

Computers, Materials & Continua CMC, vol.63, no.2, pp.1013-1029, 2020

CMC. doi:10.32604/cmc.2020.09345 www.techscience.com/journal/cmc

A Security Sensitive Function Mining Approach Based on
Precondition Pattern Analysis

Zhongxu Yin1, *, Yiran Song2, Huiqin Chen3 and Yan Cao4

Abstract: Security-sensitive functions are the basis for building a taint-style vulnerability
model. Current approaches for extracting security-sensitive functions either don’t analyze
data flow accurately, or not conducting pattern analyzing of conditions, resulting in
higher false positive rate or false negative rate, which increased manual confirmation
workload. In this paper, we propose a security sensitive function mining approach based
on preconditon pattern analyzing. Firstly, we propose an enhanced system dependency
graph analysis algorithm for precisely extracting the conditional statements which check
the function parameters and conducting statistical analysis of the conditional statements
for selecting candidate security sensitive functions of the target program. Then we adopt
a precondition pattern mining method based on conditional statements nomalizing and
clustering. Functions with fixed precondition patterns are regarded as security-sensitive
functions. The experimental results on four popular open source codebases of different
scales show that the approach proposed is effective in reducing the false positive rate and
false negative rate for detecting security sensitive functions.

Keywords: Code mining, security sensitive function, function preconditions, single-
linkage clustering.

1 Introduction
Security-sensitive functions are related to the common causes of vulnerability types with
violations of data flow specifications, such as improper access controls, command
injections [Jourdan (2009)], incorrect check of function return values, etc. Untrusted
external input need to be checked before reaching parameters of security-sensitive
functions to ensure security. For example, in a command injection vulnerability, if input
data of the program participates in constructing command without being checked, the
command line data manipulated by attackers could be executed. These types of

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450001, China.
2 Henan University of Animal Husbandry & Economy, Zhengzhou, 450046, China.
3 University of Michigan Transportation Research Institute, Michigan, 48109-2150, USA.
4 Zhengzhou University, Zhengzhou, 450001, China.
* Corresponding Author: Zhongxu Yin. Email: yinzhxu@163.com.
Received: 05 December 2019; Accepted: 18 December 2019.

1014 CMC, vol.63, no.2, pp.1013-1029, 2020

vulnerabilities are taint-style vulnerabilities [Yamaguchi, Golde, Arp et al. (2014)].
Security-sensitive functions are the most important part for modeling the taint-style
vulnerability. Fig. 1 shows a state transition vulnerability model based on security-
sensitive functions.

Checked data
Calling security

sensitive function

start

Tainted data
instroduced

Data
Checked

Taint-style
vulnerability

triggered

Input tainted data
Propagation

Calling security
sensitive function

Figure 1: Taint style state transition vulnerability model

Originally, vulnerabilities detecting methods directly uses the inherent security-sensitive
functions from system libraries. In 2017, Bhargava Shastry proposed a template based
vulnerabilities detecting method [Shastry, Maggi, Yamaguchi et al. (2017)], which
selected security sensitive functions from functions causing the vulnerabilities detected
by fuzzing methods. Based on these functions, a vulnerability feature template was
constructed to detecting similar vulnerabilities. Tab. 1 shows the security sensitive
functions corresponding to some CVEs.

Table 1: Security sensitive functions corresponding to some vulnerabilities
Security Sensitive Functions The target project CVE ID
ntohs,ntohl Open vSwitch CVE-2017-9264
n2s OpenSSL CVE-2014-0160
memcpy,CopyMemory vlc CVE-2015-1203
atoi pidgin CVE-2013-6482
printf,sprintf,fprintf xpdf CVE-2013-4473
copy_from_user Linux kernel CVE-2013-6381

Research in the area of extraction of unknown security-sensitive functions with code
mining [Dyer, Nguyen, Rajan et al. (2013)] has gained some achievements in past years.
Typical examples include code characteristics based approaches and frequent itemset
mining-based approaches. In code characteristics based approaches, security sensitive
functions are extracted by mining of the pre- and post-conditions of these functions
[Ramanathan, Grama and Jagannathan (2007); Nguyen, Dyer, Nguyen et al. (2015)].
AntMiner [Liang, Bian and Zhang (2016); Bian, Liang, Zhang et al. (2018)] preprocessed
the source code with program slicing to reduce noise interference and filtered out
security-sensitive functions through a heuristic method. Chen et al. proposed an improved
approach [Chen, Yang, Liu et al. (2018, 2019)] based on implicit parameter checking to

