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Abstract: The aim of this study is to develop a model of fluid and heat transfer in a 
biological tissue taking into account the exact structure of the related microvascular 
network, and to analyze the influence of structural changes of such a network induced by 
diabetes. A cubic region representing local skin tissue is selected as the computational 
domain, which in turn includes two intravascular and extravascular sub-domains. To save 
computational resources, the capillary network is reduced to a 1D pipeline model and 
embedded into the extravascular region. On the basis of the immersed boundary method 
(IBM) strategy, fluid and heat fluxes across a capillary wall are distributed to the 
surrounding tissue nodes by a delta function. We consider both steady and periodic blood 
pressure conditions at the entrances of the capillary network. Under steady blood pressure 
conditions, both the interstitial fluid pressure and tissue temperature around the capillary 
network are larger than those in other places. When the periodic blood pressure condition 
is considered, tissue temperature tends to fluctuate with the same frequency of the 
forcing, but the related waveform displays a smaller amplitude and a certain time (phase) 
delay. When the connectivity of capillary network is diminished, the capacity of blood 
redistribution through the capillary network becomes weaker and a subset of the vessel 
branches lose blood flow, which further aggravates the amplitude attenuation and time 
delay of the skin temperature fluctuation. 
 
Keywords: Bioheat transfer, porous media, immersed boundary method, diabetes, 
microvascular dysfunction, skin temperature fluctuation. 

