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Abstract: Most of the cereal crops are widely cultivated to fulfil the humans 
food requirements. Under changing climate scenario, the intensity of drought 
stress is continuously increasing that is adversely affecting the growth and yield 
of cereal crops. Although the cereals can tolerate moderate drought to some 
extent, but mostly they are susceptible to severe drought stress. Higher 
biosynthesis of ethylene under drought stress has been reported. Many scientists 
observed that inoculation of 1-aminocyclopropane-1-carboxylate (ACC) 
deaminase producing plant growth promoting rhizobacteria (PGPR) is an 
efficacious tool to overcome this problem. These PGPR secrete ACC deaminase 
which cleavage the ACC into the compounds, other than ethylene. Furthermore, 
secretion of growth hormones also play imperative role in enhancing the growth 
of the cereals under limited availability of water. In addition, the use of biochar 
has also been recognized as another effective amendment to grant resistance 
against drought. Biochar application improves the soil physiochemical attributes 
i.e., porosity, nutrients retention and water holding capacity which decrease the 
loss of water and increase its bioavailability. In recent era, the idea of co-
application of ACC deaminase producing PGPR and biochar is becoming 
popular which might be more efficient to use water under drought stress. The 
aim of current review is to combine the facts and understanding of this novel 
idea to grant maximum resistance to crops against drought stress. Some scientists 
have observed significant improvement in yield of cereal crops by combined use 
of ACC deaminase producing PGPR and biochar. However, more research is 
suggested for deep understanding of complex synergistic mechanism of ACC 
deaminase activity in combination with biochar. 
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1 Introduction 
Most of the crops demand ideal environment conditions for their good growth and development. But 

due to their static nature, plants have to face different adverse climatic conditions i.e., cold, heat, drought, 
salinity, flooding etc. [1]. Elevation in CO2 level in air due to continuously varying climatic conditions has 
intensified the situation for the cultivation of crops in agriculture [2]. It is expected that the temperature of 
earth would be enhanced 2oC till the end of 21st century,as compared era of 1850-1900 AD [3]. Elevation in 
earth temperature by increading CO2 level is playing a vital role in enhancement of drought area [4]. 
Drought stress is a worldwide common problem, especially in arid and semi-arid areas. The vulnerability of 
water scarcity is elevating with each passing year [5]. The intensity of drought might be more in the coming 
future as well due to its direct link with global climate change [1]. It is predicted that demand for irrigation 
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water for the cultivation of plants would increase by 10% until the 2050 AD [6]. Because of water 
competition among industrial, domestic and agricultural users, it is also not possible to expand the irrigated 
cultivatable land [7]. On the other hand, the area under irrigation production systems is expected to decline 
resulting in reduction of food production [7]. In this review, the facts related drought, ethylene synthesis, 
combined and sole application of ACC deaminase producing PGPR and biochar will be focused. The aim of 
current review is to understand and uncover the efficacy perspectives of combined use of ACC deaminase 
producing PGPR and biochar regarding mitigation of drought in cereals. 

2 Adverse Effects of Drought on Plants 
Limited accessibility of water, i.e., drought, induced negatively affects the plant growth and yield 

(Tab. 2). Drought affects several biochemical and physiological functions in plants i.e, decrease in water 
potential, loss of turgor, disturbance in protein structure and stomatal closure [8]. A significant amount of 
salts becomes accumulated in the upper layers of soil under limitred water supply which causes osmotic 
stress and ion toxicity to the plant roots [9]. Reduction of stomatal conductance is the first reposnse of 
plants which is regulated by roots via  sending signals through abscisic acid [10]. In this way, CO2 
diffusion in leaves is redcuced under drought as a result of poor conductance of mesophyll. Such 
conditions impair the photosynthesis [11]. It also causes a considerable decrease in crop yield [12,13]. 
Some of the studies showing the effect of drought on cereal yield are listed in Tab. 1. Additionally, the 
drought stress also develops an imbalance between amount of Reactive Oxygen Species (ROS)  and 
antioxidant defenses that induce an oxidative stress. The ROS are important for intracellular signaling yet 
their higher concentration can induce adverse effects at different organization i.e., chloroplasts [14]. The 
ROS have the capacity to initiate lipid peroxidation and degrade proteins, lipids and nucleic acids [15]. 
Mechanism of retardation of lipid peroxidation consists of free radical scavenging enzymes such as 
catalase, peroxidase and superoxide dismutase [16]. A number of enzymatic and nonenzymatic 
antioxidants are present in chloroplasts that serve to prevent ROS accumulation [17]. 