A Security Sensitive Function Mining Approach Based on Precondition 1015

improve the AntMiner approach, which reduced the false positive rate comparing to
AntMiner. The APEX [Kang, Ray and Jana (2016)] analyzed the post-conditions of each
API function called by the program, found the fallible APIs that are sensitive to error
handling as security sensitive function, and identified error paths and non-error paths
according to the number of branching points of the path to find error return values
processing functions.
These approaches are based on analyzing of conditional statement, and the number of the
check conditions of the function parameters or the return value are used to filter out the
security sensitive function. As the analysis doesn’t consider the common pattern of
checking conditions, the methods can cause much false positives.
Some methods use cluster analysis to extract security-sensitive functions from the pattern
of the clustering result. PR-Miner [Li and Zhou (2005)] uses frequent closed itemset
mining techniques to mine association rules between APIs using FPclose algorithm
[Grahne and Zhu (2003)], the APIs in the frequent itemset are considered as interesting
APIs. The approach proposed by Chang et al. [Chang, Podgurski and Yang (2008);
Chang and Podgurski (2012)] first chooses the set of APIs of interest as condidate
security sensitive functions, then for every condidate API, it uses each of its call site
instances to construct dependence spheres from a system dependency graph of the target
program. It then performs frequent isomorphic graph minor mining from the dependence
spheres. The frequent isomorphic graph minors are selected as the security-sensitive
functions. Frequent graph minor mining problem for this approach is an NP-complete
problem [Damaschke (1990)]. There is lack of precise analysis of the data flow in these
approaches and there is a high rate of false negatives.
In this paper we propose a security sensitive function extraction approach based on code
structure characteristics analysis. By conducting an improved system dependency graph
analysis of the target program, the shared data dependence relationship of statements are
used in the checking of protected state of parameters for selecting condidate functions.
Then we cluster the protecting conditions for the condidate function to get the common
pattern of checking conditions and determine a condidate function as a security sensitive
functions if the common pattern exists.
The experimental results show that the proposed approach is effective in reducing the
false positives and false negatives for detecting security sensitive functions.

2 Proposed method
2.1 Overview
Fig. 2 shows the overview of our approach. We first build an enhanced system
dependency graph for the target source code through program analyzing. On this basis,
for the parameters of each function, the verification variables in the conditional
statements are extracted, and the candidate security sensitive functions are extracted
according to the checking situations for parameters from the verification variables. For
the candidate security-sensitive functions, the preconditions are extracted, generalized
and clustered. If there is a clearly precondition checking pattern as the clustering result,
the correlation function is recognized as a security-sensitive function.

1016 CMC, vol.63, no.2, pp.1013-1029, 2020

Program analysis
Candidate security
sensitive functions
extraction based on
parameter checking

analyzing

Slicing based on
candidate function

Construction of
Enhanced Program
Dependency Graph precondition pattern

construction based
on clustering

precondition
statements extraction

and normalization

Preprocessing Candidate function
selection

Precondition pattern
construction

Figure 2: Overview of the proposed approach

2.2 Code processing
A precondition extraction method is used in the AntMiner method. Which performed
dependency analysis on program dependency graphs (PDGs) to identify potentially error-
prone functions. A set of validated variables (VVS) is calculated for each conditional
statement. VVS contains all the variables checked by a conditional statement. To
calculate the VVS, the data dependent subgraph (DDS) of the PDG is traversed from the
conditional statement and the variables of the statements accessed during the traversal are
added to the VVS. Then each calling instance of security sensitive function is examined
by traversing the PDG’s Control Dependent Subgraph (CDS) to see if it depends on the
control condition. If such a conditional statement exists, it further check if the parameters
are protected by the conditional statement. The assertion that a variable v is protected by
a conditional statement is defined recursively. If the variable v belongs to the VVS of the
conditional statement or another variable v’ is used in the definition statement of v and v’
is protected by the conditional statement, then v is considered as protected by the
conditional statement. If a parameter p of a function is protected, that is, if there exists a
direct check of p or a check of the variable defining p (indirect check), the protected
counter of p (each parameter has a corresponding protected counter) is increased by 1. If
the number of call instances that perform a check on a parameter is greater than a certain
threshold, the function is recognized as a candidate of security-sensitive function.
This method mainly collects VVS from the variables of the dependency graph. It does not
take into account the variables coming from the same definition. As long as any item in
the set of variables from the same definition is protected, it means that all variables from
the set are protected.

openssl-1.1.1a\crypto\sha\sha512.c
267 unsigned char *p = c->u.p;
281 size_t n = sizeof(c->u) - c->num;
283 if (len < n)
284 memcpy(p + c->num, data, len)