1 Introduction 
Many diseases, including diabetes and hypertension, are accompanied with microangiopathy. 
Hemodynamic changes of subcutaneous microcirculation can be reflected in the variations 
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of skin temperature, thus monitoring subcutaneous blood flow is possible via thermal 
methods. Indirect blood flow detection by thermal method can be categorized into two 
subclasses: the method based on the information of absolute skin temperature and that based 
on the fluctuation characteristics of skin temperature. Compared with the former, thermal 
fluctuation method can provide more targeted information for functional monitoring of 
microcirculation since it is not easy to be affected by the environmental factors. 
Recently, high attentions have been paid to the study of spontaneous fluctuations of 
microvessels. Bracic et al. [Bracic and Stefanovska (1998)] found through experimental 
analysis that the spontaneous fluctuations of microvessels were related to the following 
activities: cardiac, respiratory, myogenic, neurogenic and endothelial regulations, which 
have distinct regulating periods. Meanwhile, skin temperature fluctuations have been 
proved to correlate with vascular tone regulations [Sagaidachnyi, Skripal, Fomin et al. 
(2014)] and can be a tracer of the status of subcutaneous blood flow [Frick, Mizeva and 
Podtaev (2015)]. A spectral filtering approach [Sagaidachnyi, Fomin and Usanov (2017)] 
has been developed to use thermal imaging as a tool for the evaluation of peripheral 
haemodynamics. In recent decades thermal fluctuation method has been gradually 
applied to clinical studies. For example, it is reported that skin temperature fluctuation 
amplitudes become much smaller in contralateral cooling [Smirnova, Podtaev, Mizeva et 
al. (2013)] and local heating [Parshakov, Zubareva, Podtaev et al. (2017)] tests, 
indicating endothelium-dependent vasodilation dysfunctions in diabetes. 
However, the reasons for the weakening fluctuation characteristics of skin temperature in 
diabetes as mentioned above are still not very clear. According to the theory of thermal 
wave propagation, it is known that fluctuation amplitude attenuates and phase shift 
increases with the increasing of the propagation length. In addition, fluctuation frequency 
and tissue thermal conductivity also have influence on thermal wave propagation [Tang, 
Mizeva and He (2016)]. Thermo-fluid modeling may contribute to the analysis of the 
relationship between microangiopathy and the variation of skin temperature fluctuation. 
In 1948, Pennes [Pennes (1948)] proposed the bioheat transfer equation (BHTE) 
according to the measured temperatures of tissue and blood at the forearm, which has 
proven to be a key underlying basis for modeling heat transport in biological tissue. In 
BHTE, it is assumed that microvessels are uniformly distributed in biological tissue, and 
complete heat exchange occurs between blood and the surrounding tissue. The blood acts 
as a heat source or sink. As blood leaves the capillary bed, it has become complete 
thermal equilibration with the surrounding tissue and enters the venous circulation at this 
temperature. Despite the extensive use of BHTE in the computation of regional organ’s 
or whole body’s temperature, it cannot describe accurately the heat transfer phenomenon 
of local tissue in a small scale with a real structure of vessel network in tissue. Thus, in 
modeling human thermo-regulation [Dang, Xue, Zhang et al. (2018), Tang, He, Shao et 
al. (2016), Salloum, Ghaddar and Ghalior (2007)] or the effect of hyperthermia induced 
by heating magnetic nanoparticles [Astefanoaei, Dumitru and Stancu (2014)], heat 
transfer inside larger vessels and tissue are frequently taken into account separately. 
Local blood temperatures are obtained from the computation of fluid dynamics and are 
assigned as the boundary conditions in using BHTE.  
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After the BHTE was proposed, some revised models were successively developed in 
recent decades, such as Wulff [Wulff (1974)], Klinger [Klinger (1974)] and Weinbaum et 
al. [Jiji, Weinbaum and Lemons (1984)]’s model. However, the complexities of these 
models limit their further development and wider applications. An alternative approach is 
to regard biological tissue as a porous media, and to analyze the tissue heat transfer 
characteristics by porous medium theory. This approach needs less parameters in the 
process of modeling compared with other heat transfer models, which are adopted in the 
models of Xuan et al. [Xuan and Roetzel (1997)], Yuan et al. [Yuan, Yang and Liu 
(2014)], and Nakayama et al. [Nakayama  and Kuwahara (2008)]. 
Multiscale modeling method is frequently applied in simulations of hemodynamics, 
where blood flow in the capillary network is assumed as 1D flow since the 3D feature of 
the blood flow inside capillaries is not remarkable. A lot of work about multiscale 
modeling for microcirculation and interstitial flow in solid tumor can be found 
[Pozrikidis (2010), Cattaneo and Zunino (2014), Shipley and Chapman (2010)]. In 
coupling the interplay between blood flow and interstitial fluid flow, immersed boundary 
method (IBM) is commonly used. IBM was originally developed for analyzing cardiac 
hemodynamics by Peskin [Peskin (1972)]. Since it is much simpler in handling the 
complex and moving geometries and with good parallelism, nowadays it has been widely 
applied in solving problems of fluid-structure interactions with moving boundaries. 
Particularly, the coupling of IBM with lattice Boltzmann method has been proved to be 
high efficiency with much stability in the simulation of moving boundary problems, such 
as insect hovering motion [Gao and Lu (2008)], fish swimming [Tian, Luo, Zhu et al. 
(2011)], particle sorting in a determined lateral displacement device [Wei, Song, Shen et 
al. (2015)] and the motion and deformation of red blood cell [Hassanzadeh, 
Pourmahmoud and Dadvand (2017), Ghafouri1 and Hassanzadeh (2017)]. Recently, an 
improved IB-LBM method was presented by including cubic spline interpolation to give 
a smoother shape of red blood cell for every step of coupling [Hassanzadeh, 
Pourmahmoud and Dadvand (2019)]. Liu et al. [Liu, Kim and Tang (2007)] developed 
immersed finite element method (IFEM) by extending IB method, where the fluid spans 
over the entire computational domain with an Eulerian mesh and a Lagrangian solid mesh 
is generated on the top of the Eulerian fluid mesh. The advantage of this method is the 
solid part can be considered as a continuum rather than an immersed boundary layer.  
IBM is not only applied in solving the moving boundary problems but also in mass 
transport problems. The vasomotion of arteriolar wall induced by myogenic response can 
be well modeled by using IB [Arthurs, Moore, Peskin et al. (1998)]. Wei et al. [Wei, Mu 
and Tang (2019)] successfully simulated the influence of red blood cell on nitric oxide 
distribution in a microvessel using immersed boundary method. Cattaneo et al. [Cattaneo 
and Zunino (2014)] developed a computational model for fluid exchange between 
microcirculation and tissue interstitium, where the capillaries and interstitial volume were 
described as two independent structure and IBM was adopted to couple the 1D flow 
through the network and 3D flow through the interstitial volume. To the best of the 
authors’ knowledge, this kind of modeling strategy hasn’t been applied in solving heat 
transfer problems in complex structures. 
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In this paper, the objectives of this study are to develop a model of fluid and heat transfer 
in biological tissue containing exact microvascular network structure, and to analyze the 
influence of structural changes of the network in diabetes on flow and heat transfer. The 
interplay between blood flow in capillary network and interstitial volume was considered 
by using IBM. Tissue temperature distribution and fluctuation characteristics caused by 
subcutaneous blood flow were investigated; then the influence of structural alterations of 
microvasculature on thermal wave propagation was further analyzed. 