Table 1: Yield losses in cereals due to drought stress 

Crop Stress Yield Losses 
(%) 

References 

Wheat 

40% of soil water reduction 20.6% [18] 
Drought, the SPEI (Standardized Precipitation Evapotranspiration Index) 
denoting extreme dry (0.05 quantile) 4.4% [19] 

–40% water deficit 20.4% [20] 
50% field capacity 50% [21] 30% field capacity 68% 

Rice Drying, soils dried beyond -20 kPa 22.6% [22] 
Drought, water stress (–40% water deficit) > 50% [20] 

Maize 
Meta-analysis of drought under field conditions (40% water reduction) 39.3% [18] 
50% irrigation 30-48% [23] 
Progressive drought (PD) 41.6-46.6% [24] 
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Table 2: Adverse effects of drought on cereals 

Crop Adverse effect of drought References 
Wheat Decrease 1000 grains weight,  decrease chlorophyll [25] 
Wheat Increase electrolyte leakage, decrease growth and gas exchange attributes [26] 
Wheat Decrease biological, grains yield [21] 
Wheat Decrease grain numbers [27] 
Wheat Malfunction and irreversible abortion of male and female reproductive organs [28-30] 
Wheat Over production of  reactive oxygen species [31] 
Rice Grain filling [32] 
Rice Affects the activity of the enzymes for starch synthesis [33] 

Maize 
Poor imbibition, germination and seedling establishment [34] 
Reduced the plumule and radicle growth [35] 
Reduction in shoot elongation is more than root elongation [36] 

All crops Reduced CO2 diffusion [37] 

2.1 Drought and Stress Ethylene 
Drought stress leads to higher ethylene production in plants, which has a detrimental effect on plant 

growth (Tab. 3). Ethylene acts as signalling agent for biotic and abiotic stress [38]. It also plays an 
imperative role in connection with plant responses under oxygen deficiency i.e., induction of gene 
expression linked with leaf senescence, formation of aerenchyma, glycolysis and fermentation. 
Accumulation of the ethylene precursor ACC in roots is transported via the transpiration stream to aerial 
part of the plant. Here, presence of O2 allows it to be changed into ethylene, triggering petiole epinasty 
[39]. Drought stress stimulates the methionine through the intermediates S-adenosyl methionine (SAM) 
and the cyclic amino acid 1-aminocyclopropane-1-carboxylic acid (ACC). The enzyme converting 
methionine to SAM is SAM synthetase, ACC synthase converts SAM to ACC, and ACC is oxidized to 
ethylene by ACC oxidase. Higher levels of ethylene adversely affect the growth and yield attributes of 
plants [40]. Therefore, reduction in stress ethylene has become an efficacious approach to enhance crops 
yield in stress conditions. Recently, soil microbiologists have proved that the use/inoculation of plant 
growth-promoting rhizobacteria (PGPR) improved the crops productivity under variable environmental 
stresses [41]. 

Table 3: Threshold and stress generating levels of ethylene 

Crop Normal Ethylene level Stress Ethylene level due 
to drought Negative effect/Stress induction Reference 

Wheat 
0.3–0.6 nl.g-1.h-1 37 nl.g-1.h-1 9% fresh weight loss [42] 

- approx. 36 nl g-1 fresh 
weight (initial 24h) 

8% fresh weight loss (water potential 
about –2.3 megapascals) [43] 

Arabidopsis - approx. 2.4 nl g-1 fresh 
weight h-1 Fe generated stress [44] 

Wheat approx. 0.1 nl.g1 fresh 
weight h-1 

approx. 0.39 nl.g1 fresh 
weight h-1 –0.08 MPa water potential mild drought [45] 

Wheat approx. 10 nmol g-1 

fresh weight h-1 
approx. 15 nmol g-1 fresh 
weight h-1 20mg ml-1 NaCl generated stress [46] 

3 ACC Deaminase Producing PGPR 
 Rhizosphere is a area wher millions of PGPR’s make a complex community. They affect the yield 
of crops positivily [47,48]. The PGPR improve crops yield by a wide range of mechanisms i.e., inorganic 
nutrients (P, Zn, K) solubilization, synthesis of phytohormones, decreasing stress ethylene (Fig. 1) and 
stimulating the root growth [49]. Under drought stress, the PGPR that contains 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase activity can improve the plant growth by changing ethylene 
concentrations in plants (Tab. 4). Thats why, such PGPR can be termed as “stress modulators” [26,50]. 
Several authors have reported the utilization of ACC- deaminase producing PGPR for ameliorating 
drought stress in crops i.e., chickpea [51], wheat [21] and Lavandula dentata [52].  
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Table 4: ACC deaminase producing PGPR mitigate drought stress in cereals 