Figure 3: Code snippet 1:partial code for SHA512_Update function in OpenSSL

A Security Sensitive Function Mining Approach Based on Precondition 1017

Fig. 3 shows the partial code associated with the memcpy call in the SHA512_Update
function of OpenSSL. The first parameter of memcpy is not directly protected by the
conditional statement. The parameter-related variable p and the statement c->u of line
267 have data dependencies, as found from the dependency graph, but these two
variables are not part of the VVS of conditional statement in line 283 in according to the
definition in AntMiner. However, the value data of the VVS variable n of the conditional
statement 283 depends on c->u. In this case, both n and p share the same data depending
on the same variable. In this case, the check of the relative value of the parameter is the
determining factor, not the parameter itself. Therefore, as long as a parameter and a
variable used for checking directly have data dependency relationship or they depend on
the same variable, the corresponding conditional statement should be considered as
protecting over the parameters.
The control conditions protecting the corresponding function parameters can be obtained
from control dependent edges in the program dependency graph. The data dependence of
the parameters to variables of control conditions can be obtained by the data dependence
edges in the program dependence graph. To our best knowledge, there is no direct
judging basis for the relationship of dependences on same variables for function
parameters and variables of control conditions. Based on this observation, we use a
representation of program that adds another shared data dependent edge to the program
dependency graph, which is also used in Chang et al. [Chang and Podgurski (2012)].

267

283

284

281

284-1 284-3

284： call site node for memcpy
284-1：the passing for the first parameter of memcpy
284-3：the passing for the third parameter of memcpy

Control dependence graph

Data dependence graph

Shared dependence graph
Figure 4: Enhanced system dependency graph for code snippet 1

For the two nodes a and b in the dependence graph, if both a and b use the same variable
definition of c, we call a and b have shared data dependence. Program dependency graph
is extended by adding a directed edge called shared data dependent edge between
statements defined with the same variable in the program dependence graph. The
resulting graph is called an enhanced system dependency graph (Enhanced PDG, EPDG).
In our approach we first build an EPDG for each procedure of the target program. The
nodes of EPDG are statements in the program. Three types of edges are used to construct
the graph: data dependence edges represent data dependence between statements, control
dependence edges represent control dependence between statements, and shared data
dependence edges represent shared data dependence between statements. The program is

1018 CMC, vol.63, no.2, pp.1013-1029, 2020

represented by the enhanced system dependency graph (ESDG), which is constructed by
the set of EPDGs of the various procedures by adding data dependent edges from actual
parameter nodes of caller PDG to the formal parameter nodes of callee PDG and adding
control dependence edges between the procedure call statement node of the caller PDG
and the entry statement node of the callee PDG.
As an example, Fig. 4 shows an enhanced program dependence graph for the code
example given in Fig. 3. If a parameter of a function and a variable of a conditional
statement are connected by an SDDE edge, or a data dependent edge, it means that the
parameter and the variable of the conditional statement has a data dependence or shared
data dependence relationship.

2.3 Candidate function selection
The precondition of a function refers to a set of conditional statements whose related
parameters must be satisfied before the function is called. The precondition is the judging
conditions of the relevant parameters of a function. If there are multiple calling instances
that checking the parameters of a function, we can judge that the function has
preconditions, it can be used as a candidate for the security-sensitive function. We define
the code characteristics representing the number of checks performed on a parameter as
parameter checking feature. Since a function contains multiple call instances, the
parameter checking feature of a function can be calculated by averaging the features of
each objective function. The calculation formula is shown in Eq. (1), in which the
PCFunc()f represents the parameter checking feature of function f .

1 1

1PCFunc() ()
n m

ij
i j

f C P
n = =

= ∑ ∑

(1)

where m is the number of arguments of the function. n represents the number of call
instances of the function. ijP represents the jth argument of the ith instance of the
function. ()ijC P Represented as the number of check statements for the jth argument of the
ith instance of the function.
According to this calculation method, in order to extract the parameter checking feature,
it is necessary to extract the condition statements for checking parameters of the function.
As the algorithm shown in Fig. 5, by traversing the enhanced data dependency graph, it is
possible to determine whether a variable (function parameter or return value) is checked
by the conditional statement. The input of the algorithm is the EPDG containing the
SDDE edge, along with the node of the target function in the EPDG. The
GetPreConditionOfFunc method starts with the the node of the target function and first
traverses through the control dependent edges. Starting from the node of the
corresponding parameter of the function, it collects the set of conditional statements
protecting the corresponding parameters by traversing the data dependent edge and the
shared data dependent edge in the graph. The protection counter corresponding to a
parameter is incremented by one when encountering a checking statement of the
parameter. When the protection counter exceeds the threshold, we mark the function as a
candidate security sensitive function.