 
(a)                                       (b) 

 
(c) 

Figure 1: Geometrical model for the (a) 3D capillary network, (b) 1D capillary network 
indexed by numbers, and (c) 3D tissue with the capillary network 

2 Methods 
2.1 Geometrical modeling of capillary network and the surrounding tissue 
A capillary network [Secomb (1993)] derived from rat’s subcutaneous tissue was used in 
our study. As shown in Fig. 1(a), the network consists of 28 capillary branches, including 
five entrance branches and four exit branches. To reduce computational costs, we simplified 
the network to a 1D model, then embedded it into a cubic tissue region, as shown in Figs. 
1(b) and (c). The 1D model of blood flow refers that the blood flow in each single vessel is 
governed by Poiseuille equation and the flow at the bifurcation satisfies the continuity 
condition. By combining the Poiseuille equation and boundary conditions at the bifurcation 
points, the pressure within the whole capillary network can be solved. The tissue is with the 
size of 370×250×200 μm, of which every capillary element has its own diameter, length 
and three-dimensional space coordinates. Most of the branches are located in the mid-plane 
of the tissue region except one branch with 3D coordinates.   
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2.2 Mathematical modeling for flow and heat transfer 
In using Pennes equation to deal with bioheat transfer problem, blood perfusion is the 
most important parameter to be determined. However, when microvasculature is altered, 
it will not be easy to determine the value definitely. Thus, fluid and heat transfer in 
biological tissue containing the structure of microvascular network may be an alternative 
which can give the influence of blood flow with different vasculature. In the modeling 
work, the most innovative point is using IBM to couple heat transfer in blood and fluid 
flow in different domains. Then the flow in the capillary network and interstitial tissue 
can be considered respectively. In capillaries, blood flow can be described as laminar 
stationary flow of incompressible viscous fluid through a cylindrical tube. According to 
Poiseuille’s law, blood flow rate can be computed by: 

2
b

b 8
PR
sµ

∂
= −

∂
u λ

  
                                                                                                                  (1) 

where bu  is blood flow rate, bP  is blood pressure, µ  is blood dynamic viscosity, R  is 
capillary radius. λ is the orientation of a branch in the capillary network. The interstitial 
tissue region can be treated as isotropic porous medium with interstitial fluid and solid 
tissue, so the fluid flow and heat transfer phenomenon can be described by porous medium 
theory. According to Darcy’s law, interstitial fluid seepage velocity can be computed by: 

t t
k P
µ

= − ∇u                                                                                                                      (2) 

where tu  is interstitial fluid flow rate, tP  is interstitial fluid pressure, k  is fluid 
permeability, and µ is dynamic viscosity of the interstitial fluid. If interstitial fluid and 
tissue cells reach a thermal equilibrium, the coupled energy equation can be written as: 

2t
t f t t t t t( ) ( )

T
c c T T Q

t
ρ ρ λ

∂
+ ⋅∇ = ∇ +

∂
u   (3) 

where (ρc)t, λt and Qt are overall heat capacity per unit volume, overall thermal 
conductivity, and overall heat production per unit volume of the porous medium 
composed of fluid and solid tissue. They have the formulas as: 
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The subscripts ,f s represent interstitial fluid and tissue cells, respectively. ε is the porosity 
of the tissue with the value of 0.3. Tt  denotes the temperature of the porous tissue. 
The fluid flow and heat transfer model must be complemented with appropriate boundary 
conditions. In our work, blood pressures at the entrance and exit of the network were 
given as follows: 

b entrance b,in b exit b,out,P = P P = P      (5) 
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At the skin surface, normal gradient of blood pressure was set to be 0. At the other 
boundaries connected to the inner tissue, Robin-type boundary conditions were given. In 
these cases, the boundary conditions can be summarized as: 

t t
0,250 μ m f t 0 0,370 μ m f t 0

t t
0 f t 0 200 μ m

( ), ( )