Crop Study ACC deaminase PGPR Stress References 

Wheat 

Hydroponic 
Leclercia adecarboxylata,  
Bacillus amyloliquefaciens, Agrobacterium fabrum, 
Pseudomonas aeruginosa 

PEG 6000 induced Drought [21] 

Pot 
Leclercia adecarboxylata,  
Bacillus amyloliquefaciens, 
Agrobacterium fabrum, Pseudomonas aeruginosa 

WHC maintained Drought [26] 

Field Bacillus amyloliquefaciens, 
Agrobacterium fabrum 

Drought generated by 
skipping irrigations [53] 

Glasshouse 
pot 

Variovorax paradoxus RAA3; Pseudomonas spp. 
DPC12, DPB13, DPB15, DPB16; Achromobacter spp. 
PSA7, PSB8; and Ochrobactrum anthropi DPC9. 

WHC maintained Drought [54] 

Field 
Enterobacter 
mori (KF747680), E. asburiae (KF747681) and E. 
ludwigii (KF747683), 

Non-limiting water 
condition, medium drought 
and severe drough 

[55] 

Maize 

Hydroponic 
Enterobacter cloacae, Achromobacter xylosoxidans, 
Leclercia adecarboxylata, 
Pseudomonas aeruginosa 

PEG 6000 induced Drought [56] 

Field Study BN-5 and MD-23 (PGPR not identified) 
vegetative and tasseling 
stages ~50% field capacity 
(FC) induced drought 

[57] 

Pot 
experiment B. megaterium strain HX-2 PEG 6000 induced Drought [58] 

Rice Lab 
Experiment IS 4–7, AP 3–7, CS 10–12, and IS 8–9 Polyethylene glycol (PEG) 

8000 induced drought [59] 

 

Figure 1: ACC deaminase producing PGPR promote plant growth under drought stress 
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Some of the important reported studies are listed in Tab. 4. In maize, leaf ethylene changes are not linked 
with decrease in elongation under limited availability of water [60] suggesting that ethylene may play a 
role in leaf growth inhibition and ACC may be one component of long distance root-sourced signals under 
drought [61]. A report in wheat showed that after 2 days under drought-stress, plants treated with an 
ethylene inhibitor (1-MCP) closed their stomata, suggesting chemical but not hydraulic signals controlled 
stomatal closure [62]. In rice, waterlogging induced adventitious root formation mediated by ethylene also 
appeared to facilitate aerenchyma formation [63]. 

4 Biochar 
On the other hand, activated biochar (BC) is a potential nutrient-rich organic amendment. Its 

potential benefits include the minimum emission of greenhouse gas (GHG), contaminants adsorption, 
enhancement of soil nutrients availability as well as crop productivity in cultivatable soils [64,65]. 
Depending upon plant and soil processes, the cultivatable land acts as a sink and source for carbon (C) 
[66,67]. An increase in carbon dioxide (CO2) emissions by addition of fertilizers can be partially offset by 
increased in photosynthetic rate, that are not limited due to deficiency of nutrients. As BC can give an 
exceptional solution for such potential problems of nutrients, it has become the centre of attention for the 
farmers and scientists [68].  

Sequestration of C, especially in arable land, is an important route to lessen the climatic changes. In 
cultivatable soils, reserves of organic carbon (OC) are limited. Biochar mixing in such soils can be an 
efficacious approach for improvement of SOC. It increases recalcitrant C in bulk amount which is 
resistant against decomposition, thus, it decreases the GHG emissions [60,64,69]. As BC is stable and has 
capability to improve soil carbon for hundred years thus, modified water holding capacity (WHC). 
Nutrient holding can be maintained by its application for a long period of time [70]. 

4.1 Production and Potential Soil Benefits 

 
Figure 2: Biochar potential benefits when it is applied in soil 

Biochar is manufactured via pyrolysis under low or no supply of O2 and high temperature [71]. In 
complete or partial absence of O2, thermal disintegration of waste-biomass can be changed to yield. 
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Besides CO2, combustible gases (CO, H2, CH4), tarry-vapors, volatile-oils and C-rich residue are referred 
as char [70]. It is considered to contain biomass-derived char projected specifically for addition in soil. 
Both biochar and char in general are mainly composed of stable aromatic forms of organic C compared to 
C in a pyrolysis feedstock which cannot readily be returned in the air as CO2 even under favorable 
biological and environmental conditions [70]. The physiochemical properties of BC depend on the nature 
of waste material used and temperature of the pyrolysis [72,73]. Biochar application enhances soil pH, 
WHC, pore-spaces and organic C that facilitate the soil aggregation (Fig. 2) while decreases tensile 
strength and soil bulk density (BD) [74–76].  