A Security Sensitive Function Mining Approach Based on Precondition 1019

Procedure JudgeFuc(fEDPG, Ft)
Input: fEDPG: the enhanced SDG; Ft: node for call site of target function
Output: ParamProtected: BOOL array for recode the protection of

parameters,elements of which are initialized to false
1. ParamProtect:Array of int init to zero
2. recursively traverse fEDPG from Ft, with CDE
3. For each reached statement tStatement
4. Put the statement into the 𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑆𝑆𝑒𝑒𝑡𝑡
5. End
6. For each call instance of Ft do
7. For each argument argi of Ft do
8. recursively traverse fEDPG from argi, with DDE and SDDE and
9. For each reached statement tStatement
10. if tStatement∈conditionSet
11. then increment ParamProtect[argi] and break the traverse
12. Endif
13. End
14. End
15. End
16. For each argument argi of Ft do
17. if ParamProtect[argi]>MINIPROTECTED
18. ParamProtected [argi]=TRUE
19. Endif
20. End

Figure 5: Security sensitivity measurement algorithm
For example, through the traversing of the EPDG graph of the code snippet of Fig. 3. The
statement in line 283 is collected as the conditional statement protecting the memcpy
function in 284 line. Since there is a shared data dependence from the third parameter of
memcpy to node 283, it judged that the third parameter is protected by the conditional
statement. Since there is a direct data dependence edge from 267 to 284-1, and by
traversing the node sequence “267->281->283” through share data dependence edges, it
find that the 267 has share data dependence relationship with the conditional statement
283, so it judges that the first parameter is still protected by the conditional statement.

2.4 Precondition pattern construction
For the candidate security-sensitive functions obtained in the previous section, we extract
conditional statements for checking specific parameter of the function in each calling instance.

1020 CMC, vol.63, no.2, pp.1013-1029, 2020

Procedure BackSlice(CallGraph, A)
Input：CallGraph：call graph; A ：statement set starting for slicing
Output： S：back sliced statement set
1. Init S=∅ and =ATemp //Initialize target set and working set
2. while Temp ≠ ∅ do
3. Get and remove first stmt s from Temp

//Get and remove a node from working set
4. S :=S {s}∪
5. foreach edge t s→ in G : //for each edge from SDG end with s
3. if t S∉ then //if start node of the edge is not in slicing set
4. { }Temp:= Temp t∪ //add it to the working set
7. end if
8 end
9. end

Figure 6: Backward slicing algorithm
Firstly, starting from the candidate security-sensitive function, the backward slice is
performed in the enhanced system dependency graph. The algorithm for getting
backward slices is listed in Fig. 6, which defines a set of sliced nodes and a set of
working nodes. It first initializes the working node set to a sensitive function call
statement. Through the loop, it takes out the node elements in the working node set, adds
them to the slicing set, and get other related nodes with backtracking through edges in the
enhanced system dependency graph. If a node that is not in the slicing set is encountered,
it is added to the working node set. The loop continues until the working node set is
empty. In the sliced system dependency subgraph, the definition statement of the
parameter variable and the relevant conditional check statements are collected.
Then we attempt to get the check pattern over the parameter of the candidate security-
sensitive function as precondtion pattern through analyzing the extracted conditional
statements and judge it as a security-sensitive function if there exist at least one
precondtion pattern.
The conditional statements extracted mainly include conditional expression statements
and conditional statements with the keyword “if”, “for” or “while” as keywords.
When analyzing the conditional check pattern, the conditional statements are first
generalized to better highlight the common features. Eliminate the influence of individual
naming styles of different variables and constant. It mainly includes the following aspects:
(1) Replacing the variables relating to the corresponding parameter in the conditional
statement with the serial number of the parameter, such as the name of nth parameter is
replaced with the symbol “ARGn”;
(2) Replacing the variables associated with the input data in the conditional statement
with the symbol “SRC”;
(3) Removing the not symbol in all statements;

A Security Sensitive Function Mining Approach Based on Precondition 1021

(4) Uniformly processing of expressions including variables comparing to NULL. For
determining whether a variable var is 0, there are three forms of judgment: “if (var!=0)”,
“if (0!=var)”, “if (var))”, and they should be converted to a consistent form;
(5) For the comparison expression, the order of the left and right subexpressions of the
comparison is uniformly specified;
(6) The names of variables are replaced by the types of the variables;
(7) The relational operators are replaced by the symbol “CMP”, and the numeric and
constant values are replaced by “NUM”;
(8) Decomposing the compound conditional expression statement. For a compound statement
separated by logical symbols, the expressions are extracted, and if there is a nesting of the
logical symbol, the statement is continually splitted up to get the judgment units.