( ), 0

x y

z z

P Pk kP P P P
x y
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z z
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β
µ µ

= =

= =
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− = − − = −

∂ ∂
∂ ∂

− = − − =
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                                              (6) 

where 0P  is far field pressure, fβ  is the effective permeability with respect to fluid 
transport. Regarding the temperature boundary conditions, convection and radiation 
occurred at the skin surface. At the other boundaries connected to the inner tissue, 
adiabatic boundary conditions were given as: 

t t
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0 0
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                                                                                (7) 

where c,rh  is the sum of convective and radiative and heat transfer coefficient. When the air 
velocity is less than 0.15 m/s, the convective heat transfer coefficient is 4 W/m2K. At room 
temperature, the radiative heat transfer coefficient is almost constant and equals to 4.7 
W/m2K. Since some part of fluid is across the capillary wall while blood flows through the 
capillary network, the blood plays as the heat source of the tissue as well. The heat flux 
from the blood to the surrounding tissue is determined by immersed boundary method.   

2.3 Coupling of the two subdomains 
When there is no fluid exchange occurring in capillary wall, the mass conservation 
equations for blood in capillary network and interstitial fluid can be written as: 

( )
b

LF
t P t L

0

0L P P

∇ ⋅ =

∇ ⋅ + − =

u

u
                                                                                            (8) 

where ( )LF
P t LL P P−  represents lymphatic drainage, LF

pL is the effective coefficient of 
hydraulic conductivity of lymphatic wall, tP  is interstitial fluid pressure, and LP  is 
lymphatic fluid pressure, whose values were referred to the reference Cattaneo et al. 
[Cattaneo and Zunino (2014)]. It has been demonstrated that lymphatic drainage plays an 
important role in maintaining interstitial fluid pressure [Shipley and Chapman (2010)]. 
When lymphatic drainage is absent, excessive fluid in the interstitium may be only 
discharged though fluid exchange with exterior, which may cause tissue edema more 
easily. In fact, capillary walls are semi-permeable to blood. Fluid flux per unit surface 
across capillary wall can be computed by using Starling’s law of filtration: 

f p b t( )J L P P= −                                                                                                                 (9) 
where fJ  is fluid flux, pL  is the permeability of capillary wall to fluid, which is set to 
1.0E-12 m2s/kg. Heat exchange occurs between blood and interstitial tissue when blood 
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plasma permeates across the capillary wall. We assumed a complete thermal exchange 
occurred between them, and heat flux per unit surface across capillary wall can be 
computed by using fJ : 

( )heat f f f b t=J c J T Tρ −                                                                                                        (10) 
The 1D network can be regarded as a concentrated source immersed into interstitial tissue, 
thus fluid and heat flux per unit length along the circumference of capillary walls can be 
obtained by the following integral formulas: 

2 2

f f heat heat0 0
, =f J Rd f J Rd

π π
θ θ= ∫ ∫                                                                                (11) 

For simplification of computing, the interstitial fluid pressures and tissue temperatures 
were averaged around the targeted capillary node, and the fluid and heat flux can be 
approximated as: 

f f p b t heat heat f f f b t2 2 ( ), 2 2 ( )f RJ RL P P f RJ R c f T Tπ π π π ρ
−

≈ = − ≈ = −                   (12) 
The spatial dimensions of the two sub-domains for the capillary network and interstitial 
tissue are not naturally matched since the space coordinates of the capillary network is 
complex. We applied IBM to couple the two sub-domains in the computation. In dealing 
with the problems of fluid-structure interaction, the interpolated bounce back (BB) 
scheme and immersed boundary method are frequently employed. The concept of BB is 
to compute the particle distribution function in an off-grid position by an interpolation 
function from the on-grid nodes, which has Eulerian nature [Mei, Yu, Shyy et al. (2002)]. 
Although it is with second-order accurate, it is not easy to be implemented, especially for 
a complex geometry. On the other hand, the immersed boundary method is simpler by 
using a delta function to couple the Lagrangian solid boundary with the fluid mesh. The 
numerical tests have proved that the IB method is more stable than the BB scheme [Rosis, 
Ubertini and Ubertini (2014)], In treating a fixed-boundary problem, there’s no 
significant difference between BB and IB method and BB may be computational cheaper 
than IB. Considering the simplicity and the advantage in stability, IB method was 
employed in the work.  

