with the parameter of the function under test. Which were 
omitted by the AntMiner approach. 

   

Figure 9: Comparison of the proposed approach and the AntMiner approach (a) the 
proposed approach (b) the AntMiner approach 

4 Conclusions 
This paper proposes a security sensitive function mining approach based on precondition 
analysis. We propose an algorithm for extracting and conducting statistical analysis of the 
conditional statements protecting function parameters to obtain condidate security 
sensitive functions. We constructed the enhanced system dependency graph containing 
the shared data dependent edges for extracting the protecting conditional statements to 
reduce the false negative rate. Then we proposed a precondition pattern mining method 
based on condition statements nomalizing and clustering. In the end, functions with fixed 
parameter checking pattern are regarded as security-sensitive functions. The experimental 
results on four popular open source code bases of different scales show that the method 
proposed is effective in reducing the false positives and false negatives for detecting 
security sensitive functions.  
For the testing of some target projects, higer false positive rate and lower true positive 
rate were caused by the fact that the check conditions were hidden in a special function 
and the error handling functions is regarded as a security sensitive function. The future 
work is to improve the approach by identifying and processing the specific checking 
functions and the error handling functions. 
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