Table 2: Conditional statements normalization rules
Original conditional
statement

After normalization Description

A==B,A!=B A EQUAL B The equivalent symbol is replaced by

EQUAL, and the two sides are sorted in

alphabetical order.

A A EQUAL 0 Comparing to 0

！A A EQUAL 0 Removing the ! symbol

A<=B,A>=B,A<B,A>B A CMP B The compare symbol is replaced by “CMP”

symbol, the two sides are sorted in

alphabetical order.

=,+,-,*,/.. (Assignment and

Calculation symbols

operators)

=,+,-,*,/.. Keep the original form

Parameter of sensitive

function

ARGn “n” represents the serial number of the

parameter

Function return value FUNCNAME Replace the return value with the function

name

Non-zero numeric constant NUM Non-zero numeric constants are replaced

with “NUM” symbol

variable type name of the

variable

Replace with type name of the variable

According to these rules, the conditional statements are normalized. The processing
method is shown in Tab. 2.

1022 CMC, vol.63, no.2, pp.1013-1029, 2020

openslp-2.0.0\common\slp_compare.c
669 if (unionlist == 0 || *unionlistlen == 0 || *unionlistlen < list1len)
670 {
671 *unionlistlen = list1len + list2len + 1;
672 return -1;
673 }
676 memcpy(unionlist, list1, list1len);

unionlist == 0 *unionlistlen == 0 *unionlistlen < list1len
char * EQUAL 0 char EQUAL 0 char CMP ARG3

Figure 7: Conditional check statement normalization example

As shown in the program in Fig. 7, the conditional statements in line 669 is a conditional
statement that checks the parameters of the “memcpy” function of line 676. During the
nomalization, the conditional statement in line 669 is splitted by logical symbol to get the
logical subexpressions. The results of the extraction and normalization are shown in the
lower part of Fig. 7.
We scan the target program, to get all calling instances of the specified candidate
security-sensitive function, represented as 1 2{ , ,..., }nS S S . For each calling instance, the
enhanced system dependency graph is traversed to get all possible paths from entry node
to the calling node, the path set is 1 2{ , ,..., }sP P P P= . Then we extract the set of conditional
statements contained in all the paths, and collect the judgment expressions contained in
all the conditional statements. The expressions are nomalized according to the above
approach and aggregated to generate a conditional expression dictionary as

1 2{ , ,..., }tC c c c= .
The conditional expressions in all of the generalized conditional statements in a path are
extracted and embedded into the vector space. Here we reference the natural language
processing method, using the bag-of-words [Zhang, Jin and Zhou (2010)] model to
vectorize the sequence. For natural language, sentence is composed of multiple words.
For the conditional expression sequence, each conditional expression is referred to as
“word”, and the conditional expressions in a path is referred to as “sentence”.
According to the inclusion of the conditional expressions in the path P of elements in
C , the feature vector corresponding to the condition check mode of each path is
generated. The mapping function that vectorizes P can be expressed as:

1 if conditions in p contains c(,)= 0 else{I p c

(2)

For the target program, each path for each call instance of the security-sensitive function
corresponds to a sequence of conditional statements which is mapped to a conditional
feature vector. For the conditional feature vectors corresponding to all the conditional

A Security Sensitive Function Mining Approach Based on Precondition 1023

expression sequences in all the calling instances, the single-linkage clustering method is
used for cluster analysis. In single-linkage clustering, we need to define the distance
calculation method between vectors. In this paper, the Manhattan distance is used to obtain
the conditional clusters with similar conditions.
The number of elements of a cluster represents the significance level of the feature of the
cluster. Smaller clusters represents pattern only supported by a few call instances. The
corresponding condition expressions contained in the path cluster whose number of
supporting paths exceeds the specified threshold is taken as a typical precondition pattern
of the corresponding function. If there in no cluster whose number of paths exceeds the
threshold, the candidate function is not recognized as a security sensitive function.

3 Results and disscussion
3.1 Implementation
We implement our approach based on Joern [Yamaguchi, Wressnegger, Gascon et al.
(2013)]. Joern is an open source project for extracting and analyzing code property
graphs of C/C++ code. We use it to extract data dependent edges and control dependent
edges in code property graphs across procedures, and obtain system dependency graphs.
We improved it by adding the shared data dependence edge of the system dependency
graph to obtain an enhanced system dependency graph. On this basis, the security
sensitive function recognition based on parameter checking measurement and conditional
expression extraction and clustering operations are implemented.
In the experiment, we first select the relevant CWE (Common Weakness Enumeration)
sample code in the static analysis benchmark analysis tool published by the NIST
SAMATE for the evaluation for parameter setting of the clustering algorithm. The
samples contain a number of synthetic programs, each of which has one good and bad
program and covers various type of CWEs. Further more, among the samples
corresponding to these types of vulnerabilities, the characteristics of the conditional
checking statements are obvious and can be easily extracted for manually verifying the
correctness of the recognization of security sensittive functions in our approach.
Then four open source projects, Openslp-2.0.0, LibTIFF-4.0.10, httpd-2.4.39 and
OpenSSL-1.1.1 were used to extract the security-sensitive functions, and the
effectiveness of the method was evaluated.