      
(a)                                                 (b) 

Figure 2: (a) Discretization strategy for the 3D model; (b) The coupling strategy between 
the vessel and the tissue nodes 
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First, two sets of separate grids were generated to discretize the two subdomains, as 
shown in Fig. 2(a); Then, fluid and heat flux were smoothly distributed to the adjacent 
tissue nodes using an approximate delta function: 

( ) ( ) ( ) ( ) ( ) ( )f t t b f b heat t t b heat b
b b

, =F D f s F D f s= − ∆ − ∆∑ ∑x x x x x x x x                                   (13) 

where the approximate delta function ( )D x can generally be written as: 

( ) 3

1
= ( ) ( ) ( )

x y z
D

h h hh
Ψ Ψ Ψ

∆ ∆ ∆∆
x                                                                                             (14) 

Here ∆h is the grid size for the tissue domain. The selection of approximate delta function 
is of importance in IBM, which is related to the numerical accuracy and efficiency. For 
comparison, different interpolation kernels were tested, which are written as the 
following forms: 
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                                    (15) 

The graph of the delta function Ψ1 in 2D domain is shown in Fig. 3(a). Meanwhile the 
comparison of Ψ1 and Ψ2 is given in Fig. 3(b) in 1D domain. It is seen that the profiles of 
the two functions are almost overlapped. Hence, in the simulation, the classical and 
widely used scheme of Ψ1(r) was adopted. In addition, the ratio between the solid and 
fluid mesh size is crucial for the simulation. A too large one between Eulerian and 
Lagrangian mesh resolution may cause fluid leakage through the membrane, whereas a 
too small value may cause numerical “stick” [Krüger (2012)]. It is suggested that the 
value be smaller than 1/2 [Peskin (2002)] in order to avoid fluid leakage problem. 
Therefore, the ratio of the two mesh size is set to 1/2. 
With considering fluid and heat exchange across capillary wall and lymphatic drainage, 
the mass conservation and energy equations are finally written as: 

( )
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(16) 

An in-house FORTRAN program was developed to numerically solve the model by finite 
difference method (FDM). The steady blood flow field in the capillary network was 
solved first. Subsequently, the fluid and heat flux across the vessel walls were computed 
according to Eq. (12). Thus, the fluid and heat flux in the surrounding porous tissue nodes 
may be evaluated by using delta function. After the interstitial fluid velocity and heat 
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source transported from blood were determined, the tissue temperatures were finally 
computed according to the energy equation in Eq. (16). 

  
(a)                                                                 (b) 

Figure 3: (a) The Dirac delta function in 2D domain; (b) the comparison of the two kind 
of delta functions in 1D domain 

 

   (a)                                                              (b) 

Figure 4: (a) Comparison of pressures in the network computed by Kirchhoff law and the 
numerical method; (b) Computed pressure variations under different permeability 

3. Results 
3.1 Steady-state distributions of interstitial fluid flow and temperature fields 
As the validation, we calculated blood pressure distribution in the network under the 
condition that capillary walls were non-permeable to blood, i.e., the permeability of 
capillary wall to fluid was set to 0. In this case, the capillary network is analogous to an 
electric circuit composed of series parallel-resistance elements, the exact solution of 
which can be obtained using Kirchhoff laws. According to the flow at the capillary level, 
the inlet pressure was set to 35 mmHg and the outlet pressure was set to 33.75 mmHg 
respectively. Pressures of branching nodes are plotted in Fig. 4(a), and we can see the 
simulated results by our model are almost the same as the exact solution. Furthermore, 
we tested the influence of wall permeability on blood pressure distribution along the 
capillary network. Three values of Lp were adopted with the same inlet and outlet 
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pressure. As shown in Fig. 4(b), the pressures of internal nodes are decreased with the 
increasing of Lp, which make sense since transmembrane transport of fluid leads to the 
reduce of fluid mass and pressure decreasing inside the capillaries. 
After the validation, the steady-state distributions of interstitial fluid flow and temperature 
fields were obtained as shown in Fig. 5. It is seen that in the mid-plane of the tissue region, 
the interstitial fluid pressure, seepage velocity and tissue temperature decrease with the 
increasing of the distance from the capillary network. Around the capillary network, the 
seepage velocity vectors are almost perpendicular to the axis of each capillary branch. 
Although temperature difference exists between capillaries and the surrounding tissue, there 
is no significant distinction for the tissue temperature in the area far away from the capillaries.  