Low density and high porosity of BC comparative to soils usually aid in holding air and water. In 
that way the BD of soil is decreased [77]. Low BD and higher WHC of soil stimulate the growth of root 
and improve microbial activities in soil [78–79]. Some of important reported studies are listed in Tab. 5. 

Table 5: Drought stress alleviation by application of various rate of biochar in cereals 

Crop Experimental condition Application rate References 
Wheat Pot study 0, 0.75 and 1.5% [21] 
Wheat Field study 0, 1.5% [53] 
Maize Pot experiment 0, 5, 10 and 20 t/ha [80] 
Rice Pot experiment 2.5% (w/w) [81] 
Maize Field study 0, 1, 2 and 5% [82] 
Maize Field study 0, 12 t ha−1 [83] 
Maize Pot experiment 0 and 5% [84] 
Wheat Pot experiment 0 and 5% [85] 
Maize Greenhouse study 0, 1.5 and 3 % (w/w) [86] 
Wheat Field study 0, 12 t ha−1 [87] 
pseudo-cereal Chenopodium quinoa Greenhouse study 0, 100 and 200 t ha−1 [88] 

 
5 Combined Use of Biochar and ACC Deaminase Producing PGPR 

Nowadays, scientists are focusing to improve the potential benefits of both PGPR and biochar. In 
that context, a significant improvement has been documented by many scientists [21,53]. In general, a 
large amount of carbon in biochar becomes unavailable for the microbes [89]. Solid evidence is available 
regarding potential benefits of biochar in the improvement of soil microbial biomass and activities [90–
92]. For example, microbial growth and activities are significantly improved when C of biochar becomes 
available in soil after burning of trees [93]. In biochar-amended soils, sorption and succeeding 
inactivation of growth inhibiting matter by BC, control the abundance of soil biota [94]. It also strongly 
affects the soil microbial abundance and community as observed terra preta soils of Amazon that are rich 
in biochar [95–97]. Changes in microbial community and their activities in response to biochar addition, 
influence the nutrient cycles, crop growth, and soil organic matter decomposition [97]. 

Biochar enhanced the proliferation of some bacterial families i.e., Bradyrhizobiaceae and 
Thermomonosporaceae (8%), Streptosporangineae and Hyphomicrobiaceae (6% and 14%), either by 
progressing their abundance or decreasing the scale of loss. However, it suppressed the proliferation of 
Micromonosporaceae and Streptomycetaceae (–7% to –11%) [98]. Of these, Hyphomicrobiaceae and 
Bradyrhizobiaceae are linked with N cycling (NO3 to N2 denitrification), including 454 genera or species. 
Thus, PGPR involved in NH4

+ to nitrite (NO2
-) are low in abundant. Biochar also improved the growth of 

such PGPR that are capable of decreasing the N2O flux [98]. Moreover, its application enhanced P 
solubilizing PGPR and improved C fluctuations by inspiring the proliferation of microbial families which 
has capability to decompose recalcitrant C [98]. 
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6 Conclusion and Future Directions 
Drought adversely affects the yield of cereal crops by disturbing different biochemical and 

physiological functions (conductance of stomata, photosynthetic rate, transpiration rate, dry weight of 
root and shoot, harvest index and root system) in plants. Over and imbalance production of 
multifunctional phytohormone, i.e., higher biosynthesis of ethylene under drought also restricts the 
growth of plants and causes senescence at seedling stage. Inoculation of ACC deaminase producing 
PGPR is well established and effective technique to mitigate drought stress in cereal crops. Such PGPR 
has potential to improve root growth by decreasing ethylene and secretion of growth hormones. milarly, 
addition of biochar also has potential to alleviate drought stress in cereal crops. Biochar not only 
improves soil water holding capacity (WHC) but also improves other soil properties i.e., porosity, 
nutrients retention, soil C pool and microbial activity. So far, the positive effects of ACC deaminase 
producing PGPR and biochar have been observed by some scientists. However, more detailed 
experimentations are yet required to understand the complex synergistic mechanism of ACC deaminase 
activity with biochar to minimize the drought-induced stress in cereals. 
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