3.2 Conditional expression clustering algorithm and parameter selection
Using the program static analysis benchmark analysis tool Juliet C/C++ test suite
(Version 1.2) released by the NIST SAMATE project, the parameter selection analysis
for conditional expression clustering in our approach is carried out. The test set contains a
variety of CWE vulnerability types, each of which contains a collection of test cases. In
this paper, the positive sample data of the four types of CWE models in the test data set
are selected, as displayed by Tab. 3.

1024 CMC, vol.63, no.2, pp.1013-1029, 2020

Table 3: CWE data of NIST SAMATE project used for testing

CWE ID The target project Instances Security sensitive
function

CWE252 Unchecked Return Value 630 printLine
CWE253 Incorrect Check of Function

Return Value
684 printLine

CWE78 OS_Command_Injection 8200 EXECV
EXECL

CWE15 External Control of System
or Configuration Setting

36 SetComputerNameA

The conditional expressions of the candidate security sensitive function related paths are
extracted and normalized. After the vectorizing of the expressions based on the bag-of-
words model, the results of clustering by single-linkage clustering and complete-linkage
clustering algorithm are compared. When the Manhattan distance parameter for the
clustering algorithm is set to a different value from 0 to 4, the respective false alarm rate
and false negative rate are calculated, and the performance receiver operating
characteristic curve (ROC) is obtained under two different algorithms, as shown in Fig. 8.
It can be seen that, overall, the single-linkage algorithm performs better, and when the
selected maximum distance is 2 or 3, the positive rate is already close to 100%. In
practical applications, according to different software complexity, we select the distance
for clustering with 2 or 3 for single-linkage algorithm.

Figure 8: ROC curve for different clustering algorithms for conditional statements

When comparing the different result for the two clustering algorithm, we found that in
complete linkage clustering, the checking pattern in the clustering result tend to have
more conditional expressions while the clustering set is smaller than that of single-
linkage clustering, although the latter tend to result in less conditional expressions in the
checking pattern. That is because in single-linkage clustering, the similarity of two
clusters is the similarity of their most similar members. The algorithm paid attention

A Security Sensitive Function Mining Approach Based on Precondition 1025

solely to the area where the two clusters come closest to each other. While in complete-
linkage clustering [Hubert (1974)], the similarity of two clusters is the similarity of their
most dissimilar members.
As the goal of our approach is to judge precisely whether the parameters of a function has
a fixed checking pattern, not to find the checking pattern itself. While finding the
checking pattern is the goal of the approach in Yamaguchi et al. [Yamaguchi, Maier,
Gascon et al. (2015)], which uses complete-linkage clustering to find checking pattern
with as much conditional expressions as possible.

3.3 Validation of the approach
In this section, two experiments are designed to verify the validation of the proposed
method: firstly we test the verification of candidate security sensitive function selecting
approach, then we test the effect of the conditional expression clustering for the
confirmation of candidate security sensitive functions.

3.3.1 Candidate security sensitive function extraction
For each of the four open source projects, Openslp-2.0.0, httpd-2.4.39, LibTIFF-4.0.10,
and OpenSSL-1.1.1, extract the parameter checking feature of the relevant functions.
Then sort the sensitive functions according to the value of the feature, and select the
functions with PCFunc value exceeding a specific threshold as the candidate sensitive
function. Tab. 4 shows partial of the candidate security-sensitive function and their
PCFunc values. We set the threshold as 0.5 especially.

Table 4: Partial candidate security-sensitive functions extracted from four target projects

The target project The candidate security sensitive
functions

Instances PCFunc value

Openslp memcpy 267 1.45
 SLPUnionStringList 6 0.5
 ReadFileProperties 3 1

httpd strcasecmp 786 0.98
 dav_lookup_uri 4 0.75

LibTIFF _TIFFmemcpy 120 0.85
 _TIFFmemcmp 4 0.5

OpenSSL EVP_PKEY_copy_parameters 15 0.8
 OPENSSL_strlcpy 32 0.87

We can find that the PCFunc value of memcpy in Openslp is more than 1.45. The reason is
that more than one parameter is protected by conditional expressions in most calling instances.