 
     (a)                                                                 (b)   

 
(c) 

Figure 5: Steady-state distributions of interstitial fluid flow and temperature fields: (a) 
Interstitial pressure field; (b) Seepage velocity vector field; (c) Tissue temperature field  

Table 1: Temperature fluctuation characteristics at different tissue nodes 

Node Fluctuation amplitude (∆T ), °C Time delay (∆t ), s 
X1 0.0031 4.5 
X3 0.0026 6.9 
X2 0.0019 7.2 
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(a)                                                 (b) 

Figure 6: The influence of pulsatile blood pressure on tissue temperature field (a) tissue 
temperature distribution in the 3D domain; (b) Variations of inlet blood flow pressure and 
temperatures at the three indexed points 

3.2 The influence of pulsatile blood pressure on tissue temperature field 
To simulate thermal wave propagation phenomenon in tissue, pulsatile inlet pressure was 
set at the five entrances of the capillary network, as drawn with a red line in Fig. 6(b). In 
accordance with the characteristics of endothelial regulation, the pressure pulsatile period 
was set as 50 s, and the pressure pulsatile amplitude was adjusted to create temperature 
fluctuation amplitude in the order of 10-3oC. Fixed pressure condition was still set at the 
four exits of the capillary network, whose values are 33.75 mmHg. To compare 
temperature fluctuations at different positions, three nodes (X1, X2 and X3) were 
extracted and their temperature variation curves were drawn in Fig. 6(b). The fluctuation 
characteristics, including fluctuation amplitude and time delay relative to the inlet blood 
pressure are listed in Tab. 1, it is found that the temperature fluctuation amplitude is 
attenuated ( 1 3 2T T T∆ > ∆ > ∆ ) and the time delay is increased ( 1 3 2t t t∆ < ∆ < ∆ ) as the thermal 
wave propagated in the tissue, which exactly correlate with the distance from the three 
nodes to the nearest capillary branch ( 1 3 2d d d< < ).  

 

3.3 The influence of the connectivity of capillary network on thermal wave propagation 
It was observed that capillary density was diminished in diabetic microcirculation, and 
capillaries with micro size even shrink away, which changes the connectivity of a 
capillary network [Benedict, Coffin, Barrett et al. (2011)]. The capacity of blood 
redistribution may be altered when the connectivity of capillary network is impaired. To 
investigate the influence of capillary connectivity on blood redistribution and thermal 
wave propagation in tissue, a capillary network with impaired connectivity was 
constructed artificially, where four cross-connecting branches (capillary Nos. 6, 9, 10, 13) 
were eliminated from the normal case. Compared with other capillaries, the lengths of 
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these four branches are relatively short and the axial directions are generally 
perpendicular to the flow directions. Thus, they may act as the role of cross-connecting. 
Meanwhile, the four entrances (capillary Nos. 12, 17, 18, 24) were obstructed, and the 
periodical pulsatile pressure was set only at one entrance (capillary No. 23) to study if the 
network can redistribute blood evenly or not. Fig 7(a) gives the normal capillary network 
with 4 occluded inlets and Fig. 7(c) is the capillary network with impaired cross-
connecting branches at the condition with 4 inlets occluded. 
From the distributed blood flow shown in Figs. 7(b) and (d), we found that the capillary 
network with impaired connectivity was more sensitive to the entrance obstruction 
conditions. In other words, the capacity of blood redistribution through the capillary 
network with impaired connectivity becomes weaker. It is seen that when four entrances 
are obstructed, more than half of the capillary branches lose blood flow, which are 
expressed in black dotted lines in Fig. 7(d). 
Meanwhile, as seen in Fig. 7(d), the tissue temperatures near the occluded entrances are 
distinctly lower than those in other region, implying that the network with impaired 
connectivity leads to much lower tissue temperatures. The temperatures of the two nodes 
at the skin surface (X2 and X3) for the two cases were extracted and are listed in Tab. 2. 
It is seen that the fluctuation amplitudes of temperature at X2 and X3 are 0.0014 and 
0.0018oC respectively for the normal network and further decrease to be 0.0010 and 
0.0011oC for the impaired one when the four entrances are occluded. The time delays of 
the temperature at the two points are larger for the impaired one. The results indicate that 
amplitude attenuation and time delay of the temperature fluctuation become more serious 
for the capillary network with the impaired connectivity. Smirnova et al. [Smirnova, 
Podtaev, Mizeva et al. (2013)] carried out an experiment to measure fingertip temperature 
variation during a cold pressor test and performed wavelet analyses for the temperature 
oscillation. It was found that the response to the cold pressor test in patients with type 2 
diabetes and with impaired glucose tolerance differs essentially from that of healthy 
subjects in the endothelial frequency range. Our simulated results give clear reasons for 
causing the weaker temperature oscillation and larger phase delay. 

Table 2: Temperature fluctuation characteristics at different tissue nodes after entrance 
obstruction 

Node Fluctuation amplitude 
( ∆T ), oC 

Time delay ( ∆t ), s 

X2 (Normal network) 0.0014 7.5 
X2 (Network with impaired connectivity) 0.0010 8.4 
X3 (Normal network) 0.0018 7.2 
X3 (Network with impaired connectivity) 0.0011 8.4 
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(a)                                            (b) 

 
(c)                                           (d) 

Figure 7: Temperature distributions for different vascular structures at the condition of 
the entrance obstruction. (a) Normal network structure with 4 occluded inlets; (b) 
Temperature distribution at the plane with the normal capillary network; (c) Impaired 
capillary network with 4 occluded inlets; (d) Temperature distribution at the plane with 
impaired capillary network 

4. Conclusions 
In this paper, a model of fluid flow and heat transfer in biological tissue containing the 
exact microvascular network structure was developed. The capillary network was 
simplified as a 1D pipeline model and embedded into the extravascular region, which can 
contribute to the reduction of computational costs by multi-scale modeling of the two 
sub-domains. The interplay of fluid transport and heat exchange between the capillary 
network and interstitial tissue was described by IBM. According to the concept of IBM, 
fluid and heat flux across the capillary wall were distributed to the surrounding tissue 
nodes by delta function. 
Using this model, we simulated thermal wave propagation in tissue. Amplitude 
attenuation and time delay of temperature fluctuation were found as they propagated. 
When the perfusions of some capillary branches are lost under the entrance obstruction 
conditions, skin temperature fluctuations become weaker, especially for the capillary 
network with impaired connectivity. The findings provide insights into how to use 
temperature oscillation for evaluation of microcirculation function. 
Currently the computation is limited within a highly small region, but it can be easily 
extended to a larger scale. Meanwhile, the capillary network with impaired connectivity 
was made artificially. Another work by Wang et al. [Wang, Tang and He (2019)] has 
confirmed that some branches may be lack of red blood cells when the rheological 
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behaviors of RBCs are changed. By using the real geometry of microvessel network for a 
diabetic rat in the model, the relationship between skin temperature and blood flow at 
diabetic condition will be clearer. 
This study shows that IBM can be extended into solving heat transfer problems of 
biological tissue with complex microvascular network. Although complete 3D modeling 
for heat transfer in microcirculation is feasible by using an excellent commercial 
software, the embedded multiscale modeling strategy exhibits a rather general and 
flexible framework to address the influence of blood flow on heat transfer in biological 
tissues. It is believed that the modeling method will show more advantages in evaluating 
heat transfer at pathological conditions and has potential applications in early diagnoses 
of vascular complications and targeted treatment of tumor. 
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