1026 CMC, vol.63, no.2, pp.1013-1029, 2020

3.3.2 Validation analysis
In order to verify the validation of the approach, from each of the four target programs,
we select one target module for analyzing. As shown in Tab. 5. In total 28 security-
sensitive functions are manually selected as the positive samples, while 28 ordinary
functions are selected as negative samples.

Table 5: Modules of target project used for validation analysis of the proposed approach

Project name Module Relative path of the module
Httpd-2.4.39 moddav httpd-2.4.39\modules\dav
openslp-2.0.0 libslp openslp-2.0.0\libslp
LibTIFF-4.0.10 tiff2pdf tiff-4.0.10\tools
OpenSSL-1.1.1 timestamp openssl-1.1.1\crypto\ts

The indicators for evaluating the approaches is as shown in Tab. 6. True Positive (TP) and
True Negative (TN) belong to the correct classification of samples, and False Positive (FP)
and False Negative (FN) belong to the case where the samples are misclassified.

Table 6: Evaluation indicators of the proposed approach

 Test results

Actual results

Positive Negative Total

Positive TP FN TP+FN
Negative FP TN FP+TN
Total TP+FP FN+TN TP+TN+FP+FN

The true positive rate (TPR) is the ratio of the number of positive samples found to the
total number of positive samples, also called the recall rate. The negative positive rate
(FPR) is the ratio of the number of negative samples that are falsely reported as positive
samples to the number of negative samples. The calculation formula is:

TP FPTPR FPR
TP FN FP TN

= =
+ +

， (3)

The analysis results are as shown by Fig. 9. It can be seen that, overall, the approach
proposed is superior to the AntMiner approach in terms of TPR and FPR indicators. We
can see that in our approach, the testing result for LibTIFF both have lower TPR and
higer FPR. In deeply analysis of the reasons we found that too much error processing
functions are recognized as security sensitive functions in LibTIFF, which leads to higer
FPR. We also found that several positive samples were even not selected as candidate
security sensitive functions. As the parameters were security checked not by simply
conditional expressions but by specified functions in LibTIFF, and in our approach we
didn’t considered the specific functions for checking conditions. This is closely related to
the characteristics of the target project.
By comparing the extracting result of our approach and the AntMiner approach, we

A Security Sensitive Function Mining Approach Based on Precondition 1027

analyzed the reason for the lower FPR and higher TPR. The lower FPR comes from that
our approach has filtered the randomly judging operations by clustering the nomalized
conditional expressions and relys on the existing of fixed checking pattern to recognize
the function as a security sensitive function. The higher TPR comes from that the
proposed approach used the shared data dependency relationship for extracting the VVS,
and extracted the conditional expressions including variables having shared data
dependency relationship with the parameter of the function under test. Which were
omitted by the AntMiner approach.

Figure 9: Comparison of the proposed approach and the AntMiner approach (a) the
proposed approach (b) the AntMiner approach

4 Conclusions
This paper proposes a security sensitive function mining approach based on precondition
analysis. We propose an algorithm for extracting and conducting statistical analysis of the
conditional statements protecting function parameters to obtain condidate security
sensitive functions. We constructed the enhanced system dependency graph containing
the shared data dependent edges for extracting the protecting conditional statements to
reduce the false negative rate. Then we proposed a precondition pattern mining method
based on condition statements nomalizing and clustering. In the end, functions with fixed
parameter checking pattern are regarded as security-sensitive functions. The experimental
results on four popular open source code bases of different scales show that the method
proposed is effective in reducing the false positives and false negatives for detecting
security sensitive functions.
For the testing of some target projects, higer false positive rate and lower true positive
rate were caused by the fact that the check conditions were hidden in a special function
and the error handling functions is regarded as a security sensitive function. The future
work is to improve the approach by identifying and processing the specific checking
functions and the error handling functions.

Acknowledgement: This work was supported by the National Key R&D Program of China
(Grant No. 2016QY07X1404), the Zhejiang Provincial Natural Science Foundation of

1028 CMC, vol.63, no.2, pp.1013-1029, 2020

China (Grant No. LY19E050012), the Humanities and Social Sciences project of the
Ministry of Education of China (Grant No. 19YJCZH005).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Bian, P.; Liang, B.; Zhang, Y.; Yang, C.; Shi, W. et al. (2018): Detecting bugs by
discovering expectations and their violations. IEEE Transactions on Software
Engineering, vol. 45, no. 10, pp. 984-1001.
Chang, R. Y.; Podgurski, A. (2012): Discovering programming rules and violations by
mining interprocedural dependences. Journal of Software: Evolution and Process, vol. 24,
no. 1, pp. 51-66.
Chang, R. Y.; Podgurski, A.; Yang, J. (2008): Discovering neglected conditions in
software by mining dependence graphs. IEEE Transactions on Software Engineering, vol.
34, no. 5, pp. 579-596.
Chen, L.; Yang, C.; Liu, F.; Gong, D.; Ding, S. (2018): Automatic mining of security-
sensitive functions from source code. Computers, Materials & Continua, vol. 56, no. 2,
pp. 199-210.
Chen, L.; Yang, C.; Liu, F.; Gong, D.; Ding, S. (2019): A security-sensitive function
mining framework for source code. Proceedings of International Conference on Artificial
Intelligence and Security, pp. 421-432.
Damaschke, P. (1990): Induced subraph isomorphism for cographs is NP-complete.
Proceedings of International Workshop on Graph-Theoretic Concepts in Computer
Science, pp. 72-78.
Dyer, R.; Nguyen, H. A.; Rajan, H.; Nguyen, T. N. (2013): Boa: a language and
infrastructure for analyzing ultra-large-scale software repositories. Proceedings of
International Conference on Software Engineering, pp. 422-431.
Grahne, G.; Zhu, J. (2003): Efficiently using prefix-trees in mining frequent itemsets.
Proceeding of IEEE ICDM Workshop on Frequent Itemset Mining Implementations, pp.
123-132.
Grahne, G.; Zhu, J. (2003): High performance mining of maximal frequent itemsets.
Proceedings of the 6th SIAM International Workshop on High Performance Data Mining,
pp. 135-143.
Hubert, L. (1974): Approximate evaluation techniques for the single-link and complete-
link hierarchical clustering procedures. Journal of the American Statistical Association,
vol. 69, no. 347, pp. 698-704.
Jourdan, G. V. (2009): Securing large applications against command injections. IEEE
Aerospace and Electronic Systems Magazine, vol. 24, no. 6, pp. 15-24.
Kang, Y.; Ray, B.; Jana, S. (2016): APEX: automated inference of error specifications
for c apis. Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, pp. 472-482.

A Security Sensitive Function Mining Approach Based on Precondition 1029

Li, Z.; Zhou, Y. (2005): PR-Miner: automatically extracting implicit programming rules
and detecting violations in large software code. Proceedings of the 10th European
Software Engineering Conference and the 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 306-315.
Liang, B.; Bian, P.; Zhang, Y. (2016): AntMiner: mining more bugs by reducing noise
interference. Proceedings of the 38th International Conference on Software Engineering,
pp. 333-344.
Nguyen, H. A.; Dyer, R.; Nguyen, T. N.; Rajan, H. (2015): Consensus-based mining of
API preconditions in big code. Proceedings of the 2015 ACM International Conference
on Systems, Programming, Languages and Applications: Software for Humanity, pp. 5-6.
Ramanathan, M. K.; Grama, A.; Jagannathan, S. (2007): Static specification
inference using predicate mining. Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 123-134.
Shastry, B.; Maggi, F.; Yamaguchi, F.; Konrad, R.; Seifert, J. P. (2017): Static
exploration of taint-style vulnerabilities found by fuzzing. Proceedings of the 11th
USENIX Workshop on Offensive Technologies, arXiv:1706.00206.
Yamaguchi, F.; Golde, N.; Arp, D.; Rieck, K. (2014): Modeling and discovering
vulnerabilities with code property graphs. Proceedings of IEEE Symposium on Security
and Privacy, pp. 590-604.
Yamaguchi, F.; Maier, A.; Gascon, H.; Rieck, K. (2015): Automatic inference of
search patterns for taint-style vulnerabilities. Proceedings of IEEE Symposium on
Security and Privacy, pp. 797-812.
Yamaguchi, F.; Wressnegger, C.; Gascon, H.; Rieck, K. (2013): Chucky: exposing
missing checks in source code for vulnerability discovery. Proceedings of ACM SIGSAC
Conference on Computer & Communications security, pp. 499-510.
Zhang, Y.; Jin, R.; Zhou, Z. H. (2010): Understanding bag-of-words model: a statistical
framework. International Journal of Machine Learning and Cybernetics, vol. 1, no. 1-4,
pp. 43-52.

	A Security Sensitive Function Mining Approach Based on Precondition Pattern Analysis
	Zhongxu Yin0F , *, Yiran Song2, Huiqin Chen3 and Yan Cao4

	1 Introduction
	2 Proposed method
	2.1 Overview
	2.2 Code processing
	2.3 Candidate function selection
	2.4 Precondition pattern construction

	3 Results and disscussion
	3.1 Implementation
	3.2 Conditional expression clustering algorithm and parameter selection
	3.3 Validation of the approach
	3.3.1 Candidate security sensitive function extraction
	3.3.2 Validation analysis

	4 Conclusions
